qemu-e2k/target/i386/hvf/vmx.h
Alexander Graf b533450e74 hvf: Introduce hvf vcpu struct
We will need more than a single field for hvf going forward. To keep
the global vcpu struct uncluttered, let's allocate a special hvf vcpu
struct, similar to how hax does it.

Signed-off-by: Alexander Graf <agraf@csgraf.de>
Reviewed-by: Roman Bolshakov <r.bolshakov@yadro.com>
Tested-by: Roman Bolshakov <r.bolshakov@yadro.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Sergio Lopez <slp@redhat.com>
Message-id: 20210519202253.76782-12-agraf@csgraf.de
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2021-06-03 16:43:27 +01:00

239 lines
6.8 KiB
C

/*
* Copyright (C) 2016 Veertu Inc,
* Copyright (C) 2017 Google Inc,
* Based on Veertu vddh/vmm/vmx.h
*
* Interfaces to Hypervisor.framework to read/write X86 registers and VMCS.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* This file contain code under public domain from the hvdos project:
* https://github.com/mist64/hvdos
*/
#ifndef VMX_H
#define VMX_H
#include <Hypervisor/hv.h>
#include <Hypervisor/hv_vmx.h>
#include "vmcs.h"
#include "cpu.h"
#include "x86.h"
#include "sysemu/hvf.h"
#include "sysemu/hvf_int.h"
#include "exec/address-spaces.h"
static inline uint64_t rreg(hv_vcpuid_t vcpu, hv_x86_reg_t reg)
{
uint64_t v;
if (hv_vcpu_read_register(vcpu, reg, &v)) {
abort();
}
return v;
}
/* write GPR */
static inline void wreg(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t v)
{
if (hv_vcpu_write_register(vcpu, reg, v)) {
abort();
}
}
/* read VMCS field */
static inline uint64_t rvmcs(hv_vcpuid_t vcpu, uint32_t field)
{
uint64_t v;
hv_vmx_vcpu_read_vmcs(vcpu, field, &v);
return v;
}
/* write VMCS field */
static inline void wvmcs(hv_vcpuid_t vcpu, uint32_t field, uint64_t v)
{
hv_vmx_vcpu_write_vmcs(vcpu, field, v);
}
/* desired control word constrained by hardware/hypervisor capabilities */
static inline uint64_t cap2ctrl(uint64_t cap, uint64_t ctrl)
{
return (ctrl | (cap & 0xffffffff)) & (cap >> 32);
}
#define VM_ENTRY_GUEST_LMA (1LL << 9)
#define AR_TYPE_ACCESSES_MASK 1
#define AR_TYPE_READABLE_MASK (1 << 1)
#define AR_TYPE_WRITEABLE_MASK (1 << 2)
#define AR_TYPE_CODE_MASK (1 << 3)
#define AR_TYPE_MASK 0x0f
#define AR_TYPE_BUSY_64_TSS 11
#define AR_TYPE_BUSY_32_TSS 11
#define AR_TYPE_BUSY_16_TSS 3
#define AR_TYPE_LDT 2
static void enter_long_mode(hv_vcpuid_t vcpu, uint64_t cr0, uint64_t efer)
{
uint64_t entry_ctls;
efer |= MSR_EFER_LMA;
wvmcs(vcpu, VMCS_GUEST_IA32_EFER, efer);
entry_ctls = rvmcs(vcpu, VMCS_ENTRY_CTLS);
wvmcs(vcpu, VMCS_ENTRY_CTLS, rvmcs(vcpu, VMCS_ENTRY_CTLS) |
VM_ENTRY_GUEST_LMA);
uint64_t guest_tr_ar = rvmcs(vcpu, VMCS_GUEST_TR_ACCESS_RIGHTS);
if ((efer & MSR_EFER_LME) &&
(guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
wvmcs(vcpu, VMCS_GUEST_TR_ACCESS_RIGHTS,
(guest_tr_ar & ~AR_TYPE_MASK) | AR_TYPE_BUSY_64_TSS);
}
}
static void exit_long_mode(hv_vcpuid_t vcpu, uint64_t cr0, uint64_t efer)
{
uint64_t entry_ctls;
entry_ctls = rvmcs(vcpu, VMCS_ENTRY_CTLS);
wvmcs(vcpu, VMCS_ENTRY_CTLS, entry_ctls & ~VM_ENTRY_GUEST_LMA);
efer &= ~MSR_EFER_LMA;
wvmcs(vcpu, VMCS_GUEST_IA32_EFER, efer);
}
static inline void macvm_set_cr0(hv_vcpuid_t vcpu, uint64_t cr0)
{
