89943de17c
Use the __atomic_*_n() primitives which take the value as argument. It is not necessary to store the value locally before calling the primitive, hence saving us a stack store and load. Signed-off-by: Pranith Kumar <bobby.prani@gmail.com> Message-Id: <20160829171701.14025-1-bobby.prani@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
402 lines
17 KiB
C
402 lines
17 KiB
C
/*
|
|
* Simple interface for atomic operations.
|
|
*
|
|
* Copyright (C) 2013 Red Hat, Inc.
|
|
*
|
|
* Author: Paolo Bonzini <pbonzini@redhat.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
* See docs/atomics.txt for discussion about the guarantees each
|
|
* atomic primitive is meant to provide.
|
|
*/
|
|
|
|
#ifndef QEMU_ATOMIC_H
|
|
#define QEMU_ATOMIC_H
|
|
|
|
/* Compiler barrier */
|
|
#define barrier() ({ asm volatile("" ::: "memory"); (void)0; })
|
|
|
|
/* The variable that receives the old value of an atomically-accessed
|
|
* variable must be non-qualified, because atomic builtins return values
|
|
* through a pointer-type argument as in __atomic_load(&var, &old, MODEL).
|
|
*
|
|
* This macro has to handle types smaller than int manually, because of
|
|
* implicit promotion. int and larger types, as well as pointers, can be
|
|
* converted to a non-qualified type just by applying a binary operator.
|
|
*/
|
|
#define typeof_strip_qual(expr) \
|
|
typeof( \
|
|
__builtin_choose_expr( \
|
|
__builtin_types_compatible_p(typeof(expr), bool) || \
|
|
__builtin_types_compatible_p(typeof(expr), const bool) || \
|
|
__builtin_types_compatible_p(typeof(expr), volatile bool) || \
|
|
__builtin_types_compatible_p(typeof(expr), const volatile bool), \
|
|
(bool)1, \
|
|
__builtin_choose_expr( \
|
|
__builtin_types_compatible_p(typeof(expr), signed char) || \
|
|
__builtin_types_compatible_p(typeof(expr), const signed char) || \
|
|
__builtin_types_compatible_p(typeof(expr), volatile signed char) || \
|
|
__builtin_types_compatible_p(typeof(expr), const volatile signed char), \
|
|
(signed char)1, \
|
|
__builtin_choose_expr( \
|
|
__builtin_types_compatible_p(typeof(expr), unsigned char) || \
|
|
__builtin_types_compatible_p(typeof(expr), const unsigned char) || \
|
|
__builtin_types_compatible_p(typeof(expr), volatile unsigned char) || \
|
|
__builtin_types_compatible_p(typeof(expr), const volatile unsigned char), \
|
|
(unsigned char)1, \
|
|
__builtin_choose_expr( \
|
|
__builtin_types_compatible_p(typeof(expr), signed short) || \
|
|
__builtin_types_compatible_p(typeof(expr), const signed short) || \
|
|
__builtin_types_compatible_p(typeof(expr), volatile signed short) || \
|
|
__builtin_types_compatible_p(typeof(expr), const volatile signed short), \
|
|
(signed short)1, \
|
|
__builtin_choose_expr( \
|
|
__builtin_types_compatible_p(typeof(expr), unsigned short) || \
|
|
__builtin_types_compatible_p(typeof(expr), const unsigned short) || \
|
|
__builtin_types_compatible_p(typeof(expr), volatile unsigned short) || \
|
|
__builtin_types_compatible_p(typeof(expr), const volatile unsigned short), \
|
|
(unsigned short)1, \
|
|
(expr)+0))))))
|
|
|
|
#ifdef __ATOMIC_RELAXED
|
|
/* For C11 atomic ops */
|
|
|
|
/* Manual memory barriers
|
|
*
|
|
*__atomic_thread_fence does not include a compiler barrier; instead,
|
|
* the barrier is part of __atomic_load/__atomic_store's "volatile-like"
|
|
* semantics. If smp_wmb() is a no-op, absence of the barrier means that
|
|
* the compiler is free to reorder stores on each side of the barrier.
|
|
* Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
|
|
*/
|
|
|
|
#define smp_mb() ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); })
|
|
#define smp_wmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); })
|
|
#define smp_rmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); })
|
|
|
|
/* Most compilers currently treat consume and acquire the same, but really
|
|
* no processors except Alpha need a barrier here. Leave it in if
|
|
* using Thread Sanitizer to avoid warnings, otherwise optimize it away.
|
|
*/
|
|
#if defined(__SANITIZE_THREAD__)
|
|
#define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); })
|
|
#elsif defined(__alpha__)
|
|
#define smp_read_barrier_depends() asm volatile("mb":::"memory")
|
|
#else
|
|
#define smp_read_barrier_depends() barrier()
|
|
#endif
|
|
|
|
|
|
/* Weak atomic operations prevent the compiler moving other
|
|
* loads/stores past the atomic operation load/store. However there is
|
|
* no explicit memory barrier for the processor.
