qemu-e2k/hw/riscv/sifive_u.c
Markus Armbruster d2623129a7 qom: Drop parameter @errp of object_property_add() & friends
The only way object_property_add() can fail is when a property with
the same name already exists.  Since our property names are all
hardcoded, failure is a programming error, and the appropriate way to
handle it is passing &error_abort.

Same for its variants, except for object_property_add_child(), which
additionally fails when the child already has a parent.  Parentage is
also under program control, so this is a programming error, too.

We have a bit over 500 callers.  Almost half of them pass
&error_abort, slightly fewer ignore errors, one test case handles
errors, and the remaining few callers pass them to their own callers.

The previous few commits demonstrated once again that ignoring
programming errors is a bad idea.

Of the few ones that pass on errors, several violate the Error API.
The Error ** argument must be NULL, &error_abort, &error_fatal, or a
pointer to a variable containing NULL.  Passing an argument of the
latter kind twice without clearing it in between is wrong: if the
first call sets an error, it no longer points to NULL for the second
call.  ich9_pm_add_properties(), sparc32_ledma_realize(),
sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize()
are wrong that way.

When the one appropriate choice of argument is &error_abort, letting
users pick the argument is a bad idea.

Drop parameter @errp and assert the preconditions instead.

There's one exception to "duplicate property name is a programming
error": the way object_property_add() implements the magic (and
undocumented) "automatic arrayification".  Don't drop @errp there.
Instead, rename object_property_add() to object_property_try_add(),
and add the obvious wrapper object_property_add().

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200505152926.18877-15-armbru@redhat.com>
[Two semantic rebase conflicts resolved]
2020-05-15 07:07:58 +02:00

667 lines
26 KiB
C

/*
* QEMU RISC-V Board Compatible with SiFive Freedom U SDK
*
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
* Copyright (c) 2017 SiFive, Inc.
* Copyright (c) 2019 Bin Meng <bmeng.cn@gmail.com>
*
* Provides a board compatible with the SiFive Freedom U SDK:
*
* 0) UART
* 1) CLINT (Core Level Interruptor)
* 2) PLIC (Platform Level Interrupt Controller)
* 3) PRCI (Power, Reset, Clock, Interrupt)
* 4) OTP (One-Time Programmable) memory with stored serial number
* 5) GEM (Gigabit Ethernet Controller) and management block
*
* This board currently generates devicetree dynamically that indicates at least
* two harts and up to five harts.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/sysbus.h"
#include "hw/char/serial.h"
#include "hw/cpu/cluster.h"
#include "hw/misc/unimp.h"
#include "target/riscv/cpu.h"
#include "hw/riscv/riscv_hart.h"
#include "hw/riscv/sifive_plic.h"
#include "hw/riscv/sifive_clint.h"
#include "hw/riscv/sifive_uart.h"
#include "hw/riscv/sifive_u.h"
#include "hw/riscv/boot.h"
#include "chardev/char.h"
#include "net/eth.h"
#include "sysemu/arch_init.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "exec/address-spaces.h"
#include <libfdt.h>
#if defined(TARGET_RISCV32)
# define BIOS_FILENAME "opensbi-riscv32-sifive_u-fw_jump.bin"
#else
# define BIOS_FILENAME "opensbi-riscv64-sifive_u-fw_jump.bin"
#endif
static const struct MemmapEntry {
hwaddr base;
hwaddr size;
} sifive_u_memmap[] = {
[SIFIVE_U_DEBUG] = { 0x0, 0x100 },
[SIFIVE_U_MROM] = { 0x1000, 0x11000 },
[SIFIVE_U_CLINT] = { 0x2000000, 0x10000 },
[SIFIVE_U_L2LIM] = { 0x8000000, 0x2000000 },
[SIFIVE_U_PLIC] = { 0xc000000, 0x4000000 },
[SIFIVE_U_PRCI] = { 0x10000000, 0x1000 },
[SIFIVE_U_UART0] = { 0x10010000, 0x1000 },
