b39466269b
Move the generic cpu_synchronize_ functions to the common hw_accel.h header, in order to prepare for the addition of a second hardware accelerator. Signed-off-by: Stefan Weil <sw@weilnetz.de> Signed-off-by: Vincent Palatin <vpalatin@chromium.org> Message-Id: <f5c3cffe8d520011df1c2e5437bb814989b48332.1484045952.git.vpalatin@chromium.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
1060 lines
30 KiB
C
1060 lines
30 KiB
C
/*
|
|
* PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
|
|
*
|
|
* Copyright (c) 2003-2007 Jocelyn Mayer
|
|
* Copyright (c) 2013 David Gibson, IBM Corporation
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "qapi/error.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "qemu/error-report.h"
|
|
#include "sysemu/hw_accel.h"
|
|
#include "kvm_ppc.h"
|
|
#include "mmu-hash64.h"
|
|
#include "exec/log.h"
|
|
|
|
//#define DEBUG_SLB
|
|
|
|
#ifdef DEBUG_SLB
|
|
# define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
|
|
#else
|
|
# define LOG_SLB(...) do { } while (0)
|
|
#endif
|
|
|
|
/*
|
|
* Used to indicate that a CPU has its hash page table (HPT) managed
|
|
* within the host kernel
|
|
*/
|
|
#define MMU_HASH64_KVM_MANAGED_HPT ((void *)-1)
|
|
|
|
/*
|
|
* SLB handling
|
|
*/
|
|
|
|
static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
uint64_t esid_256M, esid_1T;
|
|
int n;
|
|
|
|
LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
|
|
|
|
esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
|
|
esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
|
|
|
|
for (n = 0; n < env->slb_nr; n++) {
|
|
ppc_slb_t *slb = &env->slb[n];
|
|
|
|
LOG_SLB("%s: slot %d %016" PRIx64 " %016"
|
|
PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
|
|
/* We check for 1T matches on all MMUs here - if the MMU
|
|
* doesn't have 1T segment support, we will have prevented 1T
|
|
* entries from being inserted in the slbmte code. */
|
|
if (((slb->esid == esid_256M) &&
|
|
((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
|
|
|| ((slb->esid == esid_1T) &&
|
|
((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
|
|
return slb;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
int i;
|
|
uint64_t slbe, slbv;
|
|
|
|
cpu_synchronize_state(CPU(cpu));
|
|
|
|
cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
|
|
for (i = 0; i < env->slb_nr; i++) {
|
|
slbe = env->slb[i].esid;
|
|
slbv = env->slb[i].vsid;
|
|
if (slbe == 0 && slbv == 0) {
|
|
continue;
|
|
}
|
|
cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
|
|
i, slbe, slbv);
|
|
}
|
|
}
|
|
|
|
void helper_slbia(CPUPPCState *env)
|
|
{
|
|
int n;
|
|
|
|
/* XXX: Warning: slbia never invalidates the first segment */
|
|
for (n = 1; n < env->slb_nr; n++) {
|
|
ppc_slb_t *slb = &env->slb[n];
|
|
|
|
if (slb->esid & SLB_ESID_V) {
|
|
slb->esid &= ~SLB_ESID_V;
|
|
/* XXX: given the fact that segment size is 256 MB or 1TB,
|
|
* and we still don't have a tlb_flush_mask(env, n, mask)
|
|
* in QEMU, we just invalidate all TLBs
|
|
*/
|
|
env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_slbie(CPUPPCState *env, target_ulong addr)
|
|
{
|
|
PowerPCCPU *cpu = ppc_env_get_cpu(env);
|
|
ppc_slb_t *slb;
|
|
|
|
slb = slb_lookup(cpu, addr);
|
|
if (!slb) {
|
|
return;
|
|
}
|
|
|
|
if (slb->esid & SLB_ESID_V) {
|
|
slb->esid &= ~SLB_ESID_V;
|
|
|
|
/* XXX: given the fact that segment size is 256 MB or 1TB,
|
|
* and we still don't have a tlb_flush_mask(env, n, mask)
|
|
* in QEMU, we just invalidate all TLBs
|
|
*/
|
|
env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
|
|
}
|
|
}
|
|
|
|