|
|
*/
|
|
#define atomic_read(ptr) \
|
|
({ \
|
|
QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
|
|
__atomic_load_n(ptr, __ATOMIC_RELAXED); \
|
|
})
|
|
|
|
#define atomic_set(ptr, i) do { \
|
|
QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
|
|
__atomic_store_n(ptr, i, __ATOMIC_RELAXED); \
|
|
} while(0)
|
|
|
|
/* See above: most compilers currently treat consume and acquire the
|
|
* same, but this slows down atomic_rcu_read unnecessarily.
|
|
*/
|
|
#ifdef __SANITIZE_THREAD__
|
|
#define atomic_rcu_read__nocheck(ptr, valptr) \
|
|
__atomic_load(ptr, valptr, __ATOMIC_CONSUME);
|
|
#else
|
|
#define atomic_rcu_read__nocheck(ptr, valptr) \
|
|
__atomic_load(ptr, valptr, __ATOMIC_RELAXED); \
|
|
smp_read_barrier_depends();
|
|
#endif
|
|
|
|
#define atomic_rcu_read(ptr) \
|
|
({ \
|
|
QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
|
|
typeof_strip_qual(*ptr) _val; \
|
|
atomic_rcu_read__nocheck(ptr, &_val); \
|
|
_val; \
|
|
})
|
|
|
|
#define atomic_rcu_set(ptr, i) do { \
|
|
QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
|
|
__atomic_store_n(ptr, i, __ATOMIC_RELEASE); \
|
|
} while(0)
|
|
|
|
/* atomic_mb_read/set semantics map Java volatile variables. They are
|
|
* less expensive on some platforms (notably POWER & ARMv7) than fully
|
|
* sequentially consistent operations.
|
|
*
|
|
* As long as they are used as paired operations they are safe to
|
|
* use. See docs/atomic.txt for more discussion.
|
|
*/
|
|
|
|
#if defined(_ARCH_PPC)
|
|
#define atomic_mb_read(ptr) \
|
|
({ \
|
|
QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
|
|
typeof_strip_qual(*ptr) _val; \
|
|
__atomic_load(ptr, &_val, __ATOMIC_RELAXED); \
|
|
smp_rmb(); \
|
|
_val; \
|
|
})
|
|
|
|
#define atomic_mb_set(ptr, i) do { \
|
|
QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
|
|
smp_wmb(); \
|
|
__atomic_store_n(ptr, i, __ATOMIC_RELAXED); \
|
|
smp_mb(); \
|
|
} while(0)
|
|
#else
|
|
#define atomic_mb_read(ptr) \
|
|
({ \
|
|
QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
|
|
typeof_strip_qual(*ptr) _val; \
|
|
__atomic_load(ptr, &_val, __ATOMIC_SEQ_CST); \
|
|
_val; \
|
|
})
|
|
|
|
#define atomic_mb_set(ptr, i) do { \
|
|
QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
|
|
__atomic_store_n(ptr, i, __ATOMIC_SEQ_CST); \
|
|
} while(0)
|
|
#endif
|
|
|
|
|
|
/* All the remaining operations are fully sequentially consistent */
|
|
|
|
#define atomic_xchg(ptr, i) ({ \
|
|
QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
|
|
__atomic_exchange_n(ptr, i, __ATOMIC_SEQ_CST); \
|
|
})
|
|
|
|
/* Returns the eventual value, failed or not */
|
|
#define atomic_cmpxchg(ptr, old, new) \
|
|
({ \
|
|
QEMU_BUILD_BUG_ON(sizeof(*ptr) > sizeof(void *)); \
|
|
typeof_strip_qual(*ptr) _old = (old); \
|
|
__atomic_compare_exchange_n(ptr, &_old, new, false, \
|
|
__ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); \
|
|
_old; \
|
|
})
|
|
|
|
/* Provide shorter names for GCC atomic builtins, return old value */
|
|
#define atomic_fetch_inc(ptr) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)
|
|
#define atomic_fetch_dec(ptr) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)
|
|
#define atomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)
|
|
#define atomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)
|
|
#define atomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)
|
|
#define atomic_fetch_or(ptr, n) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)
|
|
|
|
/* And even shorter names that return void. */
|
|
#define atomic_inc(ptr) ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST))
|
|
#define atomic_dec(ptr) ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST))
|
|
#define atomic_add(ptr, n) ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST))
|
|
#define atomic_sub(ptr, n) ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST))
|
|
#define atomic_and(ptr, n) ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST))
|
|
#define atomic_or(ptr, n) ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST))
|
|
|
|
#else /* __ATOMIC_RELAXED */
|
|
|
|
/*
|
|
* We use GCC builtin if it's available, as that can use mfence on
|
|
* 32-bit as well, e.g. if built with -march=pentium-m. However, on
|
|
* i386 the spec is buggy, and the implementation followed it until
|
|
* 4.3 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=36793).