int i;
uint64_t pdpte[4] = {0, 0, 0, 0};
uint64_t efer = rvmcs(vcpu, VMCS_GUEST_IA32_EFER);
uint64_t old_cr0 = rvmcs(vcpu, VMCS_GUEST_CR0);
uint64_t changed_cr0 = old_cr0 ^ cr0;
uint64_t mask = CR0_PG | CR0_CD | CR0_NW | CR0_NE | CR0_ET;
uint64_t entry_ctls;
if ((cr0 & CR0_PG) && (rvmcs(vcpu, VMCS_GUEST_CR4) & CR4_PAE) &&
!(efer & MSR_EFER_LME)) {
address_space_read(&address_space_memory,
rvmcs(vcpu, VMCS_GUEST_CR3) & ~0x1f,
MEMTXATTRS_UNSPECIFIED, pdpte, 32);
/* Only set PDPTE when appropriate. */
for (i = 0; i < 4; i++) {
wvmcs(vcpu, VMCS_GUEST_PDPTE0 + i * 2, pdpte[i]);
}
}
wvmcs(vcpu, VMCS_CR0_MASK, mask);
wvmcs(vcpu, VMCS_CR0_SHADOW, cr0);
if (efer & MSR_EFER_LME) {
if (changed_cr0 & CR0_PG) {
if (cr0 & CR0_PG) {
enter_long_mode(vcpu, cr0, efer);
} else {
exit_long_mode(vcpu, cr0, efer);
}
}
} else {
entry_ctls = rvmcs(vcpu, VMCS_ENTRY_CTLS);
wvmcs(vcpu, VMCS_ENTRY_CTLS, entry_ctls & ~VM_ENTRY_GUEST_LMA);
}
/* Filter new CR0 after we are finished examining it above. */
cr0 = (cr0 & ~(mask & ~CR0_PG));
wvmcs(vcpu, VMCS_GUEST_CR0, cr0 | CR0_NE | CR0_ET);
hv_vcpu_invalidate_tlb(vcpu);
hv_vcpu_flush(vcpu);
}
static inline void macvm_set_cr4(hv_vcpuid_t vcpu, uint64_t cr4)
{
uint64_t guest_cr4 = cr4 | CR4_VMXE;
wvmcs(vcpu, VMCS_GUEST_CR4, guest_cr4);
wvmcs(vcpu, VMCS_CR4_SHADOW, cr4);
wvmcs(vcpu, VMCS_CR4_MASK, CR4_VMXE);
hv_vcpu_invalidate_tlb(vcpu);
hv_vcpu_flush(vcpu);
}
static inline void macvm_set_rip(CPUState *cpu, uint64_t rip)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
uint64_t val;
/* BUG, should take considering overlap.. */
wreg(cpu->hvf->fd, HV_X86_RIP, rip);
env->eip = rip;
/* after moving forward in rip, we need to clean INTERRUPTABILITY */
val = rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY);
if (val & (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
env->hflags &= ~HF_INHIBIT_IRQ_MASK;
wvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY,
val & ~(VMCS_INTERRUPTIBILITY_STI_BLOCKING |
VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING));
}
}
static inline void vmx_clear_nmi_blocking(CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
env->hflags2 &= ~HF2_NMI_MASK;
uint32_t gi = (uint32_t) rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY);
gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
wvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY, gi);
}
static inline void vmx_set_nmi_blocking(CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
env->hflags2 |= HF2_NMI_MASK;
uint32_t gi = (uint32_t)rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY);
gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
wvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY, gi);
}
static inline void vmx_set_nmi_window_exiting(CPUState *cpu)
{
uint64_t val;
val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS);
wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val |
VMCS_PRI_PROC_BASED_CTLS_NMI_WINDOW_EXITING);
}
static inline void vmx_clear_nmi_window_exiting(CPUState *cpu)
{
uint64_t val;
val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS);
wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val &
~VMCS_PRI_PROC_BASED_CTLS_NMI_WINDOW_EXITING);
}
#endif