int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
|
|
target_ulong esid, target_ulong vsid)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
ppc_slb_t *slb = &env->slb[slot];
|
|
const struct ppc_one_seg_page_size *sps = NULL;
|
|
int i;
|
|
|
|
if (slot >= env->slb_nr) {
|
|
return -1; /* Bad slot number */
|
|
}
|
|
if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
|
|
return -1; /* Reserved bits set */
|
|
}
|
|
if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
|
|
return -1; /* Bad segment size */
|
|
}
|
|
if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
|
|
return -1; /* 1T segment on MMU that doesn't support it */
|
|
}
|
|
|
|
for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
|
|
const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
|
|
|
|
if (!sps1->page_shift) {
|
|
break;
|
|
}
|
|
|
|
if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
|
|
sps = sps1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!sps) {
|
|
error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
|
|
" esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
|
|
slot, esid, vsid);
|
|
return -1;
|
|
}
|
|
|
|
slb->esid = esid;
|
|
slb->vsid = vsid;
|
|
slb->sps = sps;
|
|
|
|
LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
|
|
" %016" PRIx64 "\n", __func__, slot, esid, vsid,
|
|
slb->esid, slb->vsid);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
|
|
target_ulong *rt)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
int slot = rb & 0xfff;
|
|
ppc_slb_t *slb = &env->slb[slot];
|
|
|
|
if (slot >= env->slb_nr) {
|
|
return -1;
|
|
}
|
|
|
|
*rt = slb->esid;
|
|
return 0;
|
|
}
|
|
|
|
static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
|
|
target_ulong *rt)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
int slot = rb & 0xfff;
|
|
ppc_slb_t *slb = &env->slb[slot];
|
|
|
|
if (slot >= env->slb_nr) {
|
|
return -1;
|
|
}
|
|
|
|
*rt = slb->vsid;
|
|
return 0;
|
|
}
|
|
|
|
static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
|
|
target_ulong *rt)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
ppc_slb_t *slb;
|
|
|
|
if (!msr_is_64bit(env, env->msr)) {
|
|
rb &= 0xffffffff;
|
|
}
|
|
slb = slb_lookup(cpu, rb);
|
|
if (slb == NULL) {
|
|
*rt = (target_ulong)-1ul;
|
|
} else {
|
|
*rt = slb->vsid;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
|
|
{
|
|
PowerPCCPU *cpu = ppc_env_get_cpu(env);
|
|
|
|
if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
|
|
raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_INVAL, GETPC());
|
|
}
|
|
}
|
|
|
|
target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
|
|
{
|
|
PowerPCCPU *cpu = ppc_env_get_cpu(env);
|
|
target_ulong rt = 0;
|
|
|
|
if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
|
|
raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_INVAL, GETPC());
|
|
}
|
|
return rt;
|
|
}
|
|
|
|
target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
|
|
{
|
|
PowerPCCPU *cpu = ppc_env_get_cpu(env);
|
|
target_ulong rt = 0;
|
|
|
|
if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
|
|
raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_INVAL, GETPC());
|
|
}
|
|
return rt;
|
|
}
|
|
|
|
target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
|
|
{
|
|
PowerPCCPU *cpu = ppc_env_get_cpu(env);
|
|
target_ulong rt = 0;
|
|
|
|
if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
|
|
raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
|
|
POWERPC_EXCP_INVAL, GETPC());
|
|
}
|
|
return rt;
|
|
}
|
|
|
|
/*
|
|
* 64-bit hash table MMU handling
|
|
*/
|
|
