3a34dfd7f6
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@gmail.com>
512 lines
14 KiB
Plaintext
512 lines
14 KiB
Plaintext
Tiny Code Generator - Fabrice Bellard.
|
|
|
|
1) Introduction
|
|
|
|
TCG (Tiny Code Generator) began as a generic backend for a C
|
|
compiler. It was simplified to be used in QEMU. It also has its roots
|
|
in the QOP code generator written by Paul Brook.
|
|
|
|
2) Definitions
|
|
|
|
The TCG "target" is the architecture for which we generate the
|
|
code. It is of course not the same as the "target" of QEMU which is
|
|
the emulated architecture. As TCG started as a generic C backend used
|
|
for cross compiling, it is assumed that the TCG target is different
|
|
from the host, although it is never the case for QEMU.
|
|
|
|
A TCG "function" corresponds to a QEMU Translated Block (TB).
|
|
|
|
A TCG "temporary" is a variable only live in a basic
|
|
block. Temporaries are allocated explicitly in each function.
|
|
|
|
A TCG "local temporary" is a variable only live in a function. Local
|
|
temporaries are allocated explicitly in each function.
|
|
|
|
A TCG "global" is a variable which is live in all the functions
|
|
(equivalent of a C global variable). They are defined before the
|
|
functions defined. A TCG global can be a memory location (e.g. a QEMU
|
|
CPU register), a fixed host register (e.g. the QEMU CPU state pointer)
|
|
or a memory location which is stored in a register outside QEMU TBs
|
|
(not implemented yet).
|
|
|
|
A TCG "basic block" corresponds to a list of instructions terminated
|
|
by a branch instruction.
|
|
|
|
3) Intermediate representation
|
|
|
|
3.1) Introduction
|
|
|
|
TCG instructions operate on variables which are temporaries, local
|
|
temporaries or globals. TCG instructions and variables are strongly
|
|
typed. Two types are supported: 32 bit integers and 64 bit
|
|
integers. Pointers are defined as an alias to 32 bit or 64 bit
|
|
integers depending on the TCG target word size.
|
|
|
|
Each instruction has a fixed number of output variable operands, input
|
|
variable operands and always constant operands.
|
|
|
|
The notable exception is the call instruction which has a variable
|
|
number of outputs and inputs.
|
|
|
|
In the textual form, output operands usually come first, followed by
|
|
input operands, followed by constant operands. The output type is
|
|
included in the instruction name. Constants are prefixed with a '$'.
|
|
|
|
add_i32 t0, t1, t2 (t0 <- t1 + t2)
|
|
|
|
3.2) Assumptions
|
|
|
|
* Basic blocks
|
|
|
|
- Basic blocks end after branches (e.g. brcond_i32 instruction),
|
|
goto_tb and exit_tb instructions.
|
|
- Basic blocks start after the end of a previous basic block, or at a
|
|
set_label instruction.
|
|
|
|
After the end of a basic block, the content of temporaries is
|
|
destroyed, but local temporaries and globals are preserved.
|
|
|
|
* Floating point types are not supported yet
|
|
|
|
* Pointers: depending on the TCG target, pointer size is 32 bit or 64
|
|
bit. The type TCG_TYPE_PTR is an alias to TCG_TYPE_I32 or
|
|
TCG_TYPE_I64.
|
|
|
|
* Helpers:
|
|
|
|
Using the tcg_gen_helper_x_y it is possible to call any function
|
|
taking i32, i64 or pointer types. By default, before calling a helper,
|
|
all globals are stored at their canonical location and it is assumed
|
|
that the function can modify them. This can be overridden by the
|
|
TCG_CALL_CONST function modifier. By default, the helper is allowed to
|
|
modify the CPU state or raise an exception. This can be overridden by
|
|
the TCG_CALL_PURE function modifier, in which case the call to the
|
|
function is removed if the return value is not used.
|
|
|
|
On some TCG targets (e.g. x86), several calling conventions are
|
|
supported.
|
|
|
|
* Branches:
|
|
|
|
Use the instruction 'br' to jump to a label. Use 'jmp' to jump to an
|
|
explicit address. Conditional branches can only jump to labels.
