qemu-e2k/hw/ppc/ppc.c
Daniel Henrique Barboza ef95a24494 hw/ppc: free env->tb_env in spapr_unrealize_vcpu()
The timebase is allocated during spapr_realize_vcpu() and it's not
freed. This results in memory leaks when doing vcpu unplugs:

==636935==
==636935== 144 (96 direct, 48 indirect) bytes in 1 blocks are definitely lost in loss record 6
,461 of 8,135
==636935==    at 0x4897468: calloc (vg_replace_malloc.c:760)
==636935==    by 0x5077213: g_malloc0 (in /usr/lib64/libglib-2.0.so.0.6400.4)
==636935==    by 0x507757F: g_malloc0_n (in /usr/lib64/libglib-2.0.so.0.6400.4)
==636935==    by 0x93C3FB: cpu_ppc_tb_init (ppc.c:1066)
==636935==    by 0x97BC2B: spapr_realize_vcpu (spapr_cpu_core.c:268)
==636935==    by 0x97C01F: spapr_cpu_core_realize (spapr_cpu_core.c:337)
==636935==    by 0xD4626F: device_set_realized (qdev.c:531)
==636935==    by 0xD55273: property_set_bool (object.c:2273)
==636935==    by 0xD523DF: object_property_set (object.c:1408)
==636935==    by 0xD588B7: object_property_set_qobject (qom-qobject.c:28)
==636935==    by 0xD52897: object_property_set_bool (object.c:1477)
==636935==    by 0xD4579B: qdev_realize (qdev.c:333)
==636935==

This patch adds a cpu_ppc_tb_free() helper in hw/ppc/ppc.c to allow us
to free the timebase. This leak is then solved by calling
cpu_ppc_tb_free() in spapr_unrealize_vcpu().

Fixes: 6f4b5c3ec590 ("spapr: CPU hot unplug support")
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20220329124545.529145-2-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2022-04-04 08:49:06 +02:00

1495 lines
42 KiB
C

/*
* QEMU generic PowerPC hardware System Emulator
*
* Copyright (c) 2003-2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/ppc/ppc.h"
#include "hw/ppc/ppc_e500.h"
#include "qemu/timer.h"
#include "sysemu/cpus.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "qemu/error-report.h"
#include "sysemu/kvm.h"
#include "sysemu/runstate.h"
#include "kvm_ppc.h"
#include "migration/vmstate.h"
#include "trace.h"
static void cpu_ppc_tb_stop (CPUPPCState *env);
static void cpu_ppc_tb_start (CPUPPCState *env);
void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
unsigned int old_pending;
bool locked = false;
/* We may already have the BQL if coming from the reset path */
if (!qemu_mutex_iothread_locked()) {
locked = true;
qemu_mutex_lock_iothread();
}
old_pending = env->pending_interrupts;
if (level) {
env->pending_interrupts |= 1 << n_IRQ;
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
} else {
env->pending_interrupts &= ~(1 << n_IRQ);
if (env->pending_interrupts == 0) {
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
}
}
if (old_pending != env->pending_interrupts) {
kvmppc_set_interrupt(cpu, n_IRQ, level);
}
trace_ppc_irq_set_exit(env, n_IRQ, level, env->pending_interrupts,
CPU(cpu)->interrupt_request);
if (locked) {
qemu_mutex_unlock_iothread();
}
}
/* PowerPC 6xx / 7xx internal IRQ controller */
static void ppc6xx_set_irq(void *opaque, int pin, int level)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
int cur_level;
trace_ppc_irq_set(env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
CPUState *cs = CPU(cpu);
switch (pin) {
case PPC6xx_INPUT_TBEN:
/* Level sensitive - active high */
trace_ppc_irq_set_state("time base", level);
if (level) {
cpu_ppc_tb_start(env);
} else {
cpu_ppc_tb_stop(env);
}
break;
case PPC6xx_INPUT_INT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("external IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
break;
case PPC6xx_INPUT_SMI:
/* Level sensitive - active high */
trace_ppc_irq_set_state("SMI IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
break;
case PPC6xx_INPUT_MCP:
/* Negative edge sensitive */
/* XXX: TODO: actual reaction may depends on HID0 status
* 603/604/740/750: check HID0[EMCP]
*/
if (cur_level == 1 && level == 0) {
trace_ppc_irq_set_state("machine check", 1);
ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
}
break;
case PPC6xx_INPUT_CKSTP_IN:
/* Level sensitive - active low */
/* XXX: TODO: relay the signal to CKSTP_OUT pin */
/* XXX: Note that the only way to restart the CPU is to reset it */
if (level) {
trace_ppc_irq_cpu("stop");
cs->halted = 1;
}
break;
case PPC6xx_INPUT_HRESET:
/* Level sensitive - active low */
if (level) {
trace_ppc_irq_reset("CPU");
cpu_interrupt(cs, CPU_INTERRUPT_RESET);
}
break;
case PPC6xx_INPUT_SRESET:
