02d9f5b6ac
The arithmetic within the loop was not adjusted properly after SIGRTMIN was stolen for the guest SIGABRT. The effect was that the guest libc could not send itself __SIGRTMIN to wake sleeping threads. Fixes: 38ee0a7dfb4b ("linux-user: Remap guest SIGABRT") Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1967 Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
1337 lines
41 KiB
C
1337 lines
41 KiB
C
/*
|
|
* Emulation of Linux signals
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/bitops.h"
|
|
#include "gdbstub/user.h"
|
|
#include "hw/core/tcg-cpu-ops.h"
|
|
|
|
#include <sys/ucontext.h>
|
|
#include <sys/resource.h>
|
|
|
|
#include "qemu.h"
|
|
#include "user-internals.h"
|
|
#include "strace.h"
|
|
#include "loader.h"
|
|
#include "trace.h"
|
|
#include "signal-common.h"
|
|
#include "host-signal.h"
|
|
#include "user/safe-syscall.h"
|
|
#include "tcg/tcg.h"
|
|
|
|
static struct target_sigaction sigact_table[TARGET_NSIG];
|
|
|
|
static void host_signal_handler(int host_signum, siginfo_t *info,
|
|
void *puc);
|
|
|
|
/* Fallback addresses into sigtramp page. */
|
|
abi_ulong default_sigreturn;
|
|
abi_ulong default_rt_sigreturn;
|
|
|
|
/*
|
|
* System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel)
|
|
* defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1.
|
|
* Signal number 0 is reserved for use as kill(pid, 0), to test whether
|
|
* a process exists without sending it a signal.
|
|
*/
|
|
#ifdef __SIGRTMAX
|
|
QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG);
|
|
#endif
|
|
static uint8_t host_to_target_signal_table[_NSIG] = {
|
|
#define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig,
|
|
MAKE_SIGNAL_LIST
|
|
#undef MAKE_SIG_ENTRY
|
|
};
|
|
|
|
static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
|
|
|
|
/* valid sig is between 1 and _NSIG - 1 */
|
|
int host_to_target_signal(int sig)
|
|
{
|
|
if (sig < 1) {
|
|
return sig;
|
|
}
|
|
if (sig >= _NSIG) {
|
|
return TARGET_NSIG + 1;
|
|
}
|
|
return host_to_target_signal_table[sig];
|
|
}
|
|
|
|
/* valid sig is between 1 and TARGET_NSIG */
|
|
int target_to_host_signal(int sig)
|
|
{
|
|
if (sig < 1) {
|
|
return sig;
|
|
}
|
|
if (sig > TARGET_NSIG) {
|
|
return _NSIG;
|
|
}
|
|
return target_to_host_signal_table[sig];
|
|
}
|
|
|
|
static inline void target_sigaddset(target_sigset_t *set, int signum)
|
|
{
|
|
signum--;
|
|
abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
|
|
set->sig[signum / TARGET_NSIG_BPW] |= mask;
|
|
}
|
|
|
|
static inline int target_sigismember(const target_sigset_t *set, int signum)
|
|
{
|
|
signum--;
|
|
abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
|
|
return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
|
|
}
|
|
|
|
void host_to_target_sigset_internal(target_sigset_t *d,
|
|
const sigset_t *s)
|
|
{
|
|
int host_sig, target_sig;
|
|
target_sigemptyset(d);
|
|
for (host_sig = 1; host_sig < _NSIG; host_sig++) {
|
|
target_sig = host_to_target_signal(host_sig);
|
|
if (target_sig < 1 || target_sig > TARGET_NSIG) {
|
|
continue;
|
|
}
|
|
if (sigismember(s, host_sig)) {
|
|
target_sigaddset(d, target_sig);
|
|
}
|
|
}
|
|
}
|
|
|
|
void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
|
|
{
|
|
target_sigset_t d1;
|
|
int i;
|
|
|
|
host_to_target_sigset_internal(&d1, s);
|
|
for(i = 0;i < TARGET_NSIG_WORDS; i++)
|
|
d->sig[i] = tswapal(d1.sig[i]);
|
|
}
|
|
|
|
void target_to_host_sigset_internal(sigset_t *d,
|
|
const target_sigset_t *s)
|
|
{
|
|
int host_sig, target_sig;
|
|
sigemptyset(d);
|
|
for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
|
|
host_sig = target_to_host_signal(target_sig);
|
|
if (host_sig < 1 || host_sig >= _NSIG) {
|
|
continue;
|
|
}
|
|
if (target_sigismember(s, target_sig)) {
|
|
sigaddset(d, host_sig);
|
|
}
|
|
}
|
|
}
|
|
|
|
void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
|
|
{
|
|
target_sigset_t s1;
|
|
int i;
|
|
|
|
for(i = 0;i < TARGET_NSIG_WORDS; i++)
|
|
s1.sig[i] = tswapal(s->sig[i]);
|
|
target_to_host_sigset_internal(d, &s1);
|
|
}
|
|
|
|
void host_to_target_old_sigset(abi_ulong *old_sigset,
|
|
const sigset_t *sigset)
|
|
{
|
|
target_sigset_t d;
|
|
host_to_target_sigset(&d, sigset);
|
|
*old_sigset = d.sig[0];
|
|
}
|
|
|
|
void target_to_host_old_sigset(sigset_t *sigset,
|
|
const abi_ulong *old_sigset)
|
|
{
|
|
target_sigset_t d;
|
|
int i;
|
|
|
|
d.sig[0] = *old_sigset;
|
|
for(i = 1;i < TARGET_NSIG_WORDS; i++)
|
|
d.sig[i] = 0;
|
|
target_to_host_sigset(sigset, &d);
|
|
}
|
|
|
|
int block_signals(void)
|
|
{
|
|
TaskState *ts = (TaskState *)thread_cpu->opaque;
|
|
sigset_t set;
|
|
|
|
/* It's OK to block everything including SIGSEGV, because we won't
|
|
* run any further guest code before unblocking signals in
|
|
* process_pending_signals().