[SIFIVE_U_UART1] = { 0x10011000, 0x1000 },
[SIFIVE_U_OTP] = { 0x10070000, 0x1000 },
[SIFIVE_U_FLASH0] = { 0x20000000, 0x10000000 },
[SIFIVE_U_DRAM] = { 0x80000000, 0x0 },
[SIFIVE_U_GEM] = { 0x10090000, 0x2000 },
[SIFIVE_U_GEM_MGMT] = { 0x100a0000, 0x1000 },
};
#define OTP_SERIAL 1
#define GEM_REVISION 0x10070109
static void create_fdt(SiFiveUState *s, const struct MemmapEntry *memmap,
uint64_t mem_size, const char *cmdline)
{
MachineState *ms = MACHINE(qdev_get_machine());
void *fdt;
int cpu;
uint32_t *cells;
char *nodename;
char ethclk_names[] = "pclk\0hclk";
uint32_t plic_phandle, prci_phandle, phandle = 1;
uint32_t hfclk_phandle, rtcclk_phandle, phy_phandle;
fdt = s->fdt = create_device_tree(&s->fdt_size);
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
qemu_fdt_setprop_string(fdt, "/", "model", "SiFive HiFive Unleashed A00");
qemu_fdt_setprop_string(fdt, "/", "compatible",
"sifive,hifive-unleashed-a00");
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
qemu_fdt_add_subnode(fdt, "/soc");
qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
hfclk_phandle = phandle++;
nodename = g_strdup_printf("/hfclk");
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", hfclk_phandle);
qemu_fdt_setprop_string(fdt, nodename, "clock-output-names", "hfclk");
qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency",
SIFIVE_U_HFCLK_FREQ);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "fixed-clock");
qemu_fdt_setprop_cell(fdt, nodename, "#clock-cells", 0x0);
g_free(nodename);
rtcclk_phandle = phandle++;
nodename = g_strdup_printf("/rtcclk");
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", rtcclk_phandle);
qemu_fdt_setprop_string(fdt, nodename, "clock-output-names", "rtcclk");
qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency",
SIFIVE_U_RTCCLK_FREQ);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "fixed-clock");
qemu_fdt_setprop_cell(fdt, nodename, "#clock-cells", 0x0);
g_free(nodename);
nodename = g_strdup_printf("/memory@%lx",
(long)memmap[SIFIVE_U_DRAM].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cells(fdt, nodename, "reg",
memmap[SIFIVE_U_DRAM].base >> 32, memmap[SIFIVE_U_DRAM].base,
mem_size >> 32, mem_size);
qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
g_free(nodename);
qemu_fdt_add_subnode(fdt, "/cpus");
qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
SIFIVE_CLINT_TIMEBASE_FREQ);
qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
for (cpu = ms->smp.cpus - 1; cpu >= 0; cpu--) {
int cpu_phandle = phandle++;
nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
char *isa;
qemu_fdt_add_subnode(fdt, nodename);
/* cpu 0 is the management hart that does not have mmu */
if (cpu != 0) {
#if defined(TARGET_RISCV32)
qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv32");
#else
qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
#endif
isa = riscv_isa_string(&s->soc.u_cpus.harts[cpu - 1]);
} else {
isa = riscv_isa_string(&s->soc.e_cpus.harts[0]);
}
qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
qemu_fdt_add_subnode(fdt, intc);
qemu_fdt_setprop_cell(fdt, intc, "phandle", cpu_phandle);
qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
g_free(isa);
g_free(intc);
g_free(nodename);
}
cells = g_new0(uint32_t, ms->smp.cpus * 4);
for (cpu = 0; cpu < ms->smp.cpus; cpu++) {
nodename =
g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
g_free(nodename);
}
nodename = g_strdup_printf("/soc/clint@%lx",
(long)memmap[SIFIVE_U_CLINT].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[SIFIVE_U_CLINT].base,
0x0, memmap[SIFIVE_U_CLINT].size);
qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
cells, ms->smp.cpus * sizeof(uint32_t) * 4);
g_free(cells);
g_free(nodename);
prci_phandle = phandle++;