trace_ppc_irq_set_state("RESET IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
break;
default:
g_assert_not_reached();
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppc6xx_irq_init(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
PPC6xx_INPUT_NB);
}
#if defined(TARGET_PPC64)
/* PowerPC 970 internal IRQ controller */
static void ppc970_set_irq(void *opaque, int pin, int level)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
int cur_level;
trace_ppc_irq_set(env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
CPUState *cs = CPU(cpu);
switch (pin) {
case PPC970_INPUT_INT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("external IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
break;
case PPC970_INPUT_THINT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("SMI IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
break;
case PPC970_INPUT_MCP:
/* Negative edge sensitive */
/* XXX: TODO: actual reaction may depends on HID0 status
* 603/604/740/750: check HID0[EMCP]
*/
if (cur_level == 1 && level == 0) {
trace_ppc_irq_set_state("machine check", 1);
ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
}
break;
case PPC970_INPUT_CKSTP:
/* Level sensitive - active low */
/* XXX: TODO: relay the signal to CKSTP_OUT pin */
if (level) {
trace_ppc_irq_cpu("stop");
cs->halted = 1;
} else {
trace_ppc_irq_cpu("restart");
cs->halted = 0;
qemu_cpu_kick(cs);
}
break;
case PPC970_INPUT_HRESET:
/* Level sensitive - active low */
if (level) {
cpu_interrupt(cs, CPU_INTERRUPT_RESET);
}
break;
case PPC970_INPUT_SRESET:
trace_ppc_irq_set_state("RESET IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
break;
case PPC970_INPUT_TBEN:
trace_ppc_irq_set_state("TBEN IRQ", level);
/* XXX: TODO */
break;
default:
g_assert_not_reached();
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppc970_irq_init(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
PPC970_INPUT_NB);
}
/* POWER7 internal IRQ controller */
static void power7_set_irq(void *opaque, int pin, int level)
{
PowerPCCPU *cpu = opaque;
trace_ppc_irq_set(&cpu->env, pin, level);
switch (pin) {
case POWER7_INPUT_INT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("external IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
break;
default:
g_assert_not_reached();
}
}
void ppcPOWER7_irq_init(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
POWER7_INPUT_NB);
}
/* POWER9 internal IRQ controller */
static void power9_set_irq(void *opaque, int pin, int level)
{
PowerPCCPU *cpu = opaque;
trace_ppc_irq_set(&cpu->env, pin, level);
switch (pin) {
case POWER9_INPUT_INT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("external IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
break;
case POWER9_INPUT_HINT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("HV external IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
break;
default:
g_assert_not_reached();
return;
}
}
void ppcPOWER9_irq_init(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
POWER9_INPUT_NB);
}
#endif /* defined(TARGET_PPC64) */
void ppc40x_core_reset(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
target_ulong dbsr;
qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
dbsr = env->spr[SPR_40x_DBSR];
dbsr &= ~0x00000300;
dbsr |= 0x00000100;
env->spr[SPR_40x_DBSR] = dbsr;
}
void ppc40x_chip_reset(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
target_ulong dbsr;
qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
/* XXX: TODO reset all internal peripherals */
dbsr = env->spr[SPR_40x_DBSR];
dbsr &= ~0x00000300;
dbsr |= 0x00000200;
env->spr[SPR_40x_DBSR] = dbsr;
}
void ppc40x_system_reset(PowerPCCPU *cpu)
{
qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
{
PowerPCCPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
switch ((val >> 28) & 0x3) {
case 0x0:
/* No action */
break;
case 0x1:
/* Core reset */
ppc40x_core_reset(cpu);
break;
case 0x2:
/* Chip reset */
ppc40x_chip_reset(cpu);
break;
case 0x3:
/* System reset */
ppc40x_system_reset(cpu);
break;
}
qemu_mutex_unlock_iothread();
}
/* PowerPC 40x internal IRQ controller */
static void ppc40x_set_irq(void *opaque, int pin, int level)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
int cur_level;
trace_ppc_irq_set(env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
CPUState *cs = CPU(cpu);
switch (pin) {