|
|
*/
|
|
sigfillset(&set);
|
|
sigprocmask(SIG_SETMASK, &set, 0);
|
|
|
|
return qatomic_xchg(&ts->signal_pending, 1);
|
|
}
|
|
|
|
/* Wrapper for sigprocmask function
|
|
* Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
|
|
* are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if
|
|
* a signal was already pending and the syscall must be restarted, or
|
|
* 0 on success.
|
|
* If set is NULL, this is guaranteed not to fail.
|
|
*/
|
|
int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
|
|
{
|
|
TaskState *ts = (TaskState *)thread_cpu->opaque;
|
|
|
|
if (oldset) {
|
|
*oldset = ts->signal_mask;
|
|
}
|
|
|
|
if (set) {
|
|
int i;
|
|
|
|
if (block_signals()) {
|
|
return -QEMU_ERESTARTSYS;
|
|
}
|
|
|
|
switch (how) {
|
|
case SIG_BLOCK:
|
|
sigorset(&ts->signal_mask, &ts->signal_mask, set);
|
|
break;
|
|
case SIG_UNBLOCK:
|
|
for (i = 1; i <= NSIG; ++i) {
|
|
if (sigismember(set, i)) {
|
|
sigdelset(&ts->signal_mask, i);
|
|
}
|
|
}
|
|
break;
|
|
case SIG_SETMASK:
|
|
ts->signal_mask = *set;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/* Silently ignore attempts to change blocking status of KILL or STOP */
|
|
sigdelset(&ts->signal_mask, SIGKILL);
|
|
sigdelset(&ts->signal_mask, SIGSTOP);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Just set the guest's signal mask to the specified value; the
|
|
* caller is assumed to have called block_signals() already.
|
|
*/
|
|
void set_sigmask(const sigset_t *set)
|
|
{
|
|
TaskState *ts = (TaskState *)thread_cpu->opaque;
|
|
|
|
ts->signal_mask = *set;
|
|
}
|
|
|
|
/* sigaltstack management */
|
|
|
|
int on_sig_stack(unsigned long sp)
|
|
{
|
|
TaskState *ts = (TaskState *)thread_cpu->opaque;
|
|
|
|
return (sp - ts->sigaltstack_used.ss_sp
|
|
< ts->sigaltstack_used.ss_size);
|
|
}
|
|
|
|
int sas_ss_flags(unsigned long sp)
|
|
{
|
|
TaskState *ts = (TaskState *)thread_cpu->opaque;
|
|
|
|
return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE
|
|
: on_sig_stack(sp) ? SS_ONSTACK : 0);
|
|
}
|
|
|
|
abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
|
|
{
|
|
/*
|
|
* This is the X/Open sanctioned signal stack switching.
|
|
*/
|
|
TaskState *ts = (TaskState *)thread_cpu->opaque;
|
|
|
|
if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
|
|
return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
|
|
}
|
|
return sp;
|
|
}
|
|
|
|
void target_save_altstack(target_stack_t *uss, CPUArchState *env)
|
|
{
|
|
TaskState *ts = (TaskState *)thread_cpu->opaque;
|
|
|
|
__put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp);
|
|
__put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
|
|
__put_user(ts->sigaltstack_used.ss_size, &uss->ss_size);
|
|
}
|
|
|
|
abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env)
|
|
{
|
|
TaskState *ts = (TaskState *)thread_cpu->opaque;
|
|
size_t minstacksize = TARGET_MINSIGSTKSZ;
|
|
target_stack_t ss;
|
|
|
|
#if defined(TARGET_PPC64)
|
|
/* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
|
|
struct image_info *image = ts->info;
|
|
if (get_ppc64_abi(image) > 1) {
|
|
minstacksize = 4096;
|
|
}
|
|
#endif
|
|
|
|
__get_user(ss.ss_sp, &uss->ss_sp);
|
|
__get_user(ss.ss_size, &uss->ss_size);
|
|
__get_user(ss.ss_flags, &uss->ss_flags);
|
|
|
|
if (on_sig_stack(get_sp_from_cpustate(env))) {
|
|
return -TARGET_EPERM;
|
|
}
|
|
|
|
switch (ss.ss_flags) {
|
|
default:
|
|
return -TARGET_EINVAL;
|
|
|
|
case TARGET_SS_DISABLE:
|
|
ss.ss_size = 0;
|
|
ss.ss_sp = 0;
|
|
break;
|
|
|
|
case TARGET_SS_ONSTACK:
|
|
case 0:
|
|
if (ss.ss_size < minstacksize) {
|
|
return -TARGET_ENOMEM;
|
|
}
|
|
break;
|
|
}
|
|
|
|
ts->sigaltstack_used.ss_sp = ss.ss_sp;
|
|
ts->sigaltstack_used.ss_size = ss.ss_size;
|
|
return 0;
|
|
}
|
|
|
|
/* siginfo conversion */
|
|
|
|
static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
|
|
const siginfo_t *info)
|
|
{
|
|
int sig = host_to_target_signal(info->si_signo);
|
|
int si_code = info->si_code;
|
|
int si_type;
|
|
tinfo->si_signo = sig;
|
|
tinfo->si_errno = 0;
|
|
tinfo->si_code = info->si_code;
|
|
|
|
/* This memset serves two purposes:
|
|
* (1) ensure we don't leak random junk to the guest later
|
|
* (2) placate false positives from gcc about fields
|
|
* being used uninitialized if it chooses to inline both this
|
|
* function and tswap_siginfo() into host_to_target_siginfo().