void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value,
|
|
Error **errp)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
target_ulong htabsize = value & SDR_64_HTABSIZE;
|
|
|
|
env->spr[SPR_SDR1] = value;
|
|
if (htabsize > 28) {
|
|
error_setg(errp,
|
|
"Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1",
|
|
htabsize);
|
|
htabsize = 28;
|
|
}
|
|
env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1;
|
|
env->htab_base = value & SDR_64_HTABORG;
|
|
}
|
|
|
|
void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift,
|
|
Error **errp)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
Error *local_err = NULL;
|
|
|
|
if (hpt) {
|
|
env->external_htab = hpt;
|
|
} else {
|
|
env->external_htab = MMU_HASH64_KVM_MANAGED_HPT;
|
|
}
|
|
ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18),
|
|
&local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
/* Not strictly necessary, but makes it clearer that an external
|
|
* htab is in use when debugging */
|
|
env->htab_base = -1;
|
|
|
|
if (kvm_enabled()) {
|
|
if (kvmppc_put_books_sregs(cpu) < 0) {
|
|
error_setg(errp, "Unable to update SDR1 in KVM");
|
|
}
|
|
}
|
|
}
|
|
|
|
static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
|
|
ppc_slb_t *slb, ppc_hash_pte64_t pte)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
unsigned pp, key;
|
|
/* Some pp bit combinations have undefined behaviour, so default
|
|
* to no access in those cases */
|
|
int prot = 0;
|
|
|
|
key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
|
|
: (slb->vsid & SLB_VSID_KS));
|
|
pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
|
|
|
|
if (key == 0) {
|
|
switch (pp) {
|
|
case 0x0:
|
|
case 0x1:
|
|
case 0x2:
|
|
prot = PAGE_READ | PAGE_WRITE;
|
|
break;
|
|
|
|
case 0x3:
|
|
case 0x6:
|
|
prot = PAGE_READ;
|
|
break;
|
|
}
|
|
} else {
|
|
switch (pp) {
|
|
case 0x0:
|
|
case 0x6:
|
|
prot = 0;
|
|
break;
|
|
|
|
case 0x1:
|
|
case 0x3:
|
|
prot = PAGE_READ;
|
|
break;
|
|
|
|
case 0x2:
|
|
prot = PAGE_READ | PAGE_WRITE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* No execute if either noexec or guarded bits set */
|
|
if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
|
|
|| (slb->vsid & SLB_VSID_N)) {
|
|
prot |= PAGE_EXEC;
|
|
}
|
|
|
|
return prot;
|
|
}
|
|
|
|
static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
int key, amrbits;
|
|
int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
|
|
/* Only recent MMUs implement Virtual Page Class Key Protection */
|
|
if (!(env->mmu_model & POWERPC_MMU_AMR)) {
|
|
return prot;
|
|
}
|
|
|
|
key = HPTE64_R_KEY(pte.pte1);
|
|
amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
|
|
|
|
/* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
|
|
/* env->spr[SPR_AMR]); */
|
|
|
|
/*
|
|
* A store is permitted if the AMR bit is 0. Remove write
|
|
* protection if it is set.
|
|
*/
|
|
if (amrbits & 0x2) {
|
|
prot &= ~PAGE_WRITE;
|
|
}
|
|
/*
|
|
* A load is permitted if the AMR bit is 0. Remove read
|
|
* protection if it is set.
|
|
*/
|
|
if (amrbits & 0x1) {
|
|
prot &= ~PAGE_READ;
|
|
}
|
|
|
|
return prot;
|
|
}
|
|
|
|
uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
|
|
{
|
|
uint64_t token = 0;
|
|
hwaddr pte_offset;
|
|
|
|
pte_offset = pte_index * HASH_PTE_SIZE_64;
|
|
if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
|
|
/*
|
|
* HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
|
|
*/
|
|
token = kvmppc_hash64_read_pteg(cpu, pte_index);
|
|
} else if (cpu->env.external_htab) {
|
|
/*
|
|
* HTAB is controlled by QEMU. Just point to the internally
|
|
* accessible PTEG.