case PPC40x_INPUT_RESET_SYS:
if (level) {
trace_ppc_irq_reset("system");
ppc40x_system_reset(cpu);
}
break;
case PPC40x_INPUT_RESET_CHIP:
if (level) {
trace_ppc_irq_reset("chip");
ppc40x_chip_reset(cpu);
}
break;
case PPC40x_INPUT_RESET_CORE:
/* XXX: TODO: update DBSR[MRR] */
if (level) {
trace_ppc_irq_reset("core");
ppc40x_core_reset(cpu);
}
break;
case PPC40x_INPUT_CINT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("critical IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
break;
case PPC40x_INPUT_INT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("external IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
break;
case PPC40x_INPUT_HALT:
/* Level sensitive - active low */
if (level) {
trace_ppc_irq_cpu("stop");
cs->halted = 1;
} else {
trace_ppc_irq_cpu("restart");
cs->halted = 0;
qemu_cpu_kick(cs);
}
break;
case PPC40x_INPUT_DEBUG:
/* Level sensitive - active high */
trace_ppc_irq_set_state("debug pin", level);
ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
break;
default:
g_assert_not_reached();
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppc40x_irq_init(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
cpu, PPC40x_INPUT_NB);
}
/* PowerPC E500 internal IRQ controller */
static void ppce500_set_irq(void *opaque, int pin, int level)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
int cur_level;
trace_ppc_irq_set(env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
switch (pin) {
case PPCE500_INPUT_MCK:
if (level) {
trace_ppc_irq_reset("system");
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
break;
case PPCE500_INPUT_RESET_CORE:
if (level) {
trace_ppc_irq_reset("core");
ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
}
break;
case PPCE500_INPUT_CINT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("critical IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
break;
case PPCE500_INPUT_INT:
/* Level sensitive - active high */
trace_ppc_irq_set_state("core IRQ", level);
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
break;
case PPCE500_INPUT_DEBUG:
/* Level sensitive - active high */
trace_ppc_irq_set_state("debug pin", level);
ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
break;
default:
g_assert_not_reached();
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppce500_irq_init(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
cpu, PPCE500_INPUT_NB);
}
/* Enable or Disable the E500 EPR capability */
void ppce500_set_mpic_proxy(bool enabled)
{
CPUState *cs;
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
cpu->env.mpic_proxy = enabled;
if (kvm_enabled()) {
kvmppc_set_mpic_proxy(cpu, enabled);
}
}
}
/*****************************************************************************/
/* PowerPC time base and decrementer emulation */
uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
{
/* TB time in tb periods */
return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
}
uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
if (kvm_enabled()) {
return env->spr[SPR_TBL];
}
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
trace_ppc_tb_load(tb);
return tb;
}
static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
trace_ppc_tb_load(tb);
return tb >> 32;
}
uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
{
if (kvm_enabled()) {
return env->spr[SPR_TBU];
}
return _cpu_ppc_load_tbu(env);
}
static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
int64_t *tb_offsetp, uint64_t value)
{
*tb_offsetp = value -
muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
trace_ppc_tb_store(value, *tb_offsetp);
}
void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
tb &= 0xFFFFFFFF00000000ULL;
cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
&tb_env->tb_offset, tb | (uint64_t)value);
}
static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
tb &= 0x00000000FFFFFFFFULL;
cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
&tb_env->tb_offset, ((uint64_t)value << 32) | tb);
}
void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
{
_cpu_ppc_store_tbu(env, value);
}
uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
trace_ppc_tb_load(tb);
return tb;
}
uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
trace_ppc_tb_load(tb);
return tb >> 32;
}
void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
tb &= 0xFFFFFFFF00000000ULL;
cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
&tb_env->atb_offset, tb | (uint64_t)value);
}
void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
tb &= 0x00000000FFFFFFFFULL;
cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
&tb_env->atb_offset, ((uint64_t)value << 32) | tb);
}
uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
tb_env->vtb_offset);
}
void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
{
ppc_tb_t *tb_env = env->tb_env;
cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
&tb_env->vtb_offset, value);
}
void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
tb_env->tb_offset);
tb &= 0xFFFFFFUL;
tb |= (value & ~0xFFFFFFUL);
cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
&tb_env->tb_offset, tb);
}
static void cpu_ppc_tb_stop (CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb, atb, vmclk;
/* If the time base is already frozen, do nothing */
if (tb_env->tb_freq != 0) {
vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
/* Get the time base */
tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
/* Get the alternate time base */
atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
/* Store the time base value (ie compute the current offset) */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
/* Store the alternate time base value (compute the current offset) */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
/* Set the time base frequency to zero */
tb_env->tb_freq = 0;
/* Now, the time bases are frozen to tb_offset / atb_offset value */
}
}
static void cpu_ppc_tb_start (CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb, atb, vmclk;
/* If the time base is not frozen, do nothing */
if (tb_env->tb_freq == 0) {
vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
/* Get the time base from tb_offset */
tb = tb_env->tb_offset;
/* Get the alternate time base from atb_offset */
atb = tb_env->atb_offset;
/* Restore the tb frequency from the decrementer frequency */
tb_env->tb_freq = tb_env->decr_freq;
/* Store the time base value */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
/* Store the alternate time base value */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
}
}
bool ppc_decr_clear_on_delivery(CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
}
static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
{
ppc_tb_t *tb_env = env->tb_env;
int64_t decr, diff;
diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
if (diff >= 0) {
decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
} else if (tb_env->flags & PPC_TIMER_BOOKE) {
decr = 0;
} else {
decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
}
trace_ppc_decr_load(decr);
return decr;
}
target_ulong cpu_ppc_load_decr(CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t decr;
if (kvm_enabled()) {
return env->spr[SPR_DECR];
}
decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
/*
* If large decrementer is enabled then the decrementer is signed extened
* to 64 bits, otherwise it is a 32 bit value.
*/
if (env->spr[SPR_LPCR] & LPCR_LD) {
return decr;
}
return (uint32_t) decr;
}
target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
{
PowerPCCPU *cpu = env_archcpu(env);
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
ppc_tb_t *tb_env = env->tb_env;
uint64_t hdecr;
hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next);
/*
* If we have a large decrementer (POWER9 or later) then hdecr is sign
* extended to 64 bits, otherwise it is 32 bits.
*/
if (pcc->lrg_decr_bits > 32) {
return hdecr;
}
return (uint32_t) hdecr;
}
uint64_t cpu_ppc_load_purr (CPUPPCState *env)
{
ppc_tb_t *tb_env = env->tb_env;
return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
tb_env->purr_offset);
}
/* When decrementer expires,
* all we need to do is generate or queue a CPU exception
*/
static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
{
/* Raise it */
trace_ppc_decr_excp("raise");
ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
}
static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
{
ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
}
static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
/* Raise it */
trace_ppc_decr_excp("raise HV");
/* The architecture specifies that we don't deliver HDEC
* interrupts in a PM state. Not only they don't cause a
* wakeup but they also get effectively discarded.