nodename = g_strdup_printf("/soc/clock-controller@%lx",
(long)memmap[SIFIVE_U_PRCI].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", prci_phandle);
qemu_fdt_setprop_cell(fdt, nodename, "#clock-cells", 0x1);
qemu_fdt_setprop_cells(fdt, nodename, "clocks",
hfclk_phandle, rtcclk_phandle);
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[SIFIVE_U_PRCI].base,
0x0, memmap[SIFIVE_U_PRCI].size);
qemu_fdt_setprop_string(fdt, nodename, "compatible",
"sifive,fu540-c000-prci");
g_free(nodename);
plic_phandle = phandle++;
cells = g_new0(uint32_t, ms->smp.cpus * 4 - 2);
for (cpu = 0; cpu < ms->smp.cpus; cpu++) {
nodename =
g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
/* cpu 0 is the management hart that does not have S-mode */
if (cpu == 0) {
cells[0] = cpu_to_be32(intc_phandle);
cells[1] = cpu_to_be32(IRQ_M_EXT);
} else {
cells[cpu * 4 - 2] = cpu_to_be32(intc_phandle);
cells[cpu * 4 - 1] = cpu_to_be32(IRQ_M_EXT);
cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
cells[cpu * 4 + 1] = cpu_to_be32(IRQ_S_EXT);
}
g_free(nodename);
}
nodename = g_strdup_printf("/soc/interrupt-controller@%lx",
(long)memmap[SIFIVE_U_PLIC].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells", 1);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,plic0");
qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
cells, (ms->smp.cpus * 4 - 2) * sizeof(uint32_t));
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[SIFIVE_U_PLIC].base,
0x0, memmap[SIFIVE_U_PLIC].size);
qemu_fdt_setprop_cell(fdt, nodename, "riscv,ndev", 0x35);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", plic_phandle);
plic_phandle = qemu_fdt_get_phandle(fdt, nodename);
g_free(cells);
g_free(nodename);
phy_phandle = phandle++;
nodename = g_strdup_printf("/soc/ethernet@%lx",
(long)memmap[SIFIVE_U_GEM].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible",
"sifive,fu540-c000-gem");
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[SIFIVE_U_GEM].base,
0x0, memmap[SIFIVE_U_GEM].size,
0x0, memmap[SIFIVE_U_GEM_MGMT].base,
0x0, memmap[SIFIVE_U_GEM_MGMT].size);
qemu_fdt_setprop_string(fdt, nodename, "reg-names", "control");
qemu_fdt_setprop_string(fdt, nodename, "phy-mode", "gmii");
qemu_fdt_setprop_cell(fdt, nodename, "phy-handle", phy_phandle);
qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle);
qemu_fdt_setprop_cell(fdt, nodename, "interrupts", SIFIVE_U_GEM_IRQ);
qemu_fdt_setprop_cells(fdt, nodename, "clocks",
prci_phandle, PRCI_CLK_GEMGXLPLL, prci_phandle, PRCI_CLK_GEMGXLPLL);
qemu_fdt_setprop(fdt, nodename, "clock-names", ethclk_names,
sizeof(ethclk_names));
qemu_fdt_setprop(fdt, nodename, "local-mac-address",
s->soc.gem.conf.macaddr.a, ETH_ALEN);
qemu_fdt_setprop_cell(fdt, nodename, "#address-cells", 1);
qemu_fdt_setprop_cell(fdt, nodename, "#size-cells", 0);
qemu_fdt_add_subnode(fdt, "/aliases");
qemu_fdt_setprop_string(fdt, "/aliases", "ethernet0", nodename);
g_free(nodename);
nodename = g_strdup_printf("/soc/ethernet@%lx/ethernet-phy@0",
(long)memmap[SIFIVE_U_GEM].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", phy_phandle);
qemu_fdt_setprop_cell(fdt, nodename, "reg", 0x0);
g_free(nodename);
nodename = g_strdup_printf("/soc/serial@%lx",
(long)memmap[SIFIVE_U_UART0].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "sifive,uart0");
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[SIFIVE_U_UART0].base,
0x0, memmap[SIFIVE_U_UART0].size);
qemu_fdt_setprop_cells(fdt, nodename, "clocks",
prci_phandle, PRCI_CLK_TLCLK);
qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle);
qemu_fdt_setprop_cell(fdt, nodename, "interrupts", SIFIVE_U_UART0_IRQ);
qemu_fdt_add_subnode(fdt, "/chosen");
qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename);
if (cmdline) {
qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
}
qemu_fdt_setprop_string(fdt, "/aliases", "serial0", nodename);
g_free(nodename);
}
static void sifive_u_machine_init(MachineState *machine)
{
const struct MemmapEntry *memmap = sifive_u_memmap;
SiFiveUState *s = RISCV_U_MACHINE(machine);
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *main_mem = g_new(MemoryRegion, 1);
MemoryRegion *flash0 = g_new(MemoryRegion, 1);
target_ulong start_addr = memmap[SIFIVE_U_DRAM].base;
int i;
/* Initialize SoC */
object_initialize_child(OBJECT(machine), "soc", &s->soc,
sizeof(s->soc), TYPE_RISCV_U_SOC,
&error_abort, NULL);
object_property_set_uint(OBJECT(&s->soc), s->serial, "serial",
&error_abort);
object_property_set_bool(OBJECT(&s->soc), true, "realized",
&error_abort);
/* register RAM */
memory_region_init_ram(main_mem, NULL, "riscv.sifive.u.ram",
machine->ram_size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[SIFIVE_U_DRAM].base,
main_mem);
/* register QSPI0 Flash */
memory_region_init_ram(flash0, NULL, "riscv.sifive.u.flash0",
memmap[SIFIVE_U_FLASH0].size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[SIFIVE_U_FLASH0].base,
flash0);
/* create device tree */
create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
riscv_find_and_load_firmware(machine, BIOS_FILENAME,
memmap[SIFIVE_U_DRAM].base, NULL);
if (machine->kernel_filename) {
uint64_t kernel_entry = riscv_load_kernel(machine->kernel_filename,
NULL);
if (machine->initrd_filename) {
hwaddr start;
hwaddr end = riscv_load_initrd(machine->initrd_filename,
machine->ram_size, kernel_entry,
&start);
qemu_fdt_setprop_cell(s->fdt, "/chosen",
"linux,initrd-start", start);
qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
end);
}
}
if (s->start_in_flash) {
start_addr = memmap[SIFIVE_U_FLASH0].base;
}
/* reset vector */
uint32_t reset_vec[8] = {
0x00000297, /* 1: auipc t0, %pcrel_hi(dtb) */
0x02028593, /* addi a1, t0, %pcrel_lo(1b) */
0xf1402573, /* csrr a0, mhartid */
#if defined(TARGET_RISCV32)
0x0182a283, /* lw t0, 24(t0) */
#elif defined(TARGET_RISCV64)
0x0182b283, /* ld t0, 24(t0) */
#endif
0x00028067, /* jr t0 */
0x00000000,
start_addr, /* start: .dword */
0x00000000,
/* dtb: */
};
/* copy in the reset vector in little_endian byte order */
for (i = 0; i < sizeof(reset_vec) >> 2; i++) {
reset_vec[i] = cpu_to_le32(reset_vec[i]);
}
rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
memmap[SIFIVE_U_MROM].base, &address_space_memory);
/* copy in the device tree */
if (fdt_pack(s->fdt) || fdt_totalsize(s->fdt) >
memmap[SIFIVE_U_MROM].size - sizeof(reset_vec)) {
error_report("not enough space to store device-tree");
exit(1);
}
qemu_fdt_dumpdtb(s->fdt, fdt_totalsize(s->fdt));
rom_add_blob_fixed_as("mrom.fdt", s->fdt, fdt_totalsize(s->fdt),
memmap[SIFIVE_U_MROM].base + sizeof(reset_vec),
&address_space_memory);
}
static bool sifive_u_machine_get_start_in_flash(Object *obj, Error **errp)
{
SiFiveUState *s = RISCV_U_MACHINE(obj);
return s->start_in_flash;
}
static void sifive_u_machine_set_start_in_flash(Object *obj, bool value, Error **errp)
{
SiFiveUState *s = RISCV_U_MACHINE(obj);
s->start_in_flash = value;
}
static void sifive_u_machine_get_serial(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
visit_type_uint32(v, name, (uint32_t *)opaque, errp);
}
static void sifive_u_machine_set_serial(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
visit_type_uint32(v, name, (uint32_t *)opaque, errp);
}
static void sifive_u_machine_instance_init(Object *obj)
{
SiFiveUState *s = RISCV_U_MACHINE(obj);
s->start_in_flash = false;
object_property_add_bool(obj, "start-in-flash",
sifive_u_machine_get_start_in_flash,
sifive_u_machine_set_start_in_flash);
object_property_set_description(obj, "start-in-flash",
"Set on to tell QEMU's ROM to jump to "