|
|
*/
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
#if !QEMU_GNUC_PREREQ(4, 4)
|
|
#if defined __x86_64__
|
|
#define smp_mb() ({ asm volatile("mfence" ::: "memory"); (void)0; })
|
|
#else
|
|
#define smp_mb() ({ asm volatile("lock; addl $0,0(%%esp) " ::: "memory"); (void)0; })
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
|
|
#ifdef __alpha__
|
|
#define smp_read_barrier_depends() asm volatile("mb":::"memory")
|
|
#endif
|
|
|
|
#if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
|
|
|
|
/*
|
|
* Because of the strongly ordered storage model, wmb() and rmb() are nops
|
|
* here (a compiler barrier only). QEMU doesn't do accesses to write-combining
|
|
* qemu memory or non-temporal load/stores from C code.
|
|
*/
|
|
#define smp_wmb() barrier()
|
|
#define smp_rmb() barrier()
|
|
|
|
/*
|
|
* __sync_lock_test_and_set() is documented to be an acquire barrier only,
|
|
* but it is a full barrier at the hardware level. Add a compiler barrier
|
|
* to make it a full barrier also at the compiler level.
|
|
*/
|
|
#define atomic_xchg(ptr, i) (barrier(), __sync_lock_test_and_set(ptr, i))
|
|
|
|
/*
|
|
* Load/store with Java volatile semantics.
|
|
*/
|
|
#define atomic_mb_set(ptr, i) ((void)atomic_xchg(ptr, i))
|
|
|
|
#elif defined(_ARCH_PPC)
|
|
|
|
/*
|
|
* We use an eieio() for wmb() on powerpc. This assumes we don't
|
|
* need to order cacheable and non-cacheable stores with respect to
|
|
* each other.
|
|
*
|
|
* smp_mb has the same problem as on x86 for not-very-new GCC
|
|
* (http://patchwork.ozlabs.org/patch/126184/, Nov 2011).
|
|
*/
|
|
#define smp_wmb() ({ asm volatile("eieio" ::: "memory"); (void)0; })
|
|
#if defined(__powerpc64__)
|
|
#define smp_rmb() ({ asm volatile("lwsync" ::: "memory"); (void)0; })
|
|
#else
|
|
#define smp_rmb() ({ asm volatile("sync" ::: "memory"); (void)0; })
|
|
#endif
|
|
#define smp_mb() ({ asm volatile("sync" ::: "memory"); (void)0; })
|
|
|
|
#endif /* _ARCH_PPC */
|
|
|
|
/*
|
|
* For (host) platforms we don't have explicit barrier definitions
|
|
* for, we use the gcc __sync_synchronize() primitive to generate a
|
|
* full barrier. This should be safe on all platforms, though it may
|
|
* be overkill for smp_wmb() and smp_rmb().
|
|
*/
|
|
#ifndef smp_mb
|
|
#define smp_mb() __sync_synchronize()
|
|
#endif
|
|
|
|
#ifndef smp_wmb
|
|
#define smp_wmb() __sync_synchronize()
|
|
#endif
|
|
|
|
#ifndef smp_rmb
|
|
#define smp_rmb() __sync_synchronize()
|
|
#endif
|
|
|
|
#ifndef smp_read_barrier_depends
|
|
#define smp_read_barrier_depends() barrier()
|
|
#endif
|
|
|
|
/* These will only be atomic if the processor does the fetch or store
|
|
* in a single issue memory operation
|
|
*/
|
|
#define atomic_read(ptr) (*(__typeof__(*ptr) volatile*) (ptr))
|
|
#define atomic_set(ptr, i) ((*(__typeof__(*ptr) volatile*) (ptr)) = (i))
|
|
|
|
/**
|
|
* atomic_rcu_read - reads a RCU-protected pointer to a local variable
|
|
* into a RCU read-side critical section. The pointer can later be safely
|
|
* dereferenced within the critical section.
|
|
*
|
|
* This ensures that the pointer copy is invariant thorough the whole critical
|
|
* section.
|
|
*
|
|
* Inserts memory barriers on architectures that require them (currently only
|
|
* Alpha) and documents which pointers are protected by RCU.
|
|
*
|
|
* atomic_rcu_read also includes a compiler barrier to ensure that
|
|
* value-speculative optimizations (e.g. VSS: Value Speculation
|
|
* Scheduling) does not perform the data read before the pointer read
|
|
* by speculating the value of the pointer.
