qemu-e2k/hw/ufs/ufs.c
Akinobu Mita 80a37b039e hw/ufs: avoid generating the same ID string for different LU devices
QEMU would not start when trying to create two UFS host controllers and
a UFS logical unit for each with the following options:

-device ufs,id=bus0 \
-device ufs-lu,drive=drive1,bus=bus0,lun=0 \
-device ufs,id=bus1 \
-device ufs-lu,drive=drive2,bus=bus1,lun=0 \

This is because the same ID string ("0:0:0/scsi-disk") is generated
for both UFS logical units.

To fix this issue, prepend the parent pci device's path to make
the ID string unique.
("0000:00:03.0/0:0:0/scsi-disk" and "0000:00:04.0/0:0:0/scsi-disk")

Resolves: #2018
Fixes: 096434fea1 ("hw/ufs: Modify lu.c to share codes with SCSI subsystem")
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Reviewed-by: Jeuk Kim <jeuk20.kim@samsung.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20231204150543.48252-1-akinobu.mita@gmail.com>
Signed-off-by: Jeuk Kim <jeuk20.kim@samsung.com>
2023-12-05 13:57:18 +09:00

1363 lines
42 KiB
C

/*
* QEMU Universal Flash Storage (UFS) Controller
*
* Copyright (c) 2023 Samsung Electronics Co., Ltd. All rights reserved.
*
* Written by Jeuk Kim <jeuk20.kim@samsung.com>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
/**
* Reference Specs: https://www.jedec.org/, 3.1
*
* Usage
* -----
*
* Add options:
* -drive file=<file>,if=none,id=<drive_id>
* -device ufs,serial=<serial>,id=<bus_name>, \
* nutrs=<N[optional]>,nutmrs=<N[optional]>
* -device ufs-lu,drive=<drive_id>,bus=<bus_name>
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "migration/vmstate.h"
#include "scsi/constants.h"
#include "trace.h"
#include "ufs.h"
/* The QEMU-UFS device follows spec version 3.1 */
#define UFS_SPEC_VER 0x0310
#define UFS_MAX_NUTRS 32
#define UFS_MAX_NUTMRS 8
static MemTxResult ufs_addr_read(UfsHc *u, hwaddr addr, void *buf, int size)
{
hwaddr hi = addr + size - 1;
if (hi < addr) {
return MEMTX_DECODE_ERROR;
}
if (!FIELD_EX32(u->reg.cap, CAP, 64AS) && (hi >> 32)) {
return MEMTX_DECODE_ERROR;
}
return pci_dma_read(PCI_DEVICE(u), addr, buf, size);
}
static MemTxResult ufs_addr_write(UfsHc *u, hwaddr addr, const void *buf,
int size)
{
hwaddr hi = addr + size - 1;
if (hi < addr) {
return MEMTX_DECODE_ERROR;
}
if (!FIELD_EX32(u->reg.cap, CAP, 64AS) && (hi >> 32)) {
return MEMTX_DECODE_ERROR;
}
return pci_dma_write(PCI_DEVICE(u), addr, buf, size);
}
static inline hwaddr ufs_get_utrd_addr(UfsHc *u, uint32_t slot)
{
hwaddr utrl_base_addr = (((hwaddr)u->reg.utrlbau) << 32) + u->reg.utrlba;
hwaddr utrd_addr = utrl_base_addr + slot * sizeof(UtpTransferReqDesc);
return utrd_addr;
}
static inline hwaddr ufs_get_req_upiu_base_addr(const UtpTransferReqDesc *utrd)
{
uint32_t cmd_desc_base_addr_lo =
le32_to_cpu(utrd->command_desc_base_addr_lo);
uint32_t cmd_desc_base_addr_hi =
le32_to_cpu(utrd->command_desc_base_addr_hi);
return (((hwaddr)cmd_desc_base_addr_hi) << 32) + cmd_desc_base_addr_lo;
}
static inline hwaddr ufs_get_rsp_upiu_base_addr(const UtpTransferReqDesc *utrd)
{
hwaddr req_upiu_base_addr = ufs_get_req_upiu_base_addr(utrd);
uint32_t rsp_upiu_byte_off =
le16_to_cpu(utrd->response_upiu_offset) * sizeof(uint32_t);
return req_upiu_base_addr + rsp_upiu_byte_off;
}
static MemTxResult ufs_dma_read_utrd(UfsRequest *req)
{
UfsHc *u = req->hc;
hwaddr utrd_addr = ufs_get_utrd_addr(u, req->slot);
MemTxResult ret;
ret = ufs_addr_read(u, utrd_addr, &req->utrd, sizeof(req->utrd));
if (ret) {
trace_ufs_err_dma_read_utrd(req->slot, utrd_addr);
}
return ret;
}
static MemTxResult ufs_dma_read_req_upiu(UfsRequest *req)
{
UfsHc *u = req->hc;
hwaddr req_upiu_base_addr = ufs_get_req_upiu_base_addr(&req->utrd);
UtpUpiuReq *req_upiu = &req->req_upiu;
uint32_t copy_size;
uint16_t data_segment_length;
MemTxResult ret;
/*
* To know the size of the req_upiu, we need to read the
* data_segment_length in the header first.