*/
if (!env->resume_as_sreset) {
ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
}
}
static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
{
ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
}
static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
QEMUTimer *timer,
void (*raise_excp)(void *),
void (*lower_excp)(PowerPCCPU *),
target_ulong decr, target_ulong value,
int nr_bits)
{
CPUPPCState *env = &cpu->env;
ppc_tb_t *tb_env = env->tb_env;
uint64_t now, next;
int64_t signed_value;
int64_t signed_decr;
/* Truncate value to decr_width and sign extend for simplicity */
signed_value = sextract64(value, 0, nr_bits);
signed_decr = sextract64(decr, 0, nr_bits);
trace_ppc_decr_store(nr_bits, decr, value);
if (kvm_enabled()) {
/* KVM handles decrementer exceptions, we don't need our own timer */
return;
}
/*
* Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
* interrupt.
*
* If we get a really small DEC value, we can assume that by the time we
* handled it we should inject an interrupt already.
*
* On MSB level based DEC implementations the MSB always means the interrupt
* is pending, so raise it on those.
*
* On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
* an edge interrupt, so raise it here too.
*/
if ((value < 3) ||
((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) ||
((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0
&& signed_decr >= 0)) {
(*raise_excp)(cpu);
return;
}
/* On MSB level based systems a 0 for the MSB stops interrupt delivery */
if (signed_value >= 0 && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
(*lower_excp)(cpu);
}
/* Calculate the next timer event */
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
*nextp = next;
/* Adjust timer */
timer_mod(timer, next);
}
static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
target_ulong value, int nr_bits)
{
ppc_tb_t *tb_env = cpu->env.tb_env;
__cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
value, nr_bits);
}
void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
{
PowerPCCPU *cpu = env_archcpu(env);
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
int nr_bits = 32;
if (env->spr[SPR_LPCR] & LPCR_LD) {
nr_bits = pcc->lrg_decr_bits;
}
_cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
}
static void cpu_ppc_decr_cb(void *opaque)
{
PowerPCCPU *cpu = opaque;
cpu_ppc_decr_excp(cpu);
}
static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
target_ulong value, int nr_bits)
{
ppc_tb_t *tb_env = cpu->env.tb_env;
if (tb_env->hdecr_timer != NULL) {
__cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
hdecr, value, nr_bits);
}
}
void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
{
PowerPCCPU *cpu = env_archcpu(env);
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
_cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
pcc->lrg_decr_bits);
}
static void cpu_ppc_hdecr_cb(void *opaque)
{
PowerPCCPU *cpu = opaque;
cpu_ppc_hdecr_excp(cpu);
}
void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
{
ppc_tb_t *tb_env = env->tb_env;
cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
&tb_env->purr_offset, value);
}
static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
{
CPUPPCState *env = opaque;
PowerPCCPU *cpu = env_archcpu(env);
ppc_tb_t *tb_env = env->tb_env;
tb_env->tb_freq = freq;
tb_env->decr_freq = freq;
/* There is a bug in Linux 2.4 kernels:
* if a decrementer exception is pending when it enables msr_ee at startup,
* it's not ready to handle it...