|
|
*
|
|
* Should match atomic_rcu_set(), atomic_xchg(), atomic_cmpxchg().
|
|
*/
|
|
#define atomic_rcu_read(ptr) ({ \
|
|
typeof(*ptr) _val = atomic_read(ptr); \
|
|
smp_read_barrier_depends(); \
|
|
_val; \
|
|
})
|
|
|
|
/**
|
|
* atomic_rcu_set - assigns (publicizes) a pointer to a new data structure
|
|
* meant to be read by RCU read-side critical sections.
|
|
*
|
|
* Documents which pointers will be dereferenced by RCU read-side critical
|
|
* sections and adds the required memory barriers on architectures requiring
|
|
* them. It also makes sure the compiler does not reorder code initializing the
|
|
* data structure before its publication.
|
|
*
|
|
* Should match atomic_rcu_read().
|
|
*/
|
|
#define atomic_rcu_set(ptr, i) do { \
|
|
smp_wmb(); \
|
|
atomic_set(ptr, i); \
|
|
} while (0)
|
|
|
|
/* These have the same semantics as Java volatile variables.
|
|
* See http://gee.cs.oswego.edu/dl/jmm/cookbook.html:
|
|
* "1. Issue a StoreStore barrier (wmb) before each volatile store."
|
|
* 2. Issue a StoreLoad barrier after each volatile store.
|
|
* Note that you could instead issue one before each volatile load, but
|
|
* this would be slower for typical programs using volatiles in which
|
|
* reads greatly outnumber writes. Alternatively, if available, you
|
|
* can implement volatile store as an atomic instruction (for example
|
|
* XCHG on x86) and omit the barrier. This may be more efficient if
|
|
* atomic instructions are cheaper than StoreLoad barriers.
|
|
* 3. Issue LoadLoad and LoadStore barriers after each volatile load."
|
|
*
|
|
* If you prefer to think in terms of "pairing" of memory barriers,
|
|
* an atomic_mb_read pairs with an atomic_mb_set.
|
|
*
|
|
* And for the few ia64 lovers that exist, an atomic_mb_read is a ld.acq,
|
|
* while an atomic_mb_set is a st.rel followed by a memory barrier.
|
|
*
|
|
* These are a bit weaker than __atomic_load/store with __ATOMIC_SEQ_CST
|
|
* (see docs/atomics.txt), and I'm not sure that __ATOMIC_ACQ_REL is enough.
|
|
* Just always use the barriers manually by the rules above.
|
|
*/
|
|
#define atomic_mb_read(ptr) ({ \
|
|
typeof(*ptr) _val = atomic_read(ptr); \
|
|
smp_rmb(); \
|
|
_val; \
|
|
})
|
|
|
|
#ifndef atomic_mb_set
|
|
#define atomic_mb_set(ptr, i) do { \
|
|
smp_wmb(); \
|
|
atomic_set(ptr, i); \
|
|
smp_mb(); \
|
|
} while (0)
|
|
#endif
|
|
|
|
#ifndef atomic_xchg
|
|
#if defined(__clang__)
|
|
#define atomic_xchg(ptr, i) __sync_swap(ptr, i)
|
|
#else
|
|
/* __sync_lock_test_and_set() is documented to be an acquire barrier only. */
|
|
#define atomic_xchg(ptr, i) (smp_mb(), __sync_lock_test_and_set(ptr, i))
|
|
#endif
|
|
#endif
|
|
|
|
/* Provide shorter names for GCC atomic builtins. */
|
|
#define atomic_fetch_inc(ptr) __sync_fetch_and_add(ptr, 1)
|
|
#define atomic_fetch_dec(ptr) __sync_fetch_and_add(ptr, -1)
|
|
#define atomic_fetch_add __sync_fetch_and_add
|
|
#define atomic_fetch_sub __sync_fetch_and_sub
|
|
#define atomic_fetch_and __sync_fetch_and_and
|
|
#define atomic_fetch_or __sync_fetch_and_or
|
|
#define atomic_cmpxchg __sync_val_compare_and_swap
|
|
|
|
/* And even shorter names that return void. */
|
|
#define atomic_inc(ptr) ((void) __sync_fetch_and_add(ptr, 1))
|
|
#define atomic_dec(ptr) ((void) __sync_fetch_and_add(ptr, -1))
|
|
#define atomic_add(ptr, n) ((void) __sync_fetch_and_add(ptr, n))
|
|
#define atomic_sub(ptr, n) ((void) __sync_fetch_and_sub(ptr, n))
|
|
#define atomic_and(ptr, n) ((void) __sync_fetch_and_and(ptr, n))
|
|
#define atomic_or(ptr, n) ((void) __sync_fetch_and_or(ptr, n))
|
|
|
|
#endif /* __ATOMIC_RELAXED */
|
|
#endif /* QEMU_ATOMIC_H */
|