*/
ret = ufs_addr_read(u, req_upiu_base_addr, &req_upiu->header,
sizeof(UtpUpiuHeader));
if (ret) {
trace_ufs_err_dma_read_req_upiu(req->slot, req_upiu_base_addr);
return ret;
}
data_segment_length = be16_to_cpu(req_upiu->header.data_segment_length);
copy_size = sizeof(UtpUpiuHeader) + UFS_TRANSACTION_SPECIFIC_FIELD_SIZE +
data_segment_length;
ret = ufs_addr_read(u, req_upiu_base_addr, &req->req_upiu, copy_size);
if (ret) {
trace_ufs_err_dma_read_req_upiu(req->slot, req_upiu_base_addr);
}
return ret;
}
static MemTxResult ufs_dma_read_prdt(UfsRequest *req)
{
UfsHc *u = req->hc;
uint16_t prdt_len = le16_to_cpu(req->utrd.prd_table_length);
uint16_t prdt_byte_off =
le16_to_cpu(req->utrd.prd_table_offset) * sizeof(uint32_t);
uint32_t prdt_size = prdt_len * sizeof(UfshcdSgEntry);
g_autofree UfshcdSgEntry *prd_entries = NULL;
hwaddr req_upiu_base_addr, prdt_base_addr;
int err;
assert(!req->sg);
if (prdt_size == 0) {
return MEMTX_OK;
}
prd_entries = g_new(UfshcdSgEntry, prdt_size);
req_upiu_base_addr = ufs_get_req_upiu_base_addr(&req->utrd);
prdt_base_addr = req_upiu_base_addr + prdt_byte_off;
err = ufs_addr_read(u, prdt_base_addr, prd_entries, prdt_size);
if (err) {
trace_ufs_err_dma_read_prdt(req->slot, prdt_base_addr);
return err;
}
req->sg = g_malloc0(sizeof(QEMUSGList));
pci_dma_sglist_init(req->sg, PCI_DEVICE(u), prdt_len);
req->data_len = 0;
for (uint16_t i = 0; i < prdt_len; ++i) {
hwaddr data_dma_addr = le64_to_cpu(prd_entries[i].addr);
uint32_t data_byte_count = le32_to_cpu(prd_entries[i].size) + 1;
qemu_sglist_add(req->sg, data_dma_addr, data_byte_count);
req->data_len += data_byte_count;
}
return MEMTX_OK;
}
static MemTxResult ufs_dma_read_upiu(UfsRequest *req)
{
MemTxResult ret;
ret = ufs_dma_read_utrd(req);
if (ret) {
return ret;
}
ret = ufs_dma_read_req_upiu(req);
if (ret) {
return ret;
}
ret = ufs_dma_read_prdt(req);
if (ret) {
return ret;
}
return 0;
}
static MemTxResult ufs_dma_write_utrd(UfsRequest *req)
{
UfsHc *u = req->hc;
hwaddr utrd_addr = ufs_get_utrd_addr(u, req->slot);
MemTxResult ret;
ret = ufs_addr_write(u, utrd_addr, &req->utrd, sizeof(req->utrd));
if (ret) {
trace_ufs_err_dma_write_utrd(req->slot, utrd_addr);
}
return ret;
}
static MemTxResult ufs_dma_write_rsp_upiu(UfsRequest *req)
{
UfsHc *u = req->hc;
hwaddr rsp_upiu_base_addr = ufs_get_rsp_upiu_base_addr(&req->utrd);
uint32_t rsp_upiu_byte_len =
le16_to_cpu(req->utrd.response_upiu_length) * sizeof(uint32_t);
uint16_t data_segment_length =
be16_to_cpu(req->rsp_upiu.header.data_segment_length);
uint32_t copy_size = sizeof(UtpUpiuHeader) +
UFS_TRANSACTION_SPECIFIC_FIELD_SIZE +
data_segment_length;
MemTxResult ret;
if (copy_size > rsp_upiu_byte_len) {
copy_size = rsp_upiu_byte_len;
}
ret = ufs_addr_write(u, rsp_upiu_base_addr, &req->rsp_upiu, copy_size);
if (ret) {
trace_ufs_err_dma_write_rsp_upiu(req->slot, rsp_upiu_base_addr);
}
return ret;
}
static MemTxResult ufs_dma_write_upiu(UfsRequest *req)
{
MemTxResult ret;
ret = ufs_dma_write_rsp_upiu(req);
if (ret) {
return ret;
}
return ufs_dma_write_utrd(req);
}
static void ufs_irq_check(UfsHc *u)
{
PCIDevice *pci = PCI_DEVICE(u);
if ((u->reg.is & UFS_INTR_MASK) & u->reg.ie) {
trace_ufs_irq_raise();
pci_irq_assert(pci);
} else {
trace_ufs_irq_lower();
pci_irq_deassert(pci);
}
}
static void ufs_process_db(UfsHc *u, uint32_t val)
{
DECLARE_BITMAP(doorbell, UFS_MAX_NUTRS);
uint32_t slot;
uint32_t nutrs = u->params.nutrs;
UfsRequest *req;
val &= ~u->reg.utrldbr;
if (!val) {
return;
}
doorbell[0] = val;
slot = find_first_bit(doorbell, nutrs);
while (slot < nutrs) {
req = &u->req_list[slot];
if (req->state == UFS_REQUEST_ERROR) {
trace_ufs_err_utrl_slot_error(req->slot);
return;
}
if (req->state != UFS_REQUEST_IDLE) {
trace_ufs_err_utrl_slot_busy(req->slot);
return;
}
trace_ufs_process_db(slot);
req->state = UFS_REQUEST_READY;
slot = find_next_bit(doorbell, nutrs, slot + 1);
}
qemu_bh_schedule(u->doorbell_bh);
}
static void ufs_process_uiccmd(UfsHc *u, uint32_t val)
{
trace_ufs_process_uiccmd(val, u->reg.ucmdarg1, u->reg.ucmdarg2,
u->reg.ucmdarg3);
/*
* Only the essential uic commands for running drivers on Linux and Windows
* are implemented.