*/
_cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
_cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
cpu_ppc_store_purr(env, 0x0000000000000000ULL);
}
static void timebase_save(PPCTimebase *tb)
{
uint64_t ticks = cpu_get_host_ticks();
PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
if (!first_ppc_cpu->env.tb_env) {
error_report("No timebase object");
return;
}
/* not used anymore, we keep it for compatibility */
tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
/*
* tb_offset is only expected to be changed by QEMU so
* there is no need to update it from KVM here
*/
tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
tb->runstate_paused =
runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
}
static void timebase_load(PPCTimebase *tb)
{
CPUState *cpu;
PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
int64_t tb_off_adj, tb_off;
unsigned long freq;
if (!first_ppc_cpu->env.tb_env) {
error_report("No timebase object");
return;
}
freq = first_ppc_cpu->env.tb_env->tb_freq;
tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
tb_off = first_ppc_cpu->env.tb_env->tb_offset;
trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
(tb_off_adj - tb_off) / freq);
/* Set new offset to all CPUs */
CPU_FOREACH(cpu) {
PowerPCCPU *pcpu = POWERPC_CPU(cpu);
pcpu->env.tb_env->tb_offset = tb_off_adj;
kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
}
}
void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
RunState state)
{
PPCTimebase *tb = opaque;
if (running) {
timebase_load(tb);
} else {
timebase_save(tb);
}
}
/*
* When migrating a running guest, read the clock just
* before migration, so that the guest clock counts
* during the events between:
*
* * vm_stop()
* *
* * pre_save()
*
* This reduces clock difference on migration from 5s
* to 0.1s (when max_downtime == 5s), because sending the
* final pages of memory (which happens between vm_stop()
* and pre_save()) takes max_downtime.
*/
static int timebase_pre_save(void *opaque)
{
PPCTimebase *tb = opaque;
/* guest_timebase won't be overridden in case of paused guest or savevm */
if (!tb->runstate_paused) {
timebase_save(tb);
}
return 0;
}
const VMStateDescription vmstate_ppc_timebase = {
.name = "timebase",
.version_id = 1,
.minimum_version_id = 1,
.pre_save = timebase_pre_save,
.fields = (VMStateField []) {
VMSTATE_UINT64(guest_timebase, PPCTimebase),
VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
VMSTATE_END_OF_LIST()
},
};
/* Set up (once) timebase frequency (in Hz) */
clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
{
PowerPCCPU *cpu = env_archcpu(env);
ppc_tb_t *tb_env;
tb_env = g_new0(ppc_tb_t, 1);
env->tb_env = tb_env;
tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
if (is_book3s_arch2x(env)) {
/* All Book3S 64bit CPUs implement level based DEC logic */
tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
}
/* Create new timer */
tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
if (env->has_hv_mode && !cpu->vhyp) {
tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
cpu);
} else {
tb_env->hdecr_timer = NULL;
}
cpu_ppc_set_tb_clk(env, freq);
return &cpu_ppc_set_tb_clk;
}
void cpu_ppc_tb_free(CPUPPCState *env)
{
timer_free(env->tb_env->decr_timer);
timer_free(env->tb_env->hdecr_timer);
g_free(env->tb_env);
}
/* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */
void cpu_ppc_hdecr_init(CPUPPCState *env)
{
PowerPCCPU *cpu = env_archcpu(env);
assert(env->tb_env->hdecr_timer == NULL);
env->tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
&cpu_ppc_hdecr_cb, cpu);
}
void cpu_ppc_hdecr_exit(CPUPPCState *env)
{
PowerPCCPU *cpu = env_archcpu(env);
timer_free(env->tb_env->hdecr_timer);
env->tb_env->hdecr_timer = NULL;
cpu_ppc_hdecr_lower(cpu);
}
/*****************************************************************************/
/* PowerPC 40x timers */
/* PIT, FIT & WDT */
typedef struct ppc40x_timer_t ppc40x_timer_t;