"flash. Otherwise QEMU will jump to DRAM");
s->serial = OTP_SERIAL;
object_property_add(obj, "serial", "uint32",
sifive_u_machine_get_serial,
sifive_u_machine_set_serial, NULL, &s->serial);
object_property_set_description(obj, "serial", "Board serial number");
}
static void sifive_u_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "RISC-V Board compatible with SiFive U SDK";
mc->init = sifive_u_machine_init;
mc->max_cpus = SIFIVE_U_MANAGEMENT_CPU_COUNT + SIFIVE_U_COMPUTE_CPU_COUNT;
mc->min_cpus = SIFIVE_U_MANAGEMENT_CPU_COUNT + 1;
mc->default_cpus = mc->min_cpus;
}
static const TypeInfo sifive_u_machine_typeinfo = {
.name = MACHINE_TYPE_NAME("sifive_u"),
.parent = TYPE_MACHINE,
.class_init = sifive_u_machine_class_init,
.instance_init = sifive_u_machine_instance_init,
.instance_size = sizeof(SiFiveUState),
};
static void sifive_u_machine_init_register_types(void)
{
type_register_static(&sifive_u_machine_typeinfo);
}
type_init(sifive_u_machine_init_register_types)
static void riscv_sifive_u_soc_init(Object *obj)
{
MachineState *ms = MACHINE(qdev_get_machine());
SiFiveUSoCState *s = RISCV_U_SOC(obj);
object_initialize_child(obj, "e-cluster", &s->e_cluster,
sizeof(s->e_cluster), TYPE_CPU_CLUSTER,
&error_abort, NULL);
qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
object_initialize_child(OBJECT(&s->e_cluster), "e-cpus",
&s->e_cpus, sizeof(s->e_cpus),
TYPE_RISCV_HART_ARRAY, &error_abort,
NULL);
qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type", SIFIVE_E_CPU);
object_initialize_child(obj, "u-cluster", &s->u_cluster,
sizeof(s->u_cluster), TYPE_CPU_CLUSTER,
&error_abort, NULL);
qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
object_initialize_child(OBJECT(&s->u_cluster), "u-cpus",
&s->u_cpus, sizeof(s->u_cpus),
TYPE_RISCV_HART_ARRAY, &error_abort,
NULL);
qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type", SIFIVE_U_CPU);
sysbus_init_child_obj(obj, "prci", &s->prci, sizeof(s->prci),
TYPE_SIFIVE_U_PRCI);
sysbus_init_child_obj(obj, "otp", &s->otp, sizeof(s->otp),
TYPE_SIFIVE_U_OTP);
sysbus_init_child_obj(obj, "gem", &s->gem, sizeof(s->gem),
TYPE_CADENCE_GEM);
}
static void riscv_sifive_u_soc_realize(DeviceState *dev, Error **errp)
{
MachineState *ms = MACHINE(qdev_get_machine());
SiFiveUSoCState *s = RISCV_U_SOC(dev);
const struct MemmapEntry *memmap = sifive_u_memmap;
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
qemu_irq plic_gpios[SIFIVE_U_PLIC_NUM_SOURCES];
char *plic_hart_config;
size_t plic_hart_config_len;
int i;
Error *err = NULL;
NICInfo *nd = &nd_table[0];
object_property_set_bool(OBJECT(&s->e_cpus), true, "realized",
&error_abort);
object_property_set_bool(OBJECT(&s->u_cpus), true, "realized",
&error_abort);
/*
* The cluster must be realized after the RISC-V hart array container,
* as the container's CPU object is only created on realize, and the
* CPU must exist and have been parented into the cluster before the
* cluster is realized.
*/
object_property_set_bool(OBJECT(&s->e_cluster), true, "realized",
&error_abort);
object_property_set_bool(OBJECT(&s->u_cluster), true, "realized",
&error_abort);
/* boot rom */
memory_region_init_rom(mask_rom, OBJECT(dev), "riscv.sifive.u.mrom",
memmap[SIFIVE_U_MROM].size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[SIFIVE_U_MROM].base,
mask_rom);
/*
* Add L2-LIM at reset size.
* This should be reduced in size as the L2 Cache Controller WayEnable
* register is incremented. Unfortunately I don't see a nice (or any) way
* to handle reducing or blocking out the L2 LIM while still allowing it
* be re returned to all enabled after a reset. For the time being, just
* leave it enabled all the time. This won't break anything, but will be
* too generous to misbehaving guests.
