qemu-e2k/cutils.c

432 lines
10 KiB
C

/*
* Simple C functions to supplement the C library
*
* Copyright (c) 2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu-common.h"
#include "host-utils.h"
#include <math.h>
#include "qemu_socket.h"
#include "iov.h"
void strpadcpy(char *buf, int buf_size, const char *str, char pad)
{
int len = qemu_strnlen(str, buf_size);
memcpy(buf, str, len);
memset(buf + len, pad, buf_size - len);
}
void pstrcpy(char *buf, int buf_size, const char *str)
{
int c;
char *q = buf;
if (buf_size <= 0)
return;
for(;;) {
c = *str++;
if (c == 0 || q >= buf + buf_size - 1)
break;
*q++ = c;
}
*q = '\0';
}
/* strcat and truncate. */
char *pstrcat(char *buf, int buf_size, const char *s)
{
int len;
len = strlen(buf);
if (len < buf_size)
pstrcpy(buf + len, buf_size - len, s);
return buf;
}
int strstart(const char *str, const char *val, const char **ptr)
{
const char *p, *q;
p = str;
q = val;
while (*q != '\0') {
if (*p != *q)
return 0;
p++;
q++;
}
if (ptr)
*ptr = p;
return 1;
}
int stristart(const char *str, const char *val, const char **ptr)
{
const char *p, *q;
p = str;
q = val;
while (*q != '\0') {
if (qemu_toupper(*p) != qemu_toupper(*q))
return 0;
p++;
q++;
}
if (ptr)
*ptr = p;
return 1;
}
/* XXX: use host strnlen if available ? */
int qemu_strnlen(const char *s, int max_len)
{
int i;
for(i = 0; i < max_len; i++) {
if (s[i] == '\0') {
break;
}
}
return i;
}
time_t mktimegm(struct tm *tm)
{
time_t t;
int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
if (m < 3) {
m += 12;
y--;
}
t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
y / 400 - 719469);
t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
return t;
}
int qemu_fls(int i)
{
return 32 - clz32(i);
}
/*
* Make sure data goes on disk, but if possible do not bother to
* write out the inode just for timestamp updates.
*
* Unfortunately even in 2009 many operating systems do not support
* fdatasync and have to fall back to fsync.
*/
int qemu_fdatasync(int fd)
{
#ifdef CONFIG_FDATASYNC
return fdatasync(fd);
#else
return fsync(fd);
#endif
}
/* io vectors */
void qemu_iovec_init(QEMUIOVector *qiov, int alloc_hint)
{
qiov->iov = g_malloc(alloc_hint * sizeof(struct iovec));
qiov->niov = 0;
qiov->nalloc = alloc_hint;
qiov->size = 0;
}
void qemu_iovec_init_external(QEMUIOVector *qiov, struct iovec *iov, int niov)
{
int i;
qiov->iov = iov;
qiov->niov = niov;
qiov->nalloc = -1;
qiov->size = 0;
for (i = 0; i < niov; i++)
qiov->size += iov[i].iov_len;
}
void qemu_iovec_add(QEMUIOVector *qiov, void *base, size_t len)
{
assert(qiov->nalloc != -1);
if (qiov->niov == qiov->nalloc) {
qiov->nalloc = 2 * qiov->nalloc + 1;
qiov->iov = g_realloc(qiov->iov, qiov->nalloc * sizeof(struct iovec));
}
qiov->iov[qiov->niov].iov_base = base;
qiov->iov[qiov->niov].iov_len = len;
qiov->size += len;
++qiov->niov;
}
/*
* Concatenates (partial) iovecs from src to the end of dst.
* It starts copying after skipping `soffset' bytes at the
* beginning of src and adds individual vectors from src to
* dst copies up to `sbytes' bytes total, or up to the end
* of src if it comes first. This way, it is okay to specify
* very large value for `sbytes' to indicate "up to the end
* of src".
* Only vector pointers are processed, not the actual data buffers.
*/
void qemu_iovec_concat(QEMUIOVector *dst,
QEMUIOVector *src, size_t soffset, size_t sbytes)
{
int i;
size_t done;
struct iovec *siov = src->iov;
assert(dst->nalloc != -1);
assert(src->size >= soffset);
for (i = 0, done = 0; done < sbytes && i < src->niov; i++) {
if (soffset < siov[i].iov_len) {
size_t len = MIN(siov[i].iov_len - soffset, sbytes - done);
qemu_iovec_add(dst, siov[i].iov_base + soffset, len);
done += len;
soffset = 0;
} else {
soffset -= siov[i].iov_len;
}
}
/* return done; */
}
void qemu_iovec_destroy(QEMUIOVector *qiov)
{
assert(qiov->nalloc != -1);
qemu_iovec_reset(qiov);
g_free(qiov->iov);
qiov->nalloc = 0;
qiov->iov = NULL;
}
void qemu_iovec_reset(QEMUIOVector *qiov)
{
assert(qiov->nalloc != -1);
qiov->niov = 0;
qiov->size = 0;
}
size_t qemu_iovec_to_buf(QEMUIOVector *qiov, size_t offset,
void *buf, size_t bytes)
{
return iov_to_buf(qiov->iov, qiov->niov, offset, buf, bytes);
}
size_t qemu_iovec_from_buf(QEMUIOVector *qiov, size_t offset,
const void *buf, size_t bytes)
{
return iov_from_buf(qiov->iov, qiov->niov, offset, buf, bytes);
}
size_t qemu_iovec_memset(QEMUIOVector *qiov, size_t offset,
int fillc, size_t bytes)
{
return iov_memset(qiov->iov, qiov->niov, offset, fillc, bytes);
}
/*
* Checks if a buffer is all zeroes
*
* Attention! The len must be a multiple of 4 * sizeof(long) due to
* restriction of optimizations in this function.