|
|
*/
|
|
token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
|
|
} else if (cpu->env.htab_base) {
|
|
token = cpu->env.htab_base + pte_offset;
|
|
}
|
|
return token;
|
|
}
|
|
|
|
void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token)
|
|
{
|
|
if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
|
|
kvmppc_hash64_free_pteg(token);
|
|
}
|
|
}
|
|
|
|
static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
|
|
uint64_t pte0, uint64_t pte1)
|
|
{
|
|
int i;
|
|
|
|
if (!(pte0 & HPTE64_V_LARGE)) {
|
|
if (sps->page_shift != 12) {
|
|
/* 4kiB page in a non 4kiB segment */
|
|
return 0;
|
|
}
|
|
/* Normal 4kiB page */
|
|
return 12;
|
|
}
|
|
|
|
for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
|
|
const struct ppc_one_page_size *ps = &sps->enc[i];
|
|
uint64_t mask;
|
|
|
|
if (!ps->page_shift) {
|
|
break;
|
|
}
|
|
|
|
if (ps->page_shift == 12) {
|
|
/* L bit is set so this can't be a 4kiB page */
|
|
continue;
|
|
}
|
|
|
|
mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
|
|
|
|
if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
|
|
return ps->page_shift;
|
|
}
|
|
}
|
|
|
|
return 0; /* Bad page size encoding */
|
|
}
|
|
|
|
static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
|
|
const struct ppc_one_seg_page_size *sps,
|
|
target_ulong ptem,
|
|
ppc_hash_pte64_t *pte, unsigned *pshift)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
int i;
|
|
uint64_t token;
|
|
target_ulong pte0, pte1;
|
|
target_ulong pte_index;
|
|
|
|
pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
|
|
token = ppc_hash64_start_access(cpu, pte_index);
|
|
if (!token) {
|
|
return -1;
|
|
}
|
|
for (i = 0; i < HPTES_PER_GROUP; i++) {
|
|
pte0 = ppc_hash64_load_hpte0(cpu, token, i);
|
|
pte1 = ppc_hash64_load_hpte1(cpu, token, i);
|
|
|
|
/* This compares V, B, H (secondary) and the AVPN */
|
|
if (HPTE64_V_COMPARE(pte0, ptem)) {
|
|
*pshift = hpte_page_shift(sps, pte0, pte1);
|
|
/*
|
|
* If there is no match, ignore the PTE, it could simply
|
|
* be for a different segment size encoding and the
|
|
* architecture specifies we should not match. Linux will
|
|
* potentially leave behind PTEs for the wrong base page
|
|
* size when demoting segments.
|
|
*/
|
|
if (*pshift == 0) {
|
|
continue;
|
|
}
|
|
/* We don't do anything with pshift yet as qemu TLB only deals
|
|
* with 4K pages anyway
|
|
*/
|
|
pte->pte0 = pte0;
|
|
pte->pte1 = pte1;
|
|
ppc_hash64_stop_access(cpu, token);
|
|
return (pte_index + i) * HASH_PTE_SIZE_64;
|
|
}
|
|
}
|
|
ppc_hash64_stop_access(cpu, token);
|
|
/*
|
|
* We didn't find a valid entry.