struct ppc40x_timer_t {
uint64_t pit_reload; /* PIT auto-reload value */
uint64_t fit_next; /* Tick for next FIT interrupt */
QEMUTimer *fit_timer;
uint64_t wdt_next; /* Tick for next WDT interrupt */
QEMUTimer *wdt_timer;
/* 405 have the PIT, 440 have a DECR. */
unsigned int decr_excp;
};
/* Fixed interval timer */
static void cpu_4xx_fit_cb (void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
ppc_tb_t *tb_env;
ppc40x_timer_t *ppc40x_timer;
uint64_t now, next;
tb_env = env->tb_env;
ppc40x_timer = tb_env->opaque;
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
case 0:
next = 1 << 9;
break;
case 1:
next = 1 << 13;
break;
case 2:
next = 1 << 17;
break;
case 3:
next = 1 << 21;
break;
default:
/* Cannot occur, but makes gcc happy */
return;
}
next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
if (next == now)
next++;
timer_mod(ppc40x_timer->fit_timer, next);
env->spr[SPR_40x_TSR] |= 1 << 26;
if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
}
trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
}
/* Programmable interval timer */
static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
{
ppc40x_timer_t *ppc40x_timer;
uint64_t now, next;
ppc40x_timer = tb_env->opaque;
if (ppc40x_timer->pit_reload <= 1 ||
!((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
(is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
/* Stop PIT */
trace_ppc4xx_pit_stop();
timer_del(tb_env->decr_timer);
} else {
trace_ppc4xx_pit_start(ppc40x_timer->pit_reload);
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
next = now + muldiv64(ppc40x_timer->pit_reload,
NANOSECONDS_PER_SECOND, tb_env->decr_freq);
if (is_excp)
next += tb_env->decr_next - now;
if (next == now)
next++;
timer_mod(tb_env->decr_timer, next);
tb_env->decr_next = next;
}
}
static void cpu_4xx_pit_cb (void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
ppc_tb_t *tb_env;
ppc40x_timer_t *ppc40x_timer;
tb_env = env->tb_env;
ppc40x_timer = tb_env->opaque;
env->spr[SPR_40x_TSR] |= 1 << 27;
if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
}
start_stop_pit(env, tb_env, 1);
trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
(int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
ppc40x_timer->pit_reload);
}
/* Watchdog timer */
static void cpu_4xx_wdt_cb (void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
ppc_tb_t *tb_env;
ppc40x_timer_t *ppc40x_timer;
uint64_t now, next;
tb_env = env->tb_env;
ppc40x_timer = tb_env->opaque;
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
case 0:
next = 1 << 17;
break;
case 1:
next = 1 << 21;
break;
case 2:
next = 1 << 25;
break;
case 3:
next = 1 << 29;
break;
default:
/* Cannot occur, but makes gcc happy */
return;
}
next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
if (next == now)
next++;
trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
case 0x0:
case 0x1:
timer_mod(ppc40x_timer->wdt_timer, next);
ppc40x_timer->wdt_next = next;
env->spr[SPR_40x_TSR] |= 1U << 31;
break;
case 0x2:
timer_mod(ppc40x_timer->wdt_timer, next);
ppc40x_timer->wdt_next = next;
env->spr[SPR_40x_TSR] |= 1 << 30;
if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
}
break;
case 0x3:
env->spr[SPR_40x_TSR] &= ~0x30000000;
env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
case 0x0:
/* No reset */
break;
case 0x1: /* Core reset */
ppc40x_core_reset(cpu);
break;
case 0x2: /* Chip reset */
ppc40x_chip_reset(cpu);
break;
case 0x3: /* System reset */
ppc40x_system_reset(cpu);
break;
}
}
}
void store_40x_pit (CPUPPCState *env, target_ulong val)
{
ppc_tb_t *tb_env;
ppc40x_timer_t *ppc40x_timer;
tb_env = env->tb_env;
ppc40x_timer = tb_env->opaque;
trace_ppc40x_store_pit(val);
ppc40x_timer->pit_reload = val;
start_stop_pit(env, tb_env, 0);
}
target_ulong load_40x_pit (CPUPPCState *env)
{
return cpu_ppc_load_decr(env);
}
void store_40x_tsr(CPUPPCState *env, target_ulong val)
{
PowerPCCPU *cpu = env_archcpu(env);