|
|
|
|
3.3) Code Optimizations
|
|
|
|
When generating instructions, you can count on at least the following
|
|
optimizations:
|
|
|
|
- Single instructions are simplified, e.g.
|
|
|
|
and_i32 t0, t0, $0xffffffff
|
|
|
|
is suppressed.
|
|
|
|
- A liveness analysis is done at the basic block level. The
|
|
information is used to suppress moves from a dead variable to
|
|
another one. It is also used to remove instructions which compute
|
|
dead results. The later is especially useful for condition code
|
|
optimization in QEMU.
|
|
|
|
In the following example:
|
|
|
|
add_i32 t0, t1, t2
|
|
add_i32 t0, t0, $1
|
|
mov_i32 t0, $1
|
|
|
|
only the last instruction is kept.
|
|
|
|
3.4) Instruction Reference
|
|
|
|
********* Function call
|
|
|
|
* call <ret> <params> ptr
|
|
|
|
call function 'ptr' (pointer type)
|
|
|
|
<ret> optional 32 bit or 64 bit return value
|
|
<params> optional 32 bit or 64 bit parameters
|
|
|
|
********* Jumps/Labels
|
|
|
|
* jmp t0
|
|
|
|
Absolute jump to address t0 (pointer type).
|
|
|
|
* set_label $label
|
|
|
|
Define label 'label' at the current program point.
|
|
|
|
* br $label
|
|
|
|
Jump to label.
|
|
|
|
* brcond_i32/i64 cond, t0, t1, label
|
|
|
|
Conditional jump if t0 cond t1 is true. cond can be:
|
|
TCG_COND_EQ
|
|
TCG_COND_NE
|
|
TCG_COND_LT /* signed */
|
|
TCG_COND_GE /* signed */
|
|
TCG_COND_LE /* signed */
|
|
TCG_COND_GT /* signed */
|
|
TCG_COND_LTU /* unsigned */
|
|
TCG_COND_GEU /* unsigned */
|
|
TCG_COND_LEU /* unsigned */
|
|
TCG_COND_GTU /* unsigned */
|
|
|
|
********* Arithmetic
|
|
|
|
* add_i32/i64 t0, t1, t2
|
|
|
|
t0=t1+t2
|
|
|
|
* sub_i32/i64 t0, t1, t2
|
|
|
|
t0=t1-t2
|
|
|
|
* neg_i32/i64 t0, t1
|
|
|
|
t0=-t1 (two's complement)
|
|
|
|
* mul_i32/i64 t0, t1, t2
|
|
|
|
t0=t1*t2
|
|
|
|
* div_i32/i64 t0, t1, t2
|
|
|
|
t0=t1/t2 (signed). Undefined behavior if division by zero or overflow.
|
|
|
|
* divu_i32/i64 t0, t1, t2
|
|
|
|
t0=t1/t2 (unsigned). Undefined behavior if division by zero.
|
|
|
|
* rem_i32/i64 t0, t1, t2
|
|
|
|
t0=t1%t2 (signed). Undefined behavior if division by zero or overflow.
|
|
|
|
* remu_i32/i64 t0, t1, t2
|
|
|
|
t0=t1%t2 (unsigned). Undefined behavior if division by zero.