*/
bool buffer_is_zero(const void *buf, size_t len)
{
/*
* Use long as the biggest available internal data type that fits into the
* CPU register and unroll the loop to smooth out the effect of memory
* latency.
*/
size_t i;
long d0, d1, d2, d3;
const long * const data = buf;
assert(len % (4 * sizeof(long)) == 0);
len /= sizeof(long);
for (i = 0; i < len; i += 4) {
d0 = data[i + 0];
d1 = data[i + 1];
d2 = data[i + 2];
d3 = data[i + 3];
if (d0 || d1 || d2 || d3) {
return false;
}
}
return true;
}
#ifndef _WIN32
/* Sets a specific flag */
int fcntl_setfl(int fd, int flag)
{
int flags;
flags = fcntl(fd, F_GETFL);
if (flags == -1)
return -errno;
if (fcntl(fd, F_SETFL, flags | flag) == -1)
return -errno;
return 0;
}
#endif
static int64_t suffix_mul(char suffix, int64_t unit)
{
switch (qemu_toupper(suffix)) {
case STRTOSZ_DEFSUFFIX_B:
return 1;
case STRTOSZ_DEFSUFFIX_KB:
return unit;
case STRTOSZ_DEFSUFFIX_MB:
return unit * unit;
case STRTOSZ_DEFSUFFIX_GB:
return unit * unit * unit;
case STRTOSZ_DEFSUFFIX_TB:
return unit * unit * unit * unit;
}
return -1;
}
/*
* Convert string to bytes, allowing either B/b for bytes, K/k for KB,
* M/m for MB, G/g for GB or T/t for TB. End pointer will be returned
* in *end, if not NULL. Return -1 on error.
*/
int64_t strtosz_suffix_unit(const char *nptr, char **end,
const char default_suffix, int64_t unit)
{
int64_t retval = -1;
char *endptr;
unsigned char c;
int mul_required = 0;
double val, mul, integral, fraction;
errno = 0;
val = strtod(nptr, &endptr);
if (isnan(val) || endptr == nptr || errno != 0) {
goto fail;
}
fraction = modf(val, &integral);
if (fraction != 0) {
mul_required = 1;
}
c = *endptr;
mul = suffix_mul(c, unit);
if (mul >= 0) {
endptr++;
} else {
mul = suffix_mul(default_suffix, unit);
assert(mul >= 0);
}
if (mul == 1 && mul_required) {
goto fail;
}
if ((val * mul >= INT64_MAX) || val < 0) {
goto fail;
}
retval = val * mul;
fail:
if (end) {
*end = endptr;
}
return retval;
}
int64_t strtosz_suffix(const char *nptr, char **end, const char default_suffix)
{
return strtosz_suffix_unit(nptr, end, default_suffix, 1024);
}
int64_t strtosz(const char *nptr, char **end)
{
return strtosz_suffix(nptr, end, STRTOSZ_DEFSUFFIX_MB);
}
int qemu_parse_fd(const char *param)
{
int fd;
char *endptr = NULL;
fd = strtol(param, &endptr, 10);
if (*endptr || (fd == 0 && param == endptr)) {
return -1;
}
return fd;
}
int qemu_parse_fdset(const char *param)
{
return qemu_parse_fd(param);
}
/* round down to the nearest power of 2*/
int64_t pow2floor(int64_t value)
{
if (!is_power_of_2(value)) {
value = 0x8000000000000000ULL >> clz64(value);
}
return value;
}
/*
* Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128)
* Input is limited to 14-bit numbers
*/
int uleb128_encode_small(uint8_t *out, uint32_t n)
{
g_assert(n <= 0x3fff);
if (n < 0x80) {
*out++ = n;
return 1;
} else {
*out++ = (n & 0x7f) | 0x80;
*out++ = n >> 7;
return 2;
}
}
int uleb128_decode_small(const uint8_t *in, uint32_t *n)
{
if (!(*in & 0x80)) {
*n = *in++;
return 1;
} else {
*n = *in++ & 0x7f;
/* we exceed 14 bit number */
if (*in & 0x80) {
return -1;
}
*n |= *in++ << 7;
return 2;
}
}