trace_ppc40x_store_tcr(val);
env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
if (val & 0x80000000) {
ppc_set_irq(cpu, PPC_INTERRUPT_PIT, 0);
}
}
void store_40x_tcr(CPUPPCState *env, target_ulong val)
{
PowerPCCPU *cpu = env_archcpu(env);
ppc_tb_t *tb_env;
trace_ppc40x_store_tsr(val);
tb_env = env->tb_env;
env->spr[SPR_40x_TCR] = val & 0xFFC00000;
start_stop_pit(env, tb_env, 1);
cpu_4xx_wdt_cb(cpu);
}
static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
{
CPUPPCState *env = opaque;
ppc_tb_t *tb_env = env->tb_env;
trace_ppc40x_set_tb_clk(freq);
tb_env->tb_freq = freq;
tb_env->decr_freq = freq;
/* XXX: we should also update all timers */
}
clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
unsigned int decr_excp)
{
ppc_tb_t *tb_env;
ppc40x_timer_t *ppc40x_timer;
PowerPCCPU *cpu = env_archcpu(env);
trace_ppc40x_timers_init(freq);
tb_env = g_new0(ppc_tb_t, 1);
ppc40x_timer = g_new0(ppc40x_timer_t, 1);
env->tb_env = tb_env;
tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
tb_env->tb_freq = freq;
tb_env->decr_freq = freq;
tb_env->opaque = ppc40x_timer;
/* We use decr timer for PIT */
tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, cpu);
ppc40x_timer->fit_timer =
timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, cpu);
ppc40x_timer->wdt_timer =
timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, cpu);
ppc40x_timer->decr_excp = decr_excp;
return &ppc_40x_set_tb_clk;
}
/*****************************************************************************/
/* Embedded PowerPC Device Control Registers */
typedef struct ppc_dcrn_t ppc_dcrn_t;
struct ppc_dcrn_t {
dcr_read_cb dcr_read;
dcr_write_cb dcr_write;
void *opaque;
};
/* XXX: on 460, DCR addresses are 32 bits wide,
* using DCRIPR to get the 22 upper bits of the DCR address
*/
#define DCRN_NB 1024
struct ppc_dcr_t {
ppc_dcrn_t dcrn[DCRN_NB];
int (*read_error)(int dcrn);
int (*write_error)(int dcrn);
};
int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
{
ppc_dcrn_t *dcr;
if (dcrn < 0 || dcrn >= DCRN_NB)
goto error;
dcr = &dcr_env->dcrn[dcrn];
if (dcr->dcr_read == NULL)
goto error;
*valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
trace_ppc_dcr_read(dcrn, *valp);
return 0;
error:
if (dcr_env->read_error != NULL)
return (*dcr_env->read_error)(dcrn);
return -1;
}
int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
{
ppc_dcrn_t *dcr;
if (dcrn < 0 || dcrn >= DCRN_NB)
goto error;
dcr = &dcr_env->dcrn[dcrn];
if (dcr->dcr_write == NULL)
goto error;
trace_ppc_dcr_write(dcrn, val);
(*dcr->dcr_write)(dcr->opaque, dcrn, val);
return 0;
error:
if (dcr_env->write_error != NULL)
return (*dcr_env->write_error)(dcrn);
return -1;
}
int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
dcr_read_cb dcr_read, dcr_write_cb dcr_write)
{
ppc_dcr_t *dcr_env;
ppc_dcrn_t *dcr;
dcr_env = env->dcr_env;
if (dcr_env == NULL)
return -1;
if (dcrn < 0 || dcrn >= DCRN_NB)
return -1;
dcr = &dcr_env->dcrn[dcrn];
if (dcr->opaque != NULL ||
dcr->dcr_read != NULL ||
dcr->dcr_write != NULL)
return -1;
dcr->opaque = opaque;
dcr->dcr_read = dcr_read;
dcr->dcr_write = dcr_write;
return 0;
}
int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
int (*write_error)(int dcrn))
{
ppc_dcr_t *dcr_env;
dcr_env = g_new0(ppc_dcr_t, 1);
dcr_env->read_error = read_error;
dcr_env->write_error = write_error;
env->dcr_env = dcr_env;
return 0;
}
/*****************************************************************************/
int ppc_cpu_pir(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
return env->spr_cb[SPR_PIR].default_value;
}
PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
{
CPUState *cs;
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
if (ppc_cpu_pir(cpu) == pir) {
return cpu;
}
}
return NULL;
}
void ppc_irq_reset(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
env->irq_input_state = 0;
kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);
}