|
|
|
|
********* Logical
|
|
|
|
* and_i32/i64 t0, t1, t2
|
|
|
|
t0=t1&t2
|
|
|
|
* or_i32/i64 t0, t1, t2
|
|
|
|
t0=t1|t2
|
|
|
|
* xor_i32/i64 t0, t1, t2
|
|
|
|
t0=t1^t2
|
|
|
|
* not_i32/i64 t0, t1
|
|
|
|
t0=~t1
|
|
|
|
* andc_i32/i64 t0, t1, t2
|
|
|
|
t0=t1&~t2
|
|
|
|
* eqv_i32/i64 t0, t1, t2
|
|
|
|
t0=~(t1^t2), or equivalently, t0=t1^~t2
|
|
|
|
* nand_i32/i64 t0, t1, t2
|
|
|
|
t0=~(t1&t2)
|
|
|
|
* nor_i32/i64 t0, t1, t2
|
|
|
|
t0=~(t1|t2)
|
|
|
|
* orc_i32/i64 t0, t1, t2
|
|
|
|
t0=t1|~t2
|
|
|
|
********* Shifts/Rotates
|
|
|
|
* shl_i32/i64 t0, t1, t2
|
|
|
|
t0=t1 << t2. Undefined behavior if t2 < 0 or t2 >= 32 (resp 64)
|
|
|
|
* shr_i32/i64 t0, t1, t2
|
|
|
|
t0=t1 >> t2 (unsigned). Undefined behavior if t2 < 0 or t2 >= 32 (resp 64)
|
|
|
|
* sar_i32/i64 t0, t1, t2
|
|
|
|
t0=t1 >> t2 (signed). Undefined behavior if t2 < 0 or t2 >= 32 (resp 64)
|
|
|
|
* rotl_i32/i64 t0, t1, t2
|
|
|
|
Rotation of t2 bits to the left. Undefined behavior if t2 < 0 or t2 >= 32 (resp 64)
|
|
|
|
* rotr_i32/i64 t0, t1, t2
|
|
|
|
Rotation of t2 bits to the right. Undefined behavior if t2 < 0 or t2 >= 32 (resp 64)
|
|
|
|
********* Misc
|
|
|
|
* mov_i32/i64 t0, t1
|
|
|
|
t0 = t1
|
|
|
|
Move t1 to t0 (both operands must have the same type).
|
|
|
|
* ext8s_i32/i64 t0, t1
|
|
ext8u_i32/i64 t0, t1
|
|
ext16s_i32/i64 t0, t1
|
|
ext16u_i32/i64 t0, t1
|
|
ext32s_i64 t0, t1
|
|
ext32u_i64 t0, t1
|
|
|
|
8, 16 or 32 bit sign/zero extension (both operands must have the same type)
|
|
|
|
* bswap16_i32/i64 t0, t1
|
|
|
|
16 bit byte swap on a 32/64 bit value. It assumes that the two/six high order
|
|
bytes are set to zero.
|
|
|
|
* bswap32_i32/i64 t0, t1
|
|
|
|
32 bit byte swap on a 32/64 bit value. With a 64 bit value, it assumes that
|
|
the four high order bytes are set to zero.
|
|
|
|
* bswap64_i64 t0, t1
|
|
|
|
64 bit byte swap
|
|
|
|
* discard_i32/i64 t0
|
|
|
|
Indicate that the value of t0 won't be used later. It is useful to
|
|
force dead code elimination.
|
|
|
|
* deposit_i32/i64 dest, t1, t2, pos, len
|
|
|
|
Deposit T2 as a bitfield into T1, placing the result in DEST.
|
|
The bitfield is described by POS/LEN, which are immediate values:
|
|
|
|
LEN - the length of the bitfield
|
|
POS - the position of the first bit, counting from the LSB
|
|
|
|
For example, pos=8, len=4 indicates a 4-bit field at bit 8.
|
|
This operation would be equivalent to
|
|
|
|
dest = (t1 & ~0x0f00) | ((t2 << 8) & 0x0f00)
|
|
|
|
|
|
********* Conditional moves
|
|
|
|
* setcond_i32/i64 cond, dest, t1, t2
|
|
|
|
dest = (t1 cond t2)
|
|
|
|
Set DEST to 1 if (T1 cond T2) is true, otherwise set to 0.
|
|
|
|
********* Type conversions
|
|
|
|
* ext_i32_i64 t0, t1
|
|
Convert t1 (32 bit) to t0 (64 bit) and does sign extension
|
|
|
|
* extu_i32_i64 t0, t1
|
|
Convert t1 (32 bit) to t0 (64 bit) and does zero extension
|
|
|
|
* trunc_i64_i32 t0, t1
|
|
Truncate t1 (64 bit) to t0 (32 bit)
|
|
|
|
* concat_i32_i64 t0, t1, t2
|
|
Construct t0 (64-bit) taking the low half from t1 (32 bit) and the high half
|
|
from t2 (32 bit).
|
|
|
|
* concat32_i64 t0, t1, t2
|
|
Construct t0 (64-bit) taking the low half from t1 (64 bit) and the high half
|
|
from t2 (64 bit).