|
|
*/
|
|
memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
|
|
|
|
/* This is awkward, because we have to use a combination of
|
|
* the si_code and si_signo to figure out which of the union's
|
|
* members are valid. (Within the host kernel it is always possible
|
|
* to tell, but the kernel carefully avoids giving userspace the
|
|
* high 16 bits of si_code, so we don't have the information to
|
|
* do this the easy way...) We therefore make our best guess,
|
|
* bearing in mind that a guest can spoof most of the si_codes
|
|
* via rt_sigqueueinfo() if it likes.
|
|
*
|
|
* Once we have made our guess, we record it in the top 16 bits of
|
|
* the si_code, so that tswap_siginfo() later can use it.
|
|
* tswap_siginfo() will strip these top bits out before writing
|
|
* si_code to the guest (sign-extending the lower bits).
|
|
*/
|
|
|
|
switch (si_code) {
|
|
case SI_USER:
|
|
case SI_TKILL:
|
|
case SI_KERNEL:
|
|
/* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
|
|
* These are the only unspoofable si_code values.
|
|
*/
|
|
tinfo->_sifields._kill._pid = info->si_pid;
|
|
tinfo->_sifields._kill._uid = info->si_uid;
|
|
si_type = QEMU_SI_KILL;
|
|
break;
|
|
default:
|
|
/* Everything else is spoofable. Make best guess based on signal */
|
|
switch (sig) {
|
|
case TARGET_SIGCHLD:
|
|
tinfo->_sifields._sigchld._pid = info->si_pid;
|
|
tinfo->_sifields._sigchld._uid = info->si_uid;
|
|
if (si_code == CLD_EXITED)
|
|
tinfo->_sifields._sigchld._status = info->si_status;
|
|
else
|
|
tinfo->_sifields._sigchld._status
|
|
= host_to_target_signal(info->si_status & 0x7f)
|
|
| (info->si_status & ~0x7f);
|
|
tinfo->_sifields._sigchld._utime = info->si_utime;
|
|
tinfo->_sifields._sigchld._stime = info->si_stime;
|
|
si_type = QEMU_SI_CHLD;
|
|
break;
|
|
case TARGET_SIGIO:
|
|
tinfo->_sifields._sigpoll._band = info->si_band;
|
|
tinfo->_sifields._sigpoll._fd = info->si_fd;
|
|
si_type = QEMU_SI_POLL;
|
|
break;
|
|
default:
|
|
/* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
|
|
tinfo->_sifields._rt._pid = info->si_pid;
|
|
tinfo->_sifields._rt._uid = info->si_uid;
|
|
/* XXX: potential problem if 64 bit */
|
|
tinfo->_sifields._rt._sigval.sival_ptr
|
|
= (abi_ulong)(unsigned long)info->si_value.sival_ptr;
|
|
si_type = QEMU_SI_RT;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
tinfo->si_code = deposit32(si_code, 16, 16, si_type);
|
|
}
|
|
|
|
void tswap_siginfo(target_siginfo_t *tinfo,
|
|
const target_siginfo_t *info)
|
|
{
|
|
int si_type = extract32(info->si_code, 16, 16);
|
|
int si_code = sextract32(info->si_code, 0, 16);
|
|
|
|
__put_user(info->si_signo, &tinfo->si_signo);
|
|
__put_user(info->si_errno, &tinfo->si_errno);
|
|
__put_user(si_code, &tinfo->si_code);
|
|
|
|
/* We can use our internal marker of which fields in the structure
|
|
* are valid, rather than duplicating the guesswork of
|
|
* host_to_target_siginfo_noswap() here.