|
|
*/
|
|
return -1;
|
|
}
|
|
|
|
static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
|
|
ppc_slb_t *slb, target_ulong eaddr,
|
|
ppc_hash_pte64_t *pte, unsigned *pshift)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
hwaddr pte_offset;
|
|
hwaddr hash;
|
|
uint64_t vsid, epnmask, epn, ptem;
|
|
const struct ppc_one_seg_page_size *sps = slb->sps;
|
|
|
|
/* The SLB store path should prevent any bad page size encodings
|
|
* getting in there, so: */
|
|
assert(sps);
|
|
|
|
/* If ISL is set in LPCR we need to clamp the page size to 4K */
|
|
if (env->spr[SPR_LPCR] & LPCR_ISL) {
|
|
/* We assume that when using TCG, 4k is first entry of SPS */
|
|
sps = &env->sps.sps[0];
|
|
assert(sps->page_shift == 12);
|
|
}
|
|
|
|
epnmask = ~((1ULL << sps->page_shift) - 1);
|
|
|
|
if (slb->vsid & SLB_VSID_B) {
|
|
/* 1TB segment */
|
|
vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
|
|
epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
|
|
hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
|
|
} else {
|
|
/* 256M segment */
|
|
vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
|
|
epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
|
|
hash = vsid ^ (epn >> sps->page_shift);
|
|
}
|
|
ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
|
|
ptem |= HPTE64_V_VALID;
|
|
|
|
/* Page address translation */
|
|
qemu_log_mask(CPU_LOG_MMU,
|
|
"htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
|
|
" hash " TARGET_FMT_plx "\n",
|
|
env->htab_base, env->htab_mask, hash);
|
|
|
|
/* Primary PTEG lookup */
|
|
qemu_log_mask(CPU_LOG_MMU,
|
|
"0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
|
|
" vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
|
|
" hash=" TARGET_FMT_plx "\n",
|
|
env->htab_base, env->htab_mask, vsid, ptem, hash);
|
|
pte_offset = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
|
|
|
|
if (pte_offset == -1) {
|
|
/* Secondary PTEG lookup */
|
|
ptem |= HPTE64_V_SECONDARY;
|
|
qemu_log_mask(CPU_LOG_MMU,
|
|
"1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
|
|
" vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
|
|
" hash=" TARGET_FMT_plx "\n", env->htab_base,
|
|
env->htab_mask, vsid, ptem, ~hash);
|
|
|
|
pte_offset = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
|
|
}
|
|
|
|
return pte_offset;
|
|
}
|
|
|
|
unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
|
|
uint64_t pte0, uint64_t pte1)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
int i;
|
|
|
|
if (!(pte0 & HPTE64_V_LARGE)) {
|
|
return 12;
|
|
}
|
|
|
|
/*
|
|
* The encodings in env->sps need to be carefully chosen so that
|
|
* this gives an unambiguous result.
|
|
*/
|
|
for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
|
|
const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
|
|
unsigned shift;
|
|
|
|
if (!sps->page_shift) {
|
|
break;
|
|
}
|
|
|
|
shift = hpte_page_shift(sps, pte0, pte1);
|
|
if (shift) {
|
|
return shift;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env,
|
|
uint64_t error_code)
|
|
{
|
|
bool vpm;
|
|
|
|
if (msr_ir) {
|
|
vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
|
|
} else {
|
|
vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
|
|
}
|
|
if (vpm && !msr_hv) {
|
|
cs->exception_index = POWERPC_EXCP_HISI;
|
|
} else {
|
|
cs->exception_index = POWERPC_EXCP_ISI;
|
|
}
|
|
env->error_code = error_code;
|
|
}
|
|
|
|
static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar,
|
|
uint64_t dsisr)
|
|
{
|
|
bool vpm;
|
|
|
|
if (msr_dr) {
|
|
vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
|
|
} else {
|
|
vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
|
|
}
|
|
if (vpm && !msr_hv) {
|
|
cs->exception_index = POWERPC_EXCP_HDSI;
|
|
env->spr[SPR_HDAR] = dar;
|
|
env->spr[SPR_HDSISR] = dsisr;
|
|
} else {
|
|
cs->exception_index = POWERPC_EXCP_DSI;
|
|
env->spr[SPR_DAR] = dar;
|
|
env->spr[SPR_DSISR] = dsisr;
|
|
}
|
|
env->error_code = 0;
|
|
}
|
|
|
|
|
|
int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
|
|
int rwx, int mmu_idx)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUPPCState *env = &cpu->env;
|
|
ppc_slb_t *slb;
|
|
unsigned apshift;
|
|
hwaddr pte_offset;
|
|
ppc_hash_pte64_t pte;
|
|
int pp_prot, amr_prot, prot;
|
|
uint64_t new_pte1, dsisr;
|
|
const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
|
|
hwaddr raddr;
|
|
|
|
assert((rwx == 0) || (rwx == 1) || (rwx == 2));
|
|
|
|
/* Note on LPCR usage: 970 uses HID4, but our special variant
|
|
* of store_spr copies relevant fields into env->spr[SPR_LPCR].