|
|
|
|
********* Load/Store
|
|
|
|
* ld_i32/i64 t0, t1, offset
|
|
ld8s_i32/i64 t0, t1, offset
|
|
ld8u_i32/i64 t0, t1, offset
|
|
ld16s_i32/i64 t0, t1, offset
|
|
ld16u_i32/i64 t0, t1, offset
|
|
ld32s_i64 t0, t1, offset
|
|
ld32u_i64 t0, t1, offset
|
|
|
|
t0 = read(t1 + offset)
|
|
Load 8, 16, 32 or 64 bits with or without sign extension from host memory.
|
|
offset must be a constant.
|
|
|
|
* st_i32/i64 t0, t1, offset
|
|
st8_i32/i64 t0, t1, offset
|
|
st16_i32/i64 t0, t1, offset
|
|
st32_i64 t0, t1, offset
|
|
|
|
write(t0, t1 + offset)
|
|
Write 8, 16, 32 or 64 bits to host memory.
|
|
|
|
********* 64-bit target on 32-bit host support
|
|
|
|
The following opcodes are internal to TCG. Thus they are to be implemented by
|
|
32-bit host code generators, but are not to be emitted by guest translators.
|
|
They are emitted as needed by inline functions within "tcg-op.h".
|
|
|
|
* brcond2_i32 cond, t0_low, t0_high, t1_low, t1_high, label
|
|
|
|
Similar to brcond, except that the 64-bit values T0 and T1
|
|
are formed from two 32-bit arguments.
|
|
|
|
* add2_i32 t0_low, t0_high, t1_low, t1_high, t2_low, t2_high
|
|
* sub2_i32 t0_low, t0_high, t1_low, t1_high, t2_low, t2_high
|
|
|
|
Similar to add/sub, except that the 64-bit inputs T1 and T2 are
|
|
formed from two 32-bit arguments, and the 64-bit output T0
|
|
is returned in two 32-bit outputs.
|
|
|
|
* mulu2_i32 t0_low, t0_high, t1, t2
|
|
|
|
Similar to mul, except two 32-bit (unsigned) inputs T1 and T2 yielding
|
|
the full 64-bit product T0. The later is returned in two 32-bit outputs.
|
|
|
|
* setcond2_i32 cond, dest, t1_low, t1_high, t2_low, t2_high
|
|
|
|
Similar to setcond, except that the 64-bit values T1 and T2 are
|
|
formed from two 32-bit arguments. The result is a 32-bit value.
|
|
|
|
********* QEMU specific operations
|
|
|
|
* exit_tb t0
|
|
|
|
Exit the current TB and return the value t0 (word type).
|
|
|
|
* goto_tb index
|
|
|
|
Exit the current TB and jump to the TB index 'index' (constant) if the
|
|
current TB was linked to this TB. Otherwise execute the next
|
|
instructions.
|
|
|
|
* qemu_ld8u t0, t1, flags
|
|
qemu_ld8s t0, t1, flags
|
|
qemu_ld16u t0, t1, flags
|
|
qemu_ld16s t0, t1, flags
|
|
qemu_ld32 t0, t1, flags
|
|
qemu_ld32u t0, t1, flags
|
|
qemu_ld32s t0, t1, flags
|
|
qemu_ld64 t0, t1, flags
|
|
|
|
Load data at the QEMU CPU address t1 into t0. t1 has the QEMU CPU address
|
|
type. 'flags' contains the QEMU memory index (selects user or kernel access)
|
|
for example.
|
|
|
|
Note that "qemu_ld32" implies a 32-bit result, while "qemu_ld32u" and
|
|
"qemu_ld32s" imply a 64-bit result appropriately extended from 32 bits.
|
|
|
|
* qemu_st8 t0, t1, flags
|
|
qemu_st16 t0, t1, flags
|
|
qemu_st32 t0, t1, flags
|
|
qemu_st64 t0, t1, flags
|
|
|
|
Store the data t0 at the QEMU CPU Address t1. t1 has the QEMU CPU
|
|
address type. 'flags' contains the QEMU memory index (selects user or
|
|
kernel access) for example.
|
|
|
|
Note 1: Some shortcuts are defined when the last operand is known to be
|
|
a constant (e.g. addi for add, movi for mov).