*/
switch (val) {
case UFS_UIC_CMD_DME_LINK_STARTUP:
u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, DP, 1);
u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UTRLRDY, 1);
u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UTMRLRDY, 1);
u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_SUCCESS;
break;
/* TODO: Revisit it when Power Management is implemented */
case UFS_UIC_CMD_DME_HIBER_ENTER:
u->reg.is = FIELD_DP32(u->reg.is, IS, UHES, 1);
u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UPMCRS, UFS_PWR_LOCAL);
u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_SUCCESS;
break;
case UFS_UIC_CMD_DME_HIBER_EXIT:
u->reg.is = FIELD_DP32(u->reg.is, IS, UHXS, 1);
u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UPMCRS, UFS_PWR_LOCAL);
u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_SUCCESS;
break;
default:
u->reg.ucmdarg2 = UFS_UIC_CMD_RESULT_FAILURE;
}
u->reg.is = FIELD_DP32(u->reg.is, IS, UCCS, 1);
ufs_irq_check(u);
}
static void ufs_write_reg(UfsHc *u, hwaddr offset, uint32_t data, unsigned size)
{
switch (offset) {
case A_IS:
u->reg.is &= ~data;
ufs_irq_check(u);
break;
case A_IE:
u->reg.ie = data;
ufs_irq_check(u);
break;
case A_HCE:
if (!FIELD_EX32(u->reg.hce, HCE, HCE) && FIELD_EX32(data, HCE, HCE)) {
u->reg.hcs = FIELD_DP32(u->reg.hcs, HCS, UCRDY, 1);
u->reg.hce = FIELD_DP32(u->reg.hce, HCE, HCE, 1);
} else if (FIELD_EX32(u->reg.hce, HCE, HCE) &&
!FIELD_EX32(data, HCE, HCE)) {
u->reg.hcs = 0;
u->reg.hce = FIELD_DP32(u->reg.hce, HCE, HCE, 0);
}
break;
case A_UTRLBA:
u->reg.utrlba = data & R_UTRLBA_UTRLBA_MASK;
break;
case A_UTRLBAU:
u->reg.utrlbau = data;
break;
case A_UTRLDBR:
ufs_process_db(u, data);
u->reg.utrldbr |= data;
break;
case A_UTRLRSR:
u->reg.utrlrsr = data;
break;
case A_UTRLCNR:
u->reg.utrlcnr &= ~data;
break;
case A_UTMRLBA:
u->reg.utmrlba = data & R_UTMRLBA_UTMRLBA_MASK;
break;
case A_UTMRLBAU:
u->reg.utmrlbau = data;
break;
case A_UICCMD:
ufs_process_uiccmd(u, data);
break;
case A_UCMDARG1:
u->reg.ucmdarg1 = data;
break;
case A_UCMDARG2:
u->reg.ucmdarg2 = data;
break;
case A_UCMDARG3:
u->reg.ucmdarg3 = data;
break;
case A_UTRLCLR:
case A_UTMRLDBR:
case A_UTMRLCLR:
case A_UTMRLRSR:
trace_ufs_err_unsupport_register_offset(offset);
break;
default:
trace_ufs_err_invalid_register_offset(offset);
break;
}
}
static uint64_t ufs_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
UfsHc *u = (UfsHc *)opaque;
uint8_t *ptr = (uint8_t *)&u->reg;
uint64_t value;
if (addr > sizeof(u->reg) - size) {
trace_ufs_err_invalid_register_offset(addr);
return 0;
}
value = *(uint32_t *)(ptr + addr);
trace_ufs_mmio_read(addr, value, size);
return value;
}
static void ufs_mmio_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
UfsHc *u = (UfsHc *)opaque;
if (addr > sizeof(u->reg) - size) {
trace_ufs_err_invalid_register_offset(addr);
return;
}
trace_ufs_mmio_write(addr, data, size);
ufs_write_reg(u, addr, data, size);
}
static const MemoryRegionOps ufs_mmio_ops = {
.read = ufs_mmio_read,
.write = ufs_mmio_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
void ufs_build_upiu_header(UfsRequest *req, uint8_t trans_type, uint8_t flags,
uint8_t response, uint8_t scsi_status,
uint16_t data_segment_length)
{
memcpy(&req->rsp_upiu.header, &req->req_upiu.header, sizeof(UtpUpiuHeader));
req->rsp_upiu.header.trans_type = trans_type;
req->rsp_upiu.header.flags = flags;
req->rsp_upiu.header.response = response;
req->rsp_upiu.header.scsi_status = scsi_status;
req->rsp_upiu.header.data_segment_length = cpu_to_be16(data_segment_length);
}
static UfsReqResult ufs_exec_scsi_cmd(UfsRequest *req)
{
UfsHc *u = req->hc;
uint8_t lun = req->req_upiu.header.lun;
UfsLu *lu = NULL;
trace_ufs_exec_scsi_cmd(req->slot, lun, req->req_upiu.sc.cdb[0]);
if (!is_wlun(lun) && (lun >= UFS_MAX_LUS || u->lus[lun] == NULL)) {
trace_ufs_err_scsi_cmd_invalid_lun(lun);
return UFS_REQUEST_FAIL;
}
switch (lun) {
case UFS_UPIU_REPORT_LUNS_WLUN:
lu = &u->report_wlu;
break;
case UFS_UPIU_UFS_DEVICE_WLUN:
lu = &u->dev_wlu;
break;
case UFS_UPIU_BOOT_WLUN:
lu = &u->boot_wlu;
break;
case UFS_UPIU_RPMB_WLUN:
lu = &u->rpmb_wlu;
break;
default:
lu = u->lus[lun];
}
return lu->scsi_op(lu, req);
}
static UfsReqResult ufs_exec_nop_cmd(UfsRequest *req)
{
trace_ufs_exec_nop_cmd(req->slot);
ufs_build_upiu_header(req, UFS_UPIU_TRANSACTION_NOP_IN, 0, 0, 0, 0);
return UFS_REQUEST_SUCCESS;
}
/*
* This defines the permission of flags based on their IDN. There are some
* things that are declared read-only, which is inconsistent with the ufs spec,
* because we want to return an error for features that are not yet supported.
*/
static const int flag_permission[UFS_QUERY_FLAG_IDN_COUNT] = {
[UFS_QUERY_FLAG_IDN_FDEVICEINIT] = UFS_QUERY_FLAG_READ | UFS_QUERY_FLAG_SET,
/* Write protection is not supported */
[UFS_QUERY_FLAG_IDN_PERMANENT_WPE] = UFS_QUERY_FLAG_READ,
[UFS_QUERY_FLAG_IDN_PWR_ON_WPE] = UFS_QUERY_FLAG_READ,
[UFS_QUERY_FLAG_IDN_BKOPS_EN] = UFS_QUERY_FLAG_READ | UFS_QUERY_FLAG_SET |
UFS_QUERY_FLAG_CLEAR |
UFS_QUERY_FLAG_TOGGLE,
[UFS_QUERY_FLAG_IDN_LIFE_SPAN_MODE_ENABLE] =
UFS_QUERY_FLAG_READ | UFS_QUERY_FLAG_SET | UFS_QUERY_FLAG_CLEAR |
UFS_QUERY_FLAG_TOGGLE,
/* Purge Operation is not supported */
[UFS_QUERY_FLAG_IDN_PURGE_ENABLE] = UFS_QUERY_FLAG_NONE,
/* Refresh Operation is not supported */
[UFS_QUERY_FLAG_IDN_REFRESH_ENABLE] = UFS_QUERY_FLAG_NONE,
/* Physical Resource Removal is not supported */
[UFS_QUERY_FLAG_IDN_FPHYRESOURCEREMOVAL] = UFS_QUERY_FLAG_READ,