*/
memory_region_init_ram(l2lim_mem, NULL, "riscv.sifive.u.l2lim",
memmap[SIFIVE_U_L2LIM].size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[SIFIVE_U_L2LIM].base,
l2lim_mem);
/* create PLIC hart topology configuration string */
plic_hart_config_len = (strlen(SIFIVE_U_PLIC_HART_CONFIG) + 1) *
ms->smp.cpus;
plic_hart_config = g_malloc0(plic_hart_config_len);
for (i = 0; i < ms->smp.cpus; i++) {
if (i != 0) {
strncat(plic_hart_config, "," SIFIVE_U_PLIC_HART_CONFIG,
plic_hart_config_len);
} else {
strncat(plic_hart_config, "M", plic_hart_config_len);
}
plic_hart_config_len -= (strlen(SIFIVE_U_PLIC_HART_CONFIG) + 1);
}
/* MMIO */
s->plic = sifive_plic_create(memmap[SIFIVE_U_PLIC].base,
plic_hart_config,
SIFIVE_U_PLIC_NUM_SOURCES,
SIFIVE_U_PLIC_NUM_PRIORITIES,
SIFIVE_U_PLIC_PRIORITY_BASE,
SIFIVE_U_PLIC_PENDING_BASE,
SIFIVE_U_PLIC_ENABLE_BASE,
SIFIVE_U_PLIC_ENABLE_STRIDE,
SIFIVE_U_PLIC_CONTEXT_BASE,
SIFIVE_U_PLIC_CONTEXT_STRIDE,
memmap[SIFIVE_U_PLIC].size);
g_free(plic_hart_config);
sifive_uart_create(system_memory, memmap[SIFIVE_U_UART0].base,
serial_hd(0), qdev_get_gpio_in(DEVICE(s->plic), SIFIVE_U_UART0_IRQ));
sifive_uart_create(system_memory, memmap[SIFIVE_U_UART1].base,
serial_hd(1), qdev_get_gpio_in(DEVICE(s->plic), SIFIVE_U_UART1_IRQ));
sifive_clint_create(memmap[SIFIVE_U_CLINT].base,
memmap[SIFIVE_U_CLINT].size, ms->smp.cpus,
SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE, false);
object_property_set_bool(OBJECT(&s->prci), true, "realized", &err);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->prci), 0, memmap[SIFIVE_U_PRCI].base);
qdev_prop_set_uint32(DEVICE(&s->otp), "serial", s->serial);
object_property_set_bool(OBJECT(&s->otp), true, "realized", &err);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->otp), 0, memmap[SIFIVE_U_OTP].base);
for (i = 0; i < SIFIVE_U_PLIC_NUM_SOURCES; i++) {
plic_gpios[i] = qdev_get_gpio_in(DEVICE(s->plic), i);
}
if (nd->used) {
qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
qdev_set_nic_properties(DEVICE(&s->gem), nd);
}
object_property_set_int(OBJECT(&s->gem), GEM_REVISION, "revision",
&error_abort);
object_property_set_bool(OBJECT(&s->gem), true, "realized", &err);
if (err) {
error_propagate(errp, err);
return;
}
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem), 0, memmap[SIFIVE_U_GEM].base);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem), 0,
plic_gpios[SIFIVE_U_GEM_IRQ]);
create_unimplemented_device("riscv.sifive.u.gem-mgmt",
memmap[SIFIVE_U_GEM_MGMT].base, memmap[SIFIVE_U_GEM_MGMT].size);
}
static Property riscv_sifive_u_soc_props[] = {
DEFINE_PROP_UINT32("serial", SiFiveUSoCState, serial, OTP_SERIAL),
DEFINE_PROP_END_OF_LIST()
};
static void riscv_sifive_u_soc_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
device_class_set_props(dc, riscv_sifive_u_soc_props);
dc->realize = riscv_sifive_u_soc_realize;
/* Reason: Uses serial_hds in realize function, thus can't be used twice */
dc->user_creatable = false;
}
static const TypeInfo riscv_sifive_u_soc_type_info = {
.name = TYPE_RISCV_U_SOC,
.parent = TYPE_DEVICE,
.instance_size = sizeof(SiFiveUSoCState),
.instance_init = riscv_sifive_u_soc_init,
.class_init = riscv_sifive_u_soc_class_init,
};
static void riscv_sifive_u_soc_register_types(void)
{
type_register_static(&riscv_sifive_u_soc_type_info);
}
type_init(riscv_sifive_u_soc_register_types)