|
|
*/
|
|
switch (si_type) {
|
|
case QEMU_SI_KILL:
|
|
__put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
|
|
__put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
|
|
break;
|
|
case QEMU_SI_TIMER:
|
|
__put_user(info->_sifields._timer._timer1,
|
|
&tinfo->_sifields._timer._timer1);
|
|
__put_user(info->_sifields._timer._timer2,
|
|
&tinfo->_sifields._timer._timer2);
|
|
break;
|
|
case QEMU_SI_POLL:
|
|
__put_user(info->_sifields._sigpoll._band,
|
|
&tinfo->_sifields._sigpoll._band);
|
|
__put_user(info->_sifields._sigpoll._fd,
|
|
&tinfo->_sifields._sigpoll._fd);
|
|
break;
|
|
case QEMU_SI_FAULT:
|
|
__put_user(info->_sifields._sigfault._addr,
|
|
&tinfo->_sifields._sigfault._addr);
|
|
break;
|
|
case QEMU_SI_CHLD:
|
|
__put_user(info->_sifields._sigchld._pid,
|
|
&tinfo->_sifields._sigchld._pid);
|
|
__put_user(info->_sifields._sigchld._uid,
|
|
&tinfo->_sifields._sigchld._uid);
|
|
__put_user(info->_sifields._sigchld._status,
|
|
&tinfo->_sifields._sigchld._status);
|
|
__put_user(info->_sifields._sigchld._utime,
|
|
&tinfo->_sifields._sigchld._utime);
|
|
__put_user(info->_sifields._sigchld._stime,
|
|
&tinfo->_sifields._sigchld._stime);
|
|
break;
|
|
case QEMU_SI_RT:
|
|
__put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
|
|
__put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
|
|
__put_user(info->_sifields._rt._sigval.sival_ptr,
|
|
&tinfo->_sifields._rt._sigval.sival_ptr);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
|
|
{
|
|
target_siginfo_t tgt_tmp;
|
|
host_to_target_siginfo_noswap(&tgt_tmp, info);
|
|
tswap_siginfo(tinfo, &tgt_tmp);
|
|
}
|
|
|
|
/* XXX: we support only POSIX RT signals are used. */
|
|
/* XXX: find a solution for 64 bit (additional malloced data is needed) */
|
|
void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
|
|
{
|
|
/* This conversion is used only for the rt_sigqueueinfo syscall,
|
|
* and so we know that the _rt fields are the valid ones.
|
|
*/
|
|
abi_ulong sival_ptr;
|
|
|
|
__get_user(info->si_signo, &tinfo->si_signo);
|
|
__get_user(info->si_errno, &tinfo->si_errno);
|
|
__get_user(info->si_code, &tinfo->si_code);
|
|
__get_user(info->si_pid, &tinfo->_sifields._rt._pid);
|
|
__get_user(info->si_uid, &tinfo->_sifields._rt._uid);
|
|
__get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
|
|
info->si_value.sival_ptr = (void *)(long)sival_ptr;
|
|
}
|
|
|
|
/* returns 1 if given signal should dump core if not handled */
|
|
static int core_dump_signal(int sig)
|
|
{
|
|
switch (sig) {
|
|
case TARGET_SIGABRT:
|
|
case TARGET_SIGFPE:
|
|
case TARGET_SIGILL:
|
|
case TARGET_SIGQUIT:
|
|
case TARGET_SIGSEGV:
|
|
case TARGET_SIGTRAP:
|
|
case TARGET_SIGBUS:
|
|
return (1);
|
|
default:
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
static void signal_table_init(void)
|
|
{
|
|
int hsig, tsig, count;
|
|
|
|
/*
|
|
* Signals are supported starting from TARGET_SIGRTMIN and going up
|
|
* until we run out of host realtime signals. Glibc uses the lower 2
|
|
* RT signals and (hopefully) nobody uses the upper ones.
|
|
* This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32).
|
|
* To fix this properly we would need to do manual signal delivery
|
|
* multiplexed over a single host signal.
|
|
* Attempts for configure "missing" signals via sigaction will be
|
|
* silently ignored.
|
|
*
|
|
* Remap the target SIGABRT, so that we can distinguish host abort
|
|
* from guest abort. When the guest registers a signal handler or
|
|
* calls raise(SIGABRT), the host will raise SIG_RTn. If the guest
|
|
* arrives at dump_core_and_abort(), we will map back to host SIGABRT
|
|
* so that the parent (native or emulated) sees the correct signal.
|
|
* Finally, also map host to guest SIGABRT so that the emulated
|
|
* parent sees the correct mapping from wait status.
|
|
*/
|
|
|
|
hsig = SIGRTMIN;
|
|
host_to_target_signal_table[SIGABRT] = 0;
|
|
host_to_target_signal_table[hsig++] = TARGET_SIGABRT;
|
|
|
|
for (tsig = TARGET_SIGRTMIN;
|
|
hsig <= SIGRTMAX && tsig <= TARGET_NSIG;
|
|
hsig++, tsig++) {
|
|
host_to_target_signal_table[hsig] = tsig;
|
|
}
|
|
|
|
/* Invert the mapping that has already been assigned. */
|
|
for (hsig = 1; hsig < _NSIG; hsig++) {
|
|
tsig = host_to_target_signal_table[hsig];
|
|
if (tsig) {
|
|
assert(target_to_host_signal_table[tsig] == 0);
|
|
target_to_host_signal_table[tsig] = hsig;
|
|
}
|
|
}
|
|
|
|
host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT;
|
|
|
|
/* Map everything else out-of-bounds. */
|
|
for (hsig = 1; hsig < _NSIG; hsig++) {
|
|
if (host_to_target_signal_table[hsig] == 0) {
|
|
host_to_target_signal_table[hsig] = TARGET_NSIG + 1;
|
|
}
|
|
}
|
|
for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) {
|
|
if (target_to_host_signal_table[tsig] == 0) {
|
|
target_to_host_signal_table[tsig] = _NSIG;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
trace_signal_table_init(count);
|
|
}
|
|
|
|
void signal_init(void)
|
|
{
|
|
TaskState *ts = (TaskState *)thread_cpu->opaque;
|
|
struct sigaction act, oact;
|
|
|
|
/* initialize signal conversion tables */
|
|
signal_table_init();
|
|
|
|
/* Set the signal mask from the host mask. */
|
|
sigprocmask(0, 0, &ts->signal_mask);
|
|
|
|
sigfillset(&act.sa_mask);
|
|
act.sa_flags = SA_SIGINFO;
|
|
act.sa_sigaction = host_signal_handler;
|
|
|
|
/*
|
|
* A parent process may configure ignored signals, but all other
|
|
* signals are default. For any target signals that have no host
|
|
* mapping, set to ignore. For all core_dump_signal, install our
|
|
* host signal handler so that we may invoke dump_core_and_abort.