[UFS_QUERY_FLAG_IDN_BUSY_RTC] = UFS_QUERY_FLAG_READ,
[UFS_QUERY_FLAG_IDN_PERMANENTLY_DISABLE_FW_UPDATE] = UFS_QUERY_FLAG_READ,
/* Write Booster is not supported */
[UFS_QUERY_FLAG_IDN_WB_EN] = UFS_QUERY_FLAG_READ,
[UFS_QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN] = UFS_QUERY_FLAG_READ,
[UFS_QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8] = UFS_QUERY_FLAG_READ,
};
static inline QueryRespCode ufs_flag_check_idn_valid(uint8_t idn, int op)
{
if (idn >= UFS_QUERY_FLAG_IDN_COUNT) {
return UFS_QUERY_RESULT_INVALID_IDN;
}
if (!(flag_permission[idn] & op)) {
if (op == UFS_QUERY_FLAG_READ) {
trace_ufs_err_query_flag_not_readable(idn);
return UFS_QUERY_RESULT_NOT_READABLE;
}
trace_ufs_err_query_flag_not_writable(idn);
return UFS_QUERY_RESULT_NOT_WRITEABLE;
}
return UFS_QUERY_RESULT_SUCCESS;
}
static const int attr_permission[UFS_QUERY_ATTR_IDN_COUNT] = {
/* booting is not supported */
[UFS_QUERY_ATTR_IDN_BOOT_LU_EN] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_POWER_MODE] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_ACTIVE_ICC_LVL] =
UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
[UFS_QUERY_ATTR_IDN_OOO_DATA_EN] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_BKOPS_STATUS] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_PURGE_STATUS] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_MAX_DATA_IN] =
UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
[UFS_QUERY_ATTR_IDN_MAX_DATA_OUT] =
UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
[UFS_QUERY_ATTR_IDN_DYN_CAP_NEEDED] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_REF_CLK_FREQ] =
UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
[UFS_QUERY_ATTR_IDN_CONF_DESC_LOCK] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_MAX_NUM_OF_RTT] =
UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
[UFS_QUERY_ATTR_IDN_EE_CONTROL] =
UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
[UFS_QUERY_ATTR_IDN_EE_STATUS] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_SECONDS_PASSED] = UFS_QUERY_ATTR_WRITE,
[UFS_QUERY_ATTR_IDN_CNTX_CONF] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_FFU_STATUS] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_PSA_STATE] = UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
[UFS_QUERY_ATTR_IDN_PSA_DATA_SIZE] =
UFS_QUERY_ATTR_READ | UFS_QUERY_ATTR_WRITE,
[UFS_QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_CASE_ROUGH_TEMP] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_HIGH_TEMP_BOUND] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_LOW_TEMP_BOUND] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_THROTTLING_STATUS] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_WB_FLUSH_STATUS] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE] = UFS_QUERY_ATTR_READ,
/* refresh operation is not supported */
[UFS_QUERY_ATTR_IDN_REFRESH_STATUS] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_REFRESH_FREQ] = UFS_QUERY_ATTR_READ,
[UFS_QUERY_ATTR_IDN_REFRESH_UNIT] = UFS_QUERY_ATTR_READ,
};
static inline QueryRespCode ufs_attr_check_idn_valid(uint8_t idn, int op)
{
if (idn >= UFS_QUERY_ATTR_IDN_COUNT) {
return UFS_QUERY_RESULT_INVALID_IDN;
}
if (!(attr_permission[idn] & op)) {
if (op == UFS_QUERY_ATTR_READ) {
trace_ufs_err_query_attr_not_readable(idn);
return UFS_QUERY_RESULT_NOT_READABLE;
}
trace_ufs_err_query_attr_not_writable(idn);
return UFS_QUERY_RESULT_NOT_WRITEABLE;
}
return UFS_QUERY_RESULT_SUCCESS;
}
static QueryRespCode ufs_exec_query_flag(UfsRequest *req, int op)
{
UfsHc *u = req->hc;
uint8_t idn = req->req_upiu.qr.idn;
uint32_t value;
QueryRespCode ret;
ret = ufs_flag_check_idn_valid(idn, op);
if (ret) {
return ret;
}
if (idn == UFS_QUERY_FLAG_IDN_FDEVICEINIT) {
value = 0;
} else if (op == UFS_QUERY_FLAG_READ) {
value = *(((uint8_t *)&u->flags) + idn);
} else if (op == UFS_QUERY_FLAG_SET) {
value = 1;
} else if (op == UFS_QUERY_FLAG_CLEAR) {
value = 0;
} else if (op == UFS_QUERY_FLAG_TOGGLE) {
value = *(((uint8_t *)&u->flags) + idn);
value = !value;
} else {
trace_ufs_err_query_invalid_opcode(op);
return UFS_QUERY_RESULT_INVALID_OPCODE;
}
*(((uint8_t *)&u->flags) + idn) = value;
req->rsp_upiu.qr.value = cpu_to_be32(value);
return UFS_QUERY_RESULT_SUCCESS;
}
static uint32_t ufs_read_attr_value(UfsHc *u, uint8_t idn)
{
switch (idn) {
case UFS_QUERY_ATTR_IDN_BOOT_LU_EN:
return u->attributes.boot_lun_en;
case UFS_QUERY_ATTR_IDN_POWER_MODE:
return u->attributes.current_power_mode;
case UFS_QUERY_ATTR_IDN_ACTIVE_ICC_LVL:
return u->attributes.active_icc_level;
case UFS_QUERY_ATTR_IDN_OOO_DATA_EN:
return u->attributes.out_of_order_data_en;
case UFS_QUERY_ATTR_IDN_BKOPS_STATUS:
return u->attributes.background_op_status;
case UFS_QUERY_ATTR_IDN_PURGE_STATUS:
return u->attributes.purge_status;
case UFS_QUERY_ATTR_IDN_MAX_DATA_IN:
return u->attributes.max_data_in_size;
case UFS_QUERY_ATTR_IDN_MAX_DATA_OUT:
return u->attributes.max_data_out_size;
case UFS_QUERY_ATTR_IDN_DYN_CAP_NEEDED:
return be32_to_cpu(u->attributes.dyn_cap_needed);
case UFS_QUERY_ATTR_IDN_REF_CLK_FREQ:
return u->attributes.ref_clk_freq;
case UFS_QUERY_ATTR_IDN_CONF_DESC_LOCK:
return u->attributes.config_descr_lock;
case UFS_QUERY_ATTR_IDN_MAX_NUM_OF_RTT:
return u->attributes.max_num_of_rtt;
case UFS_QUERY_ATTR_IDN_EE_CONTROL:
return be16_to_cpu(u->attributes.exception_event_control);
case UFS_QUERY_ATTR_IDN_EE_STATUS:
return be16_to_cpu(u->attributes.exception_event_status);
case UFS_QUERY_ATTR_IDN_SECONDS_PASSED:
return be32_to_cpu(u->attributes.seconds_passed);
case UFS_QUERY_ATTR_IDN_CNTX_CONF:
return be16_to_cpu(u->attributes.context_conf);
case UFS_QUERY_ATTR_IDN_FFU_STATUS:
return u->attributes.device_ffu_status;
case UFS_QUERY_ATTR_IDN_PSA_STATE:
return be32_to_cpu(u->attributes.psa_state);
case UFS_QUERY_ATTR_IDN_PSA_DATA_SIZE:
return be32_to_cpu(u->attributes.psa_data_size);
case UFS_QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME:
return u->attributes.ref_clk_gating_wait_time;
case UFS_QUERY_ATTR_IDN_CASE_ROUGH_TEMP:
return u->attributes.device_case_rough_temperaure;
case UFS_QUERY_ATTR_IDN_HIGH_TEMP_BOUND:
return u->attributes.device_too_high_temp_boundary;
case UFS_QUERY_ATTR_IDN_LOW_TEMP_BOUND:
return u->attributes.device_too_low_temp_boundary;
case UFS_QUERY_ATTR_IDN_THROTTLING_STATUS:
return u->attributes.throttling_status;
case UFS_QUERY_ATTR_IDN_WB_FLUSH_STATUS:
return u->attributes.wb_buffer_flush_status;
case UFS_QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE:
return u->attributes.available_wb_buffer_size;
case UFS_QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST:
return u->attributes.wb_buffer_life_time_est;
case UFS_QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE:
return be32_to_cpu(u->attributes.current_wb_buffer_size);
case UFS_QUERY_ATTR_IDN_REFRESH_STATUS:
return u->attributes.refresh_status;
case UFS_QUERY_ATTR_IDN_REFRESH_FREQ:
return u->attributes.refresh_freq;
case UFS_QUERY_ATTR_IDN_REFRESH_UNIT:
return u->attributes.refresh_unit;
}
return 0;
}
static void ufs_write_attr_value(UfsHc *u, uint8_t idn, uint32_t value)
{
switch (idn) {
case UFS_QUERY_ATTR_IDN_ACTIVE_ICC_LVL:
u->attributes.active_icc_level = value;
break;
case UFS_QUERY_ATTR_IDN_MAX_DATA_IN:
u->attributes.max_data_in_size = value;
break;
case UFS_QUERY_ATTR_IDN_MAX_DATA_OUT:
u->attributes.max_data_out_size = value;
break;
case UFS_QUERY_ATTR_IDN_REF_CLK_FREQ:
u->attributes.ref_clk_freq = value;
break;
case UFS_QUERY_ATTR_IDN_MAX_NUM_OF_RTT:
u->attributes.max_num_of_rtt = value;
break;
case UFS_QUERY_ATTR_IDN_EE_CONTROL:
u->attributes.exception_event_control = cpu_to_be16(value);
break;
case UFS_QUERY_ATTR_IDN_SECONDS_PASSED:
u->attributes.seconds_passed = cpu_to_be32(value);
break;
case UFS_QUERY_ATTR_IDN_PSA_STATE:
u->attributes.psa_state = value;
break;
case UFS_QUERY_ATTR_IDN_PSA_DATA_SIZE:
u->attributes.psa_data_size = cpu_to_be32(value);
break;
}
}
static QueryRespCode ufs_exec_query_attr(UfsRequest *req, int op)
{
UfsHc *u = req->hc;
uint8_t idn = req->req_upiu.qr.idn;
uint32_t value;
QueryRespCode ret;
ret = ufs_attr_check_idn_valid(idn, op);
if (ret) {
return ret;
}
if (op == UFS_QUERY_ATTR_READ) {
value = ufs_read_attr_value(u, idn);
} else {
value = be32_to_cpu(req->req_upiu.qr.value);
ufs_write_attr_value(u, idn, value);
}
req->rsp_upiu.qr.value = cpu_to_be32(value);
return UFS_QUERY_RESULT_SUCCESS;
}
static const RpmbUnitDescriptor rpmb_unit_desc = {
.length = sizeof(RpmbUnitDescriptor),
.descriptor_idn = 2,
.unit_index = UFS_UPIU_RPMB_WLUN,
.lu_enable = 0,
};
static QueryRespCode ufs_read_unit_desc(UfsRequest *req)
{
UfsHc *u = req->hc;
uint8_t lun = req->req_upiu.qr.index;
if (lun != UFS_UPIU_RPMB_WLUN &&
(lun >= UFS_MAX_LUS || u->lus[lun] == NULL)) {
trace_ufs_err_query_invalid_index(req->req_upiu.qr.opcode, lun);
return UFS_QUERY_RESULT_INVALID_INDEX;
}
if (lun == UFS_UPIU_RPMB_WLUN) {
memcpy(&req->rsp_upiu.qr.data, &rpmb_unit_desc, rpmb_unit_desc.length);
} else {
memcpy(&req->rsp_upiu.qr.data, &u->lus[lun]->unit_desc,
sizeof(u->lus[lun]->unit_desc));
}
return UFS_QUERY_RESULT_SUCCESS;
}
static inline StringDescriptor manufacturer_str_desc(void)
{
StringDescriptor desc = {
.length = 0x12,
.descriptor_idn = UFS_QUERY_DESC_IDN_STRING,
};
desc.UC[0] = cpu_to_be16('R');
desc.UC[1] = cpu_to_be16('E');
desc.UC[2] = cpu_to_be16('D');
desc.UC[3] = cpu_to_be16('H');
desc.UC[4] = cpu_to_be16('A');
desc.UC[5] = cpu_to_be16('T');
return desc;
}
static inline StringDescriptor product_name_str_desc(void)
{
StringDescriptor desc = {
.length = 0x22,
.descriptor_idn = UFS_QUERY_DESC_IDN_STRING,
};
desc.UC[0] = cpu_to_be16('Q');
desc.UC[1] = cpu_to_be16('E');
desc.UC[2] = cpu_to_be16('M');
desc.UC[3] = cpu_to_be16('U');
desc.UC[4] = cpu_to_be16(' ');
desc.UC[5] = cpu_to_be16('U');
desc.UC[6] = cpu_to_be16('F');
desc.UC[7] = cpu_to_be16('S');
return desc;
}
static inline StringDescriptor product_rev_level_str_desc(void)
{
StringDescriptor desc = {
.length = 0x0a,
.descriptor_idn = UFS_QUERY_DESC_IDN_STRING,
};
desc.UC[0] = cpu_to_be16('0');
desc.UC[1] = cpu_to_be16('0');
desc.UC[2] = cpu_to_be16('0');
desc.UC[3] = cpu_to_be16('1');
return desc;
}
static const StringDescriptor null_str_desc = {
.length = 0x02,
.descriptor_idn = UFS_QUERY_DESC_IDN_STRING,
};
static QueryRespCode ufs_read_string_desc(UfsRequest *req)
{
UfsHc *u = req->hc;
uint8_t index = req->req_upiu.qr.index;
StringDescriptor desc;
if (index == u->device_desc.manufacturer_name) {
desc = manufacturer_str_desc();
memcpy(&req->rsp_upiu.qr.data, &desc, desc.length);
} else if (index == u->device_desc.product_name) {
desc = product_name_str_desc();
memcpy(&req->rsp_upiu.qr.data, &desc, desc.length);
} else if (index == u->device_desc.serial_number) {
memcpy(&req->rsp_upiu.qr.data, &null_str_desc, null_str_desc.length);
} else if (index == u->device_desc.oem_id) {
memcpy(&req->rsp_upiu.qr.data, &null_str_desc, null_str_desc.length);
} else if (index == u->device_desc.product_revision_level) {