|
|
* Similarily we filter unimplemented bits when storing into
|
|
* LPCR depending on the MMU version. This code can thus just
|
|
* use the LPCR "as-is".
|
|
*/
|
|
|
|
/* 1. Handle real mode accesses */
|
|
if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
|
|
/* Translation is supposedly "off" */
|
|
/* In real mode the top 4 effective address bits are (mostly) ignored */
|
|
raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
|
|
|
|
/* In HV mode, add HRMOR if top EA bit is clear */
|
|
if (msr_hv || !env->has_hv_mode) {
|
|
if (!(eaddr >> 63)) {
|
|
raddr |= env->spr[SPR_HRMOR];
|
|
}
|
|
} else {
|
|
/* Otherwise, check VPM for RMA vs VRMA */
|
|
if (env->spr[SPR_LPCR] & LPCR_VPM0) {
|
|
slb = &env->vrma_slb;
|
|
if (slb->sps) {
|
|
goto skip_slb_search;
|
|
}
|
|
/* Not much else to do here */
|
|
cs->exception_index = POWERPC_EXCP_MCHECK;
|
|
env->error_code = 0;
|
|
return 1;
|
|
} else if (raddr < env->rmls) {
|
|
/* RMA. Check bounds in RMLS */
|
|
raddr |= env->spr[SPR_RMOR];
|
|
} else {
|
|
/* The access failed, generate the approriate interrupt */
|
|
if (rwx == 2) {
|
|
ppc_hash64_set_isi(cs, env, 0x08000000);
|
|
} else {
|
|
dsisr = 0x08000000;
|
|
if (rwx == 1) {
|
|
dsisr |= 0x02000000;
|
|
}
|
|
ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
|
|
}
|
|
return 1;
|
|
}
|
|
}
|
|
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
|
|
PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
|
|
TARGET_PAGE_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
/* 2. Translation is on, so look up the SLB */
|
|
slb = slb_lookup(cpu, eaddr);
|
|
if (!slb) {
|
|
if (rwx == 2) {
|
|
cs->exception_index = POWERPC_EXCP_ISEG;
|
|
env->error_code = 0;
|
|
} else {
|
|
cs->exception_index = POWERPC_EXCP_DSEG;
|
|
env->error_code = 0;
|
|
env->spr[SPR_DAR] = eaddr;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
skip_slb_search:
|
|
|
|
/* 3. Check for segment level no-execute violation */
|
|
if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
|
|
ppc_hash64_set_isi(cs, env, 0x10000000);
|
|
return 1;
|
|
}
|
|
|
|
/* 4. Locate the PTE in the hash table */
|
|
pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
|
|
if (pte_offset == -1) {
|
|
dsisr = 0x40000000;
|
|
if (rwx == 2) {
|
|
ppc_hash64_set_isi(cs, env, dsisr);
|
|
} else {
|
|
if (rwx == 1) {
|
|
dsisr |= 0x02000000;
|
|
}
|
|
ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
|
|
}
|
|
return 1;
|
|
}
|
|
qemu_log_mask(CPU_LOG_MMU,
|
|
"found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
|
|
|
|
/* 5. Check access permissions */
|
|
|
|
pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
|
|
amr_prot = ppc_hash64_amr_prot(cpu, pte);
|
|
prot = pp_prot & amr_prot;
|
|
|
|
if ((need_prot[rwx] & ~prot) != 0) {
|
|
/* Access right violation */
|
|
qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
|
|
if (rwx == 2) {
|
|
ppc_hash64_set_isi(cs, env, 0x08000000);
|
|
} else {
|
|
dsisr = 0;
|
|
if (need_prot[rwx] & ~pp_prot) {
|
|
dsisr |= 0x08000000;
|
|
}
|
|
if (rwx == 1) {
|
|
dsisr |= 0x02000000;
|
|
}
|
|
if (need_prot[rwx] & ~amr_prot) {
|
|
dsisr |= 0x00200000;
|
|
}
|
|
ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
|
|
|
|
/* 6. Update PTE referenced and changed bits if necessary */
|
|
|
|