|
|
* This includes SIGSEGV and SIGBUS, which are also need our signal
|
|
* handler for paging and exceptions.
|
|
*/
|
|
for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) {
|
|
int hsig = target_to_host_signal(tsig);
|
|
abi_ptr thand = TARGET_SIG_IGN;
|
|
|
|
if (hsig >= _NSIG) {
|
|
continue;
|
|
}
|
|
|
|
/* As we force remap SIGABRT, cannot probe and install in one step. */
|
|
if (tsig == TARGET_SIGABRT) {
|
|
sigaction(SIGABRT, NULL, &oact);
|
|
sigaction(hsig, &act, NULL);
|
|
} else {
|
|
struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL;
|
|
sigaction(hsig, iact, &oact);
|
|
}
|
|
|
|
if (oact.sa_sigaction != (void *)SIG_IGN) {
|
|
thand = TARGET_SIG_DFL;
|
|
}
|
|
sigact_table[tsig - 1]._sa_handler = thand;
|
|
}
|
|
}
|
|
|
|
/* Force a synchronously taken signal. The kernel force_sig() function
|
|
* also forces the signal to "not blocked, not ignored", but for QEMU
|
|
* that work is done in process_pending_signals().
|
|
*/
|
|
void force_sig(int sig)
|
|
{
|
|
CPUState *cpu = thread_cpu;
|
|
CPUArchState *env = cpu_env(cpu);
|
|
target_siginfo_t info = {};
|
|
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = TARGET_SI_KERNEL;
|
|
info._sifields._kill._pid = 0;
|
|
info._sifields._kill._uid = 0;
|
|
queue_signal(env, info.si_signo, QEMU_SI_KILL, &info);
|
|
}
|
|
|
|
/*
|
|
* Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
|
|
* 'force' part is handled in process_pending_signals().
|
|
*/
|
|
void force_sig_fault(int sig, int code, abi_ulong addr)
|
|
{
|
|
CPUState *cpu = thread_cpu;
|
|
CPUArchState *env = cpu_env(cpu);
|
|
target_siginfo_t info = {};
|
|
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info._sifields._sigfault._addr = addr;
|
|
queue_signal(env, sig, QEMU_SI_FAULT, &info);
|
|
}
|
|
|
|
/* Force a SIGSEGV if we couldn't write to memory trying to set
|
|
* up the signal frame. oldsig is the signal we were trying to handle
|
|
* at the point of failure.
|
|
*/
|
|
#if !defined(TARGET_RISCV)
|
|
void force_sigsegv(int oldsig)
|
|
{
|
|
if (oldsig == SIGSEGV) {
|
|
/* Make sure we don't try to deliver the signal again; this will
|
|
* end up with handle_pending_signal() calling dump_core_and_abort().
|
|
*/
|
|
sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
|
|
}
|
|
force_sig(TARGET_SIGSEGV);
|
|
}
|
|
#endif
|
|
|
|
void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
|
|
MMUAccessType access_type, bool maperr, uintptr_t ra)
|
|
{
|
|
const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
|
|
|
|
if (tcg_ops->record_sigsegv) {
|
|
tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
|
|
}
|
|
|
|
force_sig_fault(TARGET_SIGSEGV,
|
|
maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
|
|
addr);
|
|
cpu->exception_index = EXCP_INTERRUPT;
|
|
cpu_loop_exit_restore(cpu, ra);
|
|
}
|
|
|
|
void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
|
|
MMUAccessType access_type, uintptr_t ra)
|
|
{
|
|
const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
|
|
|
|
if (tcg_ops->record_sigbus) {
|
|
tcg_ops->record_sigbus(cpu, addr, access_type, ra);
|
|
}
|
|
|
|
force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
|
|
cpu->exception_index = EXCP_INTERRUPT;
|
|
cpu_loop_exit_restore(cpu, ra);
|
|
}
|
|
|
|
/* abort execution with signal */
|
|
static G_NORETURN
|
|
void die_with_signal(int host_sig)
|
|
{
|
|
struct sigaction act = {
|
|
.sa_handler = SIG_DFL,
|
|
};
|
|
|
|
/*
|
|
* The proper exit code for dying from an uncaught signal is -<signal>.
|
|
* The kernel doesn't allow exit() or _exit() to pass a negative value.
|
|
* To get the proper exit code we need to actually die from an uncaught
|
|
* signal. Here the default signal handler is installed, we send
|
|
* the signal and we wait for it to arrive.