desc = product_rev_level_str_desc();
memcpy(&req->rsp_upiu.qr.data, &desc, desc.length);
} else {
trace_ufs_err_query_invalid_index(req->req_upiu.qr.opcode, index);
return UFS_QUERY_RESULT_INVALID_INDEX;
}
return UFS_QUERY_RESULT_SUCCESS;
}
static inline InterconnectDescriptor interconnect_desc(void)
{
InterconnectDescriptor desc = {
.length = sizeof(InterconnectDescriptor),
.descriptor_idn = UFS_QUERY_DESC_IDN_INTERCONNECT,
};
desc.bcd_unipro_version = cpu_to_be16(0x180);
desc.bcd_mphy_version = cpu_to_be16(0x410);
return desc;
}
static QueryRespCode ufs_read_desc(UfsRequest *req)
{
UfsHc *u = req->hc;
QueryRespCode status;
uint8_t idn = req->req_upiu.qr.idn;
uint16_t length = be16_to_cpu(req->req_upiu.qr.length);
InterconnectDescriptor desc;
switch (idn) {
case UFS_QUERY_DESC_IDN_DEVICE:
memcpy(&req->rsp_upiu.qr.data, &u->device_desc, sizeof(u->device_desc));
status = UFS_QUERY_RESULT_SUCCESS;
break;
case UFS_QUERY_DESC_IDN_UNIT:
status = ufs_read_unit_desc(req);
break;
case UFS_QUERY_DESC_IDN_GEOMETRY:
memcpy(&req->rsp_upiu.qr.data, &u->geometry_desc,
sizeof(u->geometry_desc));
status = UFS_QUERY_RESULT_SUCCESS;
break;
case UFS_QUERY_DESC_IDN_INTERCONNECT: {
desc = interconnect_desc();
memcpy(&req->rsp_upiu.qr.data, &desc, sizeof(InterconnectDescriptor));
status = UFS_QUERY_RESULT_SUCCESS;
break;
}
case UFS_QUERY_DESC_IDN_STRING:
status = ufs_read_string_desc(req);
break;
case UFS_QUERY_DESC_IDN_POWER:
/* mocking of power descriptor is not supported */
memset(&req->rsp_upiu.qr.data, 0, sizeof(PowerParametersDescriptor));
req->rsp_upiu.qr.data[0] = sizeof(PowerParametersDescriptor);
req->rsp_upiu.qr.data[1] = UFS_QUERY_DESC_IDN_POWER;
status = UFS_QUERY_RESULT_SUCCESS;
break;
case UFS_QUERY_DESC_IDN_HEALTH:
/* mocking of health descriptor is not supported */
memset(&req->rsp_upiu.qr.data, 0, sizeof(DeviceHealthDescriptor));
req->rsp_upiu.qr.data[0] = sizeof(DeviceHealthDescriptor);
req->rsp_upiu.qr.data[1] = UFS_QUERY_DESC_IDN_HEALTH;
status = UFS_QUERY_RESULT_SUCCESS;
break;
default:
length = 0;
trace_ufs_err_query_invalid_idn(req->req_upiu.qr.opcode, idn);
status = UFS_QUERY_RESULT_INVALID_IDN;
}
if (length > req->rsp_upiu.qr.data[0]) {
length = req->rsp_upiu.qr.data[0];
}
req->rsp_upiu.qr.opcode = req->req_upiu.qr.opcode;
req->rsp_upiu.qr.idn = req->req_upiu.qr.idn;
req->rsp_upiu.qr.index = req->req_upiu.qr.index;
req->rsp_upiu.qr.selector = req->req_upiu.qr.selector;
req->rsp_upiu.qr.length = cpu_to_be16(length);
return status;
}
static QueryRespCode ufs_exec_query_read(UfsRequest *req)
{
QueryRespCode status;
switch (req->req_upiu.qr.opcode) {
case UFS_UPIU_QUERY_OPCODE_NOP:
status = UFS_QUERY_RESULT_SUCCESS;
break;
case UFS_UPIU_QUERY_OPCODE_READ_DESC:
status = ufs_read_desc(req);
break;
case UFS_UPIU_QUERY_OPCODE_READ_ATTR:
status = ufs_exec_query_attr(req, UFS_QUERY_ATTR_READ);
break;
case UFS_UPIU_QUERY_OPCODE_READ_FLAG:
status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_READ);
break;
default:
trace_ufs_err_query_invalid_opcode(req->req_upiu.qr.opcode);
status = UFS_QUERY_RESULT_INVALID_OPCODE;
break;
}
return status;
}
static QueryRespCode ufs_exec_query_write(UfsRequest *req)
{
QueryRespCode status;
switch (req->req_upiu.qr.opcode) {
case UFS_UPIU_QUERY_OPCODE_NOP:
status = UFS_QUERY_RESULT_SUCCESS;
break;
case UFS_UPIU_QUERY_OPCODE_WRITE_DESC:
/* write descriptor is not supported */
status = UFS_QUERY_RESULT_NOT_WRITEABLE;
break;
case UFS_UPIU_QUERY_OPCODE_WRITE_ATTR:
status = ufs_exec_query_attr(req, UFS_QUERY_ATTR_WRITE);
break;
case UFS_UPIU_QUERY_OPCODE_SET_FLAG:
status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_SET);
break;
case UFS_UPIU_QUERY_OPCODE_CLEAR_FLAG:
status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_CLEAR);
break;
case UFS_UPIU_QUERY_OPCODE_TOGGLE_FLAG:
status = ufs_exec_query_flag(req, UFS_QUERY_FLAG_TOGGLE);
break;
default:
trace_ufs_err_query_invalid_opcode(req->req_upiu.qr.opcode);
status = UFS_QUERY_RESULT_INVALID_OPCODE;
break;
}
return status;
}
static UfsReqResult ufs_exec_query_cmd(UfsRequest *req)
{
uint8_t query_func = req->req_upiu.header.query_func;
uint16_t data_segment_length;
QueryRespCode status;
trace_ufs_exec_query_cmd(req->slot, req->req_upiu.qr.opcode);
if (query_func == UFS_UPIU_QUERY_FUNC_STANDARD_READ_REQUEST) {
status = ufs_exec_query_read(req);
} else if (query_func == UFS_UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST) {
status = ufs_exec_query_write(req);
} else {
status = UFS_QUERY_RESULT_GENERAL_FAILURE;
}
data_segment_length = be16_to_cpu(req->rsp_upiu.qr.length);
ufs_build_upiu_header(req, UFS_UPIU_TRANSACTION_QUERY_RSP, 0, status, 0,
data_segment_length);
if (status != UFS_QUERY_RESULT_SUCCESS) {
return UFS_REQUEST_FAIL;
}
return UFS_REQUEST_SUCCESS;
}
static void ufs_exec_req(UfsRequest *req)
{
UfsReqResult req_result;
if (ufs_dma_read_upiu(req)) {
return;
}
switch (req->req_upiu.header.trans_type) {
case UFS_UPIU_TRANSACTION_NOP_OUT:
req_result = ufs_exec_nop_cmd(req);
break;
case UFS_UPIU_TRANSACTION_COMMAND:
req_result = ufs_exec_scsi_cmd(req);
break;
case UFS_UPIU_TRANSACTION_QUERY_REQ:
req_result = ufs_exec_query_cmd(req);
break;
default:
trace_ufs_err_invalid_trans_code(req->slot,
req->req_upiu.header.trans_type);
req_result = UFS_REQUEST_FAIL;
}
/*
* The ufs_complete_req for scsi commands is handled by the
* ufs_scsi_command_complete() callback function. Therefore, to avoid
* duplicate processing, ufs_complete_req() is not called for scsi commands.