|
|
|
|
Note 2: When using TCG, the opcodes must never be generated directly
|
|
as some of them may not be available as "real" opcodes. Always use the
|
|
function tcg_gen_xxx(args).
|
|
|
|
4) Backend
|
|
|
|
tcg-target.h contains the target specific definitions. tcg-target.c
|
|
contains the target specific code.
|
|
|
|
4.1) Assumptions
|
|
|
|
The target word size (TCG_TARGET_REG_BITS) is expected to be 32 bit or
|
|
64 bit. It is expected that the pointer has the same size as the word.
|
|
|
|
On a 32 bit target, all 64 bit operations are converted to 32 bits. A
|
|
few specific operations must be implemented to allow it (see add2_i32,
|
|
sub2_i32, brcond2_i32).
|
|
|
|
Floating point operations are not supported in this version. A
|
|
previous incarnation of the code generator had full support of them,
|
|
but it is better to concentrate on integer operations first.
|
|
|
|
On a 64 bit target, no assumption is made in TCG about the storage of
|
|
the 32 bit values in 64 bit registers.
|
|
|
|
4.2) Constraints
|
|
|
|
GCC like constraints are used to define the constraints of every
|
|
instruction. Memory constraints are not supported in this
|
|
version. Aliases are specified in the input operands as for GCC.
|
|
|
|
The same register may be used for both an input and an output, even when
|
|
they are not explicitly aliased. If an op expands to multiple target
|
|
instructions then care must be taken to avoid clobbering input values.
|
|
GCC style "early clobber" outputs are not currently supported.
|
|
|
|
A target can define specific register or constant constraints. If an
|
|
operation uses a constant input constraint which does not allow all
|
|
constants, it must also accept registers in order to have a fallback.
|
|
|
|
The movi_i32 and movi_i64 operations must accept any constants.
|
|
|
|
The mov_i32 and mov_i64 operations must accept any registers of the
|
|
same type.
|
|
|
|
The ld/st instructions must accept signed 32 bit constant offsets. It
|
|
can be implemented by reserving a specific register to compute the
|
|
address if the offset is too big.
|
|
|
|
The ld/st instructions must accept any destination (ld) or source (st)
|
|
register.
|
|
|
|
4.3) Function call assumptions
|
|
|
|
- The only supported types for parameters and return value are: 32 and
|
|
64 bit integers and pointer.
|
|
- The stack grows downwards.
|
|
- The first N parameters are passed in registers.
|
|
- The next parameters are passed on the stack by storing them as words.
|
|
- Some registers are clobbered during the call.
|
|
- The function can return 0 or 1 value in registers. On a 32 bit
|
|
target, functions must be able to return 2 values in registers for
|
|
64 bit return type.
|
|
|
|
5) Recommended coding rules for best performance
|
|
|
|
- Use globals to represent the parts of the QEMU CPU state which are
|
|
often modified, e.g. the integer registers and the condition
|
|
codes. TCG will be able to use host registers to store them.
|
|
|
|
- Avoid globals stored in fixed registers. They must be used only to
|
|
store the pointer to the CPU state and possibly to store a pointer
|
|
to a register window.
|
|
|
|
- Use temporaries. Use local temporaries only when really needed,
|
|
e.g. when you need to use a value after a jump. Local temporaries
|
|
introduce a performance hit in the current TCG implementation: their
|
|
content is saved to memory at end of each basic block.
|
|
|
|
- Free temporaries and local temporaries when they are no longer used
|
|
(tcg_temp_free). Since tcg_const_x() also creates a temporary, you
|
|
should free it after it is used. Freeing temporaries does not yield
|
|
a better generated code, but it reduces the memory usage of TCG and
|
|
the speed of the translation.
|
|
|
|
- Don't hesitate to use helpers for complicated or seldom used target
|
|
instructions. There is little performance advantage in using TCG to
|
|
implement target instructions taking more than about twenty TCG
|
|
instructions.
|
|
|
|
- Use the 'discard' instruction if you know that TCG won't be able to
|
|
prove that a given global is "dead" at a given program point. The
|
|
x86 target uses it to improve the condition codes optimisation.
|