|
|
*/
|
|
sigfillset(&act.sa_mask);
|
|
sigaction(host_sig, &act, NULL);
|
|
|
|
kill(getpid(), host_sig);
|
|
|
|
/* Make sure the signal isn't masked (reusing the mask inside of act). */
|
|
sigdelset(&act.sa_mask, host_sig);
|
|
sigsuspend(&act.sa_mask);
|
|
|
|
/* unreachable */
|
|
_exit(EXIT_FAILURE);
|
|
}
|
|
|
|
static G_NORETURN
|
|
void dump_core_and_abort(CPUArchState *env, int target_sig)
|
|
{
|
|
CPUState *cpu = env_cpu(env);
|
|
TaskState *ts = (TaskState *)cpu->opaque;
|
|
int host_sig, core_dumped = 0;
|
|
|
|
/* On exit, undo the remapping of SIGABRT. */
|
|
if (target_sig == TARGET_SIGABRT) {
|
|
host_sig = SIGABRT;
|
|
} else {
|
|
host_sig = target_to_host_signal(target_sig);
|
|
}
|
|
trace_user_dump_core_and_abort(env, target_sig, host_sig);
|
|
gdb_signalled(env, target_sig);
|
|
|
|
/* dump core if supported by target binary format */
|
|
if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
|
|
stop_all_tasks();
|
|
core_dumped =
|
|
((*ts->bprm->core_dump)(target_sig, env) == 0);
|
|
}
|
|
if (core_dumped) {
|
|
/* we already dumped the core of target process, we don't want
|
|
* a coredump of qemu itself */
|
|
struct rlimit nodump;
|
|
getrlimit(RLIMIT_CORE, &nodump);
|
|
nodump.rlim_cur=0;
|
|
setrlimit(RLIMIT_CORE, &nodump);
|
|
(void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
|
|
target_sig, strsignal(host_sig), "core dumped" );
|
|
}
|
|
|
|
preexit_cleanup(env, 128 + target_sig);
|
|
die_with_signal(host_sig);
|
|
}
|
|
|
|
/* queue a signal so that it will be send to the virtual CPU as soon
|
|
as possible */
|
|
void queue_signal(CPUArchState *env, int sig, int si_type,
|
|
target_siginfo_t *info)
|
|
{
|
|
CPUState *cpu = env_cpu(env);
|
|
TaskState *ts = cpu->opaque;
|
|
|
|
trace_user_queue_signal(env, sig);
|
|
|
|
info->si_code = deposit32(info->si_code, 16, 16, si_type);
|
|
|
|
ts->sync_signal.info = *info;
|
|
ts->sync_signal.pending = sig;
|
|
/* signal that a new signal is pending */
|
|
qatomic_set(&ts->signal_pending, 1);
|
|
}
|
|
|
|
|
|
/* Adjust the signal context to rewind out of safe-syscall if we're in it */
|
|
static inline void rewind_if_in_safe_syscall(void *puc)
|
|
{
|
|
host_sigcontext *uc = (host_sigcontext *)puc;
|
|
uintptr_t pcreg = host_signal_pc(uc);
|
|
|
|
if (pcreg > (uintptr_t)safe_syscall_start
|
|
&& pcreg < (uintptr_t)safe_syscall_end) {
|
|
host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
|
|
}
|
|
}
|
|
|
|
static G_NORETURN
|
|
void die_from_signal(siginfo_t *info)
|
|
{
|
|
char sigbuf[4], codebuf[12];
|
|
const char *sig, *code = NULL;
|
|
|
|
switch (info->si_signo) {
|
|
case SIGSEGV:
|
|
sig = "SEGV";
|
|
switch (info->si_code) {
|
|
case SEGV_MAPERR:
|
|
code = "MAPERR";
|
|
break;
|
|
case SEGV_ACCERR:
|
|
code = "ACCERR";
|
|
break;
|
|
}
|
|
break;
|
|
case SIGBUS:
|
|
sig = "BUS";
|
|
switch (info->si_code) {
|
|
case BUS_ADRALN:
|
|
code = "ADRALN";
|
|
break;
|
|
case BUS_ADRERR:
|
|
code = "ADRERR";
|
|
break;
|
|
}
|
|
break;
|
|
case SIGILL:
|
|
sig = "ILL";
|
|
switch (info->si_code) {
|
|
case ILL_ILLOPC:
|
|
code = "ILLOPC";
|
|
break;
|
|
case ILL_ILLOPN:
|
|
code = "ILLOPN";
|
|
break;
|
|
case ILL_ILLADR:
|
|
code = "ILLADR";
|
|
break;
|
|
case ILL_PRVOPC:
|
|
code = "PRVOPC";
|
|
break;
|
|
case ILL_PRVREG:
|
|
code = "PRVREG";
|
|
break;
|
|
case ILL_COPROC:
|
|
code = "COPROC";
|
|
break;
|
|
}
|
|
break;
|
|
case SIGFPE:
|
|
sig = "FPE";
|
|
switch (info->si_code) {
|
|
case FPE_INTDIV:
|
|
code = "INTDIV";
|
|
break;
|
|
case FPE_INTOVF:
|
|
code = "INTOVF";
|
|
break;
|
|
}
|
|
break;
|
|
case SIGTRAP:
|
|
sig = "TRAP";
|
|
break;
|
|
default:
|
|
snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo);
|
|
sig = sigbuf;
|
|
break;
|
|
}
|
|
if (code == NULL) {
|
|
snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code);
|
|
code = codebuf;
|
|
}
|
|
|
|
error_report("QEMU internal SIG%s {code=%s, addr=%p}",
|
|
sig, code, info->si_addr);
|
|
die_with_signal(info->si_signo);
|
|
}
|
|
|
|
static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info,
|
|
host_sigcontext *uc)
|
|
{
|
|
uintptr_t host_addr = (uintptr_t)info->si_addr;
|
|
/*
|
|
* Convert forcefully to guest address space: addresses outside
|
|
* reserved_va are still valid to report via SEGV_MAPERR.