*/
if (req_result != UFS_REQUEST_NO_COMPLETE) {
ufs_complete_req(req, req_result);
}
}
static void ufs_process_req(void *opaque)
{
UfsHc *u = opaque;
UfsRequest *req;
int slot;
for (slot = 0; slot < u->params.nutrs; slot++) {
req = &u->req_list[slot];
if (req->state != UFS_REQUEST_READY) {
continue;
}
trace_ufs_process_req(slot);
req->state = UFS_REQUEST_RUNNING;
ufs_exec_req(req);
}
}
void ufs_complete_req(UfsRequest *req, UfsReqResult req_result)
{
UfsHc *u = req->hc;
assert(req->state == UFS_REQUEST_RUNNING);
if (req_result == UFS_REQUEST_SUCCESS) {
req->utrd.header.dword_2 = cpu_to_le32(UFS_OCS_SUCCESS);
} else {
req->utrd.header.dword_2 = cpu_to_le32(UFS_OCS_INVALID_CMD_TABLE_ATTR);
}
trace_ufs_complete_req(req->slot);
req->state = UFS_REQUEST_COMPLETE;
qemu_bh_schedule(u->complete_bh);
}
static void ufs_clear_req(UfsRequest *req)
{
if (req->sg != NULL) {
qemu_sglist_destroy(req->sg);
g_free(req->sg);
req->sg = NULL;
req->data_len = 0;
}
memset(&req->utrd, 0, sizeof(req->utrd));
memset(&req->req_upiu, 0, sizeof(req->req_upiu));
memset(&req->rsp_upiu, 0, sizeof(req->rsp_upiu));
}
static void ufs_sendback_req(void *opaque)
{
UfsHc *u = opaque;
UfsRequest *req;
int slot;
for (slot = 0; slot < u->params.nutrs; slot++) {
req = &u->req_list[slot];
if (req->state != UFS_REQUEST_COMPLETE) {
continue;
}
if (ufs_dma_write_upiu(req)) {
req->state = UFS_REQUEST_ERROR;
continue;
}
/*
* TODO: UTP Transfer Request Interrupt Aggregation Control is not yet
* supported
*/
if (le32_to_cpu(req->utrd.header.dword_2) != UFS_OCS_SUCCESS ||
le32_to_cpu(req->utrd.header.dword_0) & UFS_UTP_REQ_DESC_INT_CMD) {
u->reg.is = FIELD_DP32(u->reg.is, IS, UTRCS, 1);
}
u->reg.utrldbr &= ~(1 << slot);
u->reg.utrlcnr |= (1 << slot);
trace_ufs_sendback_req(req->slot);
ufs_clear_req(req);
req->state = UFS_REQUEST_IDLE;
}
ufs_irq_check(u);
}
static bool ufs_check_constraints(UfsHc *u, Error **errp)
{
if (u->params.nutrs > UFS_MAX_NUTRS) {
error_setg(errp, "nutrs must be less than or equal to %d",
UFS_MAX_NUTRS);
return false;
}
if (u->params.nutmrs > UFS_MAX_NUTMRS) {
error_setg(errp, "nutmrs must be less than or equal to %d",
UFS_MAX_NUTMRS);
return false;
}
return true;
}
static void ufs_init_pci(UfsHc *u, PCIDevice *pci_dev)
{
uint8_t *pci_conf = pci_dev->config;
pci_conf[PCI_INTERRUPT_PIN] = 1;
pci_config_set_prog_interface(pci_conf, 0x1);
memory_region_init_io(&u->iomem, OBJECT(u), &ufs_mmio_ops, u, "ufs",
u->reg_size);
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &u->iomem);
u->irq = pci_allocate_irq(pci_dev);
}
static void ufs_init_state(UfsHc *u)
{
u->req_list = g_new0(UfsRequest, u->params.nutrs);
for (int i = 0; i < u->params.nutrs; i++) {
u->req_list[i].hc = u;
u->req_list[i].slot = i;
u->req_list[i].sg = NULL;
u->req_list[i].state = UFS_REQUEST_IDLE;
}
u->doorbell_bh = qemu_bh_new_guarded(ufs_process_req, u,
&DEVICE(u)->mem_reentrancy_guard);
u->complete_bh = qemu_bh_new_guarded(ufs_sendback_req, u,
&DEVICE(u)->mem_reentrancy_guard);
}
static void ufs_init_hc(UfsHc *u)
{
uint32_t cap = 0;
u->reg_size = pow2ceil(sizeof(UfsReg));
memset(&u->reg, 0, sizeof(u->reg));
cap = FIELD_DP32(cap, CAP, NUTRS, (u->params.nutrs - 1));
cap = FIELD_DP32(cap, CAP, RTT, 2);
cap = FIELD_DP32(cap, CAP, NUTMRS, (u->params.nutmrs - 1));
cap = FIELD_DP32(cap, CAP, AUTOH8, 0);
cap = FIELD_DP32(cap, CAP, 64AS, 1);
cap = FIELD_DP32(cap, CAP, OODDS, 0);
cap = FIELD_DP32(cap, CAP, UICDMETMS, 0);
cap = FIELD_DP32(cap, CAP, CS, 0);
u->reg.cap = cap;
u->reg.ver = UFS_SPEC_VER;
memset(&u->device_desc, 0, sizeof(DeviceDescriptor));
u->device_desc.length = sizeof(DeviceDescriptor);
u->device_desc.descriptor_idn = UFS_QUERY_DESC_IDN_DEVICE;
u->device_desc.device_sub_class = 0x01;
u->device_desc.number_lu = 0x00;
u->device_desc.number_wlu = 0x04;
/* TODO: Revisit it when Power Management is implemented */
u->device_desc.init_power_mode = 0x01; /* Active Mode */
u->device_desc.high_priority_lun = 0x7F; /* Same Priority */
u->device_desc.spec_version = cpu_to_be16(UFS_SPEC_VER);