new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
|
|
if (rwx == 1) {
|
|
new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
|
|
} else {
|
|
/* Treat the page as read-only for now, so that a later write
|
|
* will pass through this function again to set the C bit */
|
|
prot &= ~PAGE_WRITE;
|
|
}
|
|
|
|
if (new_pte1 != pte.pte1) {
|
|
ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64,
|
|
pte.pte0, new_pte1);
|
|
}
|
|
|
|
/* 7. Determine the real address from the PTE */
|
|
|
|
raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
|
|
|
|
tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
|
|
prot, mmu_idx, 1ULL << apshift);
|
|
|
|
return 0;
|
|
}
|
|
|
|
hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
ppc_slb_t *slb;
|
|
hwaddr pte_offset, raddr;
|
|
ppc_hash_pte64_t pte;
|
|
unsigned apshift;
|
|
|
|
/* Handle real mode */
|
|
if (msr_dr == 0) {
|
|
/* In real mode the top 4 effective address bits are ignored */
|
|
raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
|
|
|
|
/* In HV mode, add HRMOR if top EA bit is clear */
|
|
if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
|
|
return raddr | env->spr[SPR_HRMOR];
|
|
}
|
|
|
|
/* Otherwise, check VPM for RMA vs VRMA */
|
|
if (env->spr[SPR_LPCR] & LPCR_VPM0) {
|
|
slb = &env->vrma_slb;
|
|
if (!slb->sps) {
|
|
return -1;
|
|
}
|
|
} else if (raddr < env->rmls) {
|
|
/* RMA. Check bounds in RMLS */
|
|
return raddr | env->spr[SPR_RMOR];
|
|
} else {
|
|
return -1;
|
|
}
|
|
} else {
|
|
slb = slb_lookup(cpu, addr);
|
|
if (!slb) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
|
|
if (pte_offset == -1) {
|
|
return -1;
|
|
}
|
|
|
|
return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
|
|
& TARGET_PAGE_MASK;
|
|
}
|
|
|
|
void ppc_hash64_store_hpte(PowerPCCPU *cpu,
|
|
target_ulong pte_index,
|
|
target_ulong pte0, target_ulong pte1)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
|
|
kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
|
|
return;
|
|
}
|
|
|
|
pte_index *= HASH_PTE_SIZE_64;
|
|
if (env->external_htab) {
|
|
stq_p(env->external_htab + pte_index, pte0);
|
|
stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
|
|
} else {
|
|
stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0);
|
|
stq_phys(CPU(cpu)->as,
|
|
env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
|
|
}
|
|
}
|
|
|
|
void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu,
|
|
target_ulong pte_index,
|
|
target_ulong pte0, target_ulong pte1)
|
|
{
|
|
/*
|
|
* XXX: given the fact that there are too many segments to
|
|
* invalidate, and we still don't have a tlb_flush_mask(env, n,
|
|
* mask) in QEMU, we just invalidate all TLBs
|
|
*/
|
|
cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
|
|
}
|
|
|
|
void ppc_hash64_update_rmls(CPUPPCState *env)
|
|
{
|
|
uint64_t lpcr = env->spr[SPR_LPCR];
|
|
|
|
/*
|
|
* This is the full 4 bits encoding of POWER8. Previous
|
|
* CPUs only support a subset of these but the filtering
|
|
* is done when writing LPCR
|
|
*/
|
|
switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
|
|
case 0x8: /* 32MB */
|
|
env->rmls = 0x2000000ull;
|
|
break;
|
|
case 0x3: /* 64MB */
|
|
env->rmls = 0x4000000ull;
|
|
break;
|
|
case 0x7: /* 128MB */
|
|
env->rmls = 0x8000000ull;
|
|
break;
|
|
case 0x4: /* 256MB */