|
|
*/
|
|
bool is_valid = h2g_valid(host_addr);
|
|
abi_ptr guest_addr = h2g_nocheck(host_addr);
|
|
uintptr_t pc = host_signal_pc(uc);
|
|
bool is_write = host_signal_write(info, uc);
|
|
MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
|
|
bool maperr;
|
|
|
|
/* If this was a write to a TB protected page, restart. */
|
|
if (is_write
|
|
&& is_valid
|
|
&& info->si_code == SEGV_ACCERR
|
|
&& handle_sigsegv_accerr_write(cpu, host_signal_mask(uc),
|
|
pc, guest_addr)) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the access was not on behalf of the guest, within the executable
|
|
* mapping of the generated code buffer, then it is a host bug.
|
|
*/
|
|
if (access_type != MMU_INST_FETCH
|
|
&& !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
|
|
die_from_signal(info);
|
|
}
|
|
|
|
maperr = true;
|
|
if (is_valid && info->si_code == SEGV_ACCERR) {
|
|
/*
|
|
* With reserved_va, the whole address space is PROT_NONE,
|
|
* which means that we may get ACCERR when we want MAPERR.
|
|
*/
|
|
if (page_get_flags(guest_addr) & PAGE_VALID) {
|
|
maperr = false;
|
|
} else {
|
|
info->si_code = SEGV_MAPERR;
|
|
}
|
|
}
|
|
|
|
sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
|
|
cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
|
|
}
|
|
|
|
static void host_sigbus_handler(CPUState *cpu, siginfo_t *info,
|
|
host_sigcontext *uc)
|
|
{
|
|
uintptr_t pc = host_signal_pc(uc);
|
|
bool is_write = host_signal_write(info, uc);
|
|
MMUAccessType access_type = adjust_signal_pc(&pc, is_write);
|
|
|
|
/*
|
|
* If the access was not on behalf of the guest, within the executable
|
|
* mapping of the generated code buffer, then it is a host bug.
|
|
*/
|
|
if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) {
|
|
die_from_signal(info);
|
|
}
|
|
|
|
if (info->si_code == BUS_ADRALN) {
|
|
uintptr_t host_addr = (uintptr_t)info->si_addr;
|
|
abi_ptr guest_addr = h2g_nocheck(host_addr);
|
|
|
|
sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL);
|
|
cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
|
|
}
|
|
}
|
|
|
|
static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
|
|
{
|
|
CPUState *cpu = thread_cpu;
|
|
CPUArchState *env = cpu_env(cpu);
|
|
TaskState *ts = cpu->opaque;
|
|
target_siginfo_t tinfo;
|
|
host_sigcontext *uc = puc;
|
|
struct emulated_sigtable *k;
|
|
int guest_sig;
|
|
uintptr_t pc = 0;
|
|
bool sync_sig = false;
|
|
void *sigmask;
|
|
|
|
/*
|
|
* Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
|
|
* handling wrt signal blocking and unwinding. Non-spoofed SIGILL,
|
|
* SIGFPE, SIGTRAP are always host bugs.
|
|
*/
|
|
if (info->si_code > 0) {
|
|
switch (host_sig) {
|
|
case SIGSEGV:
|
|
/* Only returns on handle_sigsegv_accerr_write success. */
|
|
host_sigsegv_handler(cpu, info, uc);
|
|
return;
|
|
case SIGBUS:
|
|
host_sigbus_handler(cpu, info, uc);
|
|
sync_sig = true;
|
|
break;
|
|
case SIGILL:
|
|
case SIGFPE:
|
|
case SIGTRAP:
|
|
die_from_signal(info);
|
|
}
|
|
}
|
|
|
|
/* get target signal number */
|
|
guest_sig = host_to_target_signal(host_sig);
|
|
if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
|
|
return;
|
|
}
|
|
trace_user_host_signal(env, host_sig, guest_sig);
|
|
|
|
host_to_target_siginfo_noswap(&tinfo, info);
|
|
k = &ts->sigtab[guest_sig - 1];
|
|
k->info = tinfo;
|
|
k->pending = guest_sig;
|
|
ts->signal_pending = 1;
|
|
|
|
/*
|
|
* For synchronous signals, unwind the cpu state to the faulting
|
|
* insn and then exit back to the main loop so that the signal
|
|
* is delivered immediately.