u->device_desc.manufacturer_name = 0x00;
u->device_desc.product_name = 0x01;
u->device_desc.serial_number = 0x02;
u->device_desc.oem_id = 0x03;
u->device_desc.ud_0_base_offset = 0x16;
u->device_desc.ud_config_p_length = 0x1A;
u->device_desc.device_rtt_cap = 0x02;
u->device_desc.queue_depth = u->params.nutrs;
u->device_desc.product_revision_level = 0x04;
memset(&u->geometry_desc, 0, sizeof(GeometryDescriptor));
u->geometry_desc.length = sizeof(GeometryDescriptor);
u->geometry_desc.descriptor_idn = UFS_QUERY_DESC_IDN_GEOMETRY;
u->geometry_desc.max_number_lu = (UFS_MAX_LUS == 32) ? 0x1 : 0x0;
u->geometry_desc.segment_size = cpu_to_be32(0x2000); /* 4KB */
u->geometry_desc.allocation_unit_size = 0x1; /* 4KB */
u->geometry_desc.min_addr_block_size = 0x8; /* 4KB */
u->geometry_desc.max_in_buffer_size = 0x8;
u->geometry_desc.max_out_buffer_size = 0x8;
u->geometry_desc.rpmb_read_write_size = 0x40;
u->geometry_desc.data_ordering =
0x0; /* out-of-order data transfer is not supported */
u->geometry_desc.max_context_id_number = 0x5;
u->geometry_desc.supported_memory_types = cpu_to_be16(0x8001);
memset(&u->attributes, 0, sizeof(u->attributes));
u->attributes.max_data_in_size = 0x08;
u->attributes.max_data_out_size = 0x08;
u->attributes.ref_clk_freq = 0x01; /* 26 MHz */
/* configure descriptor is not supported */
u->attributes.config_descr_lock = 0x01;
u->attributes.max_num_of_rtt = 0x02;
memset(&u->flags, 0, sizeof(u->flags));
u->flags.permanently_disable_fw_update = 1;
}
static void ufs_realize(PCIDevice *pci_dev, Error **errp)
{
UfsHc *u = UFS(pci_dev);
if (!ufs_check_constraints(u, errp)) {
return;
}
qbus_init(&u->bus, sizeof(UfsBus), TYPE_UFS_BUS, &pci_dev->qdev,
u->parent_obj.qdev.id);
ufs_init_state(u);
ufs_init_hc(u);
ufs_init_pci(u, pci_dev);
ufs_init_wlu(&u->report_wlu, UFS_UPIU_REPORT_LUNS_WLUN);
ufs_init_wlu(&u->dev_wlu, UFS_UPIU_UFS_DEVICE_WLUN);
ufs_init_wlu(&u->boot_wlu, UFS_UPIU_BOOT_WLUN);
ufs_init_wlu(&u->rpmb_wlu, UFS_UPIU_RPMB_WLUN);
}
static void ufs_exit(PCIDevice *pci_dev)
{
UfsHc *u = UFS(pci_dev);
qemu_bh_delete(u->doorbell_bh);
qemu_bh_delete(u->complete_bh);
for (int i = 0; i < u->params.nutrs; i++) {
ufs_clear_req(&u->req_list[i]);
}
g_free(u->req_list);
}
static Property ufs_props[] = {
DEFINE_PROP_STRING("serial", UfsHc, params.serial),
DEFINE_PROP_UINT8("nutrs", UfsHc, params.nutrs, 32),
DEFINE_PROP_UINT8("nutmrs", UfsHc, params.nutmrs, 8),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription ufs_vmstate = {
.name = "ufs",
.unmigratable = 1,
};
static void ufs_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
pc->realize = ufs_realize;
pc->exit = ufs_exit;
pc->vendor_id = PCI_VENDOR_ID_REDHAT;
pc->device_id = PCI_DEVICE_ID_REDHAT_UFS;
pc->class_id = PCI_CLASS_STORAGE_UFS;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
dc->desc = "Universal Flash Storage";
device_class_set_props(dc, ufs_props);
dc->vmsd = &ufs_vmstate;
}
static bool ufs_bus_check_address(BusState *qbus, DeviceState *qdev,
Error **errp)
{
if (strcmp(object_get_typename(OBJECT(qdev)), TYPE_UFS_LU) != 0) {
error_setg(errp, "%s cannot be connected to ufs-bus",
object_get_typename(OBJECT(qdev)));
return false;
}
return true;
}
static char *ufs_bus_get_dev_path(DeviceState *dev)
{
BusState *bus = qdev_get_parent_bus(dev);
return qdev_get_dev_path(bus->parent);
}
static void ufs_bus_class_init(ObjectClass *class, void *data)
{
BusClass *bc = BUS_CLASS(class);
bc->get_dev_path = ufs_bus_get_dev_path;
bc->check_address = ufs_bus_check_address;
}
static const TypeInfo ufs_info = {
.name = TYPE_UFS,
.parent = TYPE_PCI_DEVICE,
.class_init = ufs_class_init,
.instance_size = sizeof(UfsHc),
.interfaces = (InterfaceInfo[]){ { INTERFACE_PCIE_DEVICE }, {} },
};
static const TypeInfo ufs_bus_info = {
.name = TYPE_UFS_BUS,
.parent = TYPE_BUS,
.class_init = ufs_bus_class_init,
.class_size = sizeof(UfsBusClass),
.instance_size = sizeof(UfsBus),
};
static void ufs_register_types(void)
{
type_register_static(&ufs_info);
type_register_static(&ufs_bus_info);
}
type_init(ufs_register_types)