|
|
env->rmls = 0x10000000ull;
|
|
break;
|
|
case 0x2: /* 1GB */
|
|
env->rmls = 0x40000000ull;
|
|
break;
|
|
case 0x1: /* 16GB */
|
|
env->rmls = 0x400000000ull;
|
|
break;
|
|
default:
|
|
/* What to do here ??? */
|
|
env->rmls = 0;
|
|
}
|
|
}
|
|
|
|
void ppc_hash64_update_vrma(CPUPPCState *env)
|
|
{
|
|
const struct ppc_one_seg_page_size *sps = NULL;
|
|
target_ulong esid, vsid, lpcr;
|
|
ppc_slb_t *slb = &env->vrma_slb;
|
|
uint32_t vrmasd;
|
|
int i;
|
|
|
|
/* First clear it */
|
|
slb->esid = slb->vsid = 0;
|
|
slb->sps = NULL;
|
|
|
|
/* Is VRMA enabled ? */
|
|
lpcr = env->spr[SPR_LPCR];
|
|
if (!(lpcr & LPCR_VPM0)) {
|
|
return;
|
|
}
|
|
|
|
/* Make one up. Mostly ignore the ESID which will not be
|
|
* needed for translation
|
|
*/
|
|
vsid = SLB_VSID_VRMA;
|
|
vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
|
|
vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
|
|
esid = SLB_ESID_V;
|
|
|
|
for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
|
|
const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
|
|
|
|
if (!sps1->page_shift) {
|
|
break;
|
|
}
|
|
|
|
if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
|
|
sps = sps1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!sps) {
|
|
error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
|
|
" vsid 0x"TARGET_FMT_lx, esid, vsid);
|
|
return;
|
|
}
|
|
|
|
slb->vsid = vsid;
|
|
slb->esid = esid;
|
|
slb->sps = sps;
|
|
}
|
|
|
|
void helper_store_lpcr(CPUPPCState *env, target_ulong val)
|
|
{
|
|
uint64_t lpcr = 0;
|
|
|
|
/* Filter out bits */
|
|
switch (env->mmu_model) {
|
|
case POWERPC_MMU_64B: /* 970 */
|
|
if (val & 0x40) {
|
|
lpcr |= LPCR_LPES0;
|
|
}
|
|
if (val & 0x8000000000000000ull) {
|
|
lpcr |= LPCR_LPES1;
|
|
}
|
|
if (val & 0x20) {
|
|
lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
|
|
}
|
|
if (val & 0x4000000000000000ull) {
|
|
lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
|
|
}
|
|
if (val & 0x2000000000000000ull) {
|
|
lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
|
|
}
|
|
env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
|
|
|
|
/* XXX We could also write LPID from HID4 here
|
|
* but since we don't tag any translation on it
|
|
* it doesn't actually matter
|
|
*/
|
|
/* XXX For proper emulation of 970 we also need
|
|
* to dig HRMOR out of HID5
|
|
*/
|
|
break;
|
|
case POWERPC_MMU_2_03: /* P5p */
|
|
lpcr = val & (LPCR_RMLS | LPCR_ILE |
|
|
LPCR_LPES0 | LPCR_LPES1 |
|
|
LPCR_RMI | LPCR_HDICE);
|
|
break;
|
|
case POWERPC_MMU_2_06: /* P7 */
|
|
lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
|
|
LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
|
|
LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
|
|
LPCR_MER | LPCR_TC |
|
|
LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
|
|
break;
|
|
case POWERPC_MMU_2_07: /* P8 */
|
|
lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
|
|
LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
|
|
LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
|
|
LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
|
|
LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
|
|
break;
|
|
default:
|
|
;
|
|
}
|
|
env->spr[SPR_LPCR] = lpcr;
|
|
ppc_hash64_update_rmls(env);
|
|
ppc_hash64_update_vrma(env);
|
|
}
|