|
|
*/
|
|
if (sync_sig) {
|
|
cpu->exception_index = EXCP_INTERRUPT;
|
|
cpu_loop_exit_restore(cpu, pc);
|
|
}
|
|
|
|
rewind_if_in_safe_syscall(puc);
|
|
|
|
/*
|
|
* Block host signals until target signal handler entered. We
|
|
* can't block SIGSEGV or SIGBUS while we're executing guest
|
|
* code in case the guest code provokes one in the window between
|
|
* now and it getting out to the main loop. Signals will be
|
|
* unblocked again in process_pending_signals().
|
|
*
|
|
* WARNING: we cannot use sigfillset() here because the sigmask
|
|
* field is a kernel sigset_t, which is much smaller than the
|
|
* libc sigset_t which sigfillset() operates on. Using sigfillset()
|
|
* would write 0xff bytes off the end of the structure and trash
|
|
* data on the struct.
|
|
*/
|
|
sigmask = host_signal_mask(uc);
|
|
memset(sigmask, 0xff, SIGSET_T_SIZE);
|
|
sigdelset(sigmask, SIGSEGV);
|
|
sigdelset(sigmask, SIGBUS);
|
|
|
|
/* interrupt the virtual CPU as soon as possible */
|
|
cpu_exit(thread_cpu);
|
|
}
|
|
|
|
/* do_sigaltstack() returns target values and errnos. */
|
|
/* compare linux/kernel/signal.c:do_sigaltstack() */
|
|
abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
|
|
CPUArchState *env)
|
|
{
|
|
target_stack_t oss, *uoss = NULL;
|
|
abi_long ret = -TARGET_EFAULT;
|
|
|
|
if (uoss_addr) {
|
|
/* Verify writability now, but do not alter user memory yet. */
|
|
if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) {
|
|
goto out;
|
|
}
|
|
target_save_altstack(&oss, env);
|
|
}
|
|
|
|
if (uss_addr) {
|
|
target_stack_t *uss;
|
|
|
|
if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
|
|
goto out;
|
|
}
|
|
ret = target_restore_altstack(uss, env);
|
|
if (ret) {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (uoss_addr) {
|
|
memcpy(uoss, &oss, sizeof(oss));
|
|
unlock_user_struct(uoss, uoss_addr, 1);
|
|
uoss = NULL;
|
|
}
|
|
ret = 0;
|
|
|
|
out:
|
|
if (uoss) {
|
|
unlock_user_struct(uoss, uoss_addr, 0);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* do_sigaction() return target values and host errnos */
|
|
int do_sigaction(int sig, const struct target_sigaction *act,
|
|
struct target_sigaction *oact, abi_ulong ka_restorer)
|
|
{
|
|
struct target_sigaction *k;
|
|
int host_sig;
|
|
int ret = 0;
|
|
|
|
trace_signal_do_sigaction_guest(sig, TARGET_NSIG);
|
|
|
|
if (sig < 1 || sig > TARGET_NSIG) {
|
|
return -TARGET_EINVAL;
|
|
}
|
|
|
|
if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) {
|
|
return -TARGET_EINVAL;
|
|
}
|
|
|
|
if (block_signals()) {
|
|
return -QEMU_ERESTARTSYS;
|
|
}
|
|
|
|
k = &sigact_table[sig - 1];
|
|
if (oact) {
|
|
__put_user(k->_sa_handler, &oact->_sa_handler);
|
|
__put_user(k->sa_flags, &oact->sa_flags);
|
|
#ifdef TARGET_ARCH_HAS_SA_RESTORER
|
|
__put_user(k->sa_restorer, &oact->sa_restorer);
|
|
#endif
|
|
/* Not swapped. */
|
|
oact->sa_mask = k->sa_mask;
|
|
}
|
|
if (act) {
|
|
__get_user(k->_sa_handler, &act->_sa_handler);
|
|
__get_user(k->sa_flags, &act->sa_flags);
|
|
#ifdef TARGET_ARCH_HAS_SA_RESTORER
|
|
__get_user(k->sa_restorer, &act->sa_restorer);
|
|
#endif
|
|
#ifdef TARGET_ARCH_HAS_KA_RESTORER
|
|
k->ka_restorer = ka_restorer;
|
|
#endif
|
|
/* To be swapped in target_to_host_sigset. */
|
|
k->sa_mask = act->sa_mask;
|
|
|
|
/* we update the host linux signal state */
|
|
host_sig = target_to_host_signal(sig);
|
|
trace_signal_do_sigaction_host(host_sig, TARGET_NSIG);
|
|
if (host_sig > SIGRTMAX) {
|
|
/* we don't have enough host signals to map all target signals */
|
|
qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n",
|
|
sig);
|
|
/*
|
|
* we don't return an error here because some programs try to
|
|
* register an handler for all possible rt signals even if they
|
|
* don't need it.
|
|
* An error here can abort them whereas there can be no problem
|
|
* to not have the signal available later.
|
|
* This is the case for golang,
|
|
* See https://github.com/golang/go/issues/33746
|
|
* So we silently ignore the error.
|
|
*/
|
|
return 0;
|
|
}
|
|
if (host_sig != SIGSEGV && host_sig != SIGBUS) {
|
|
struct sigaction act1;
|
|
|
|
sigfillset(&act1.sa_mask);
|
|
act1.sa_flags = SA_SIGINFO;
|
|
if (k->_sa_handler == TARGET_SIG_IGN) {
|
|
/*
|
|
* It is important to update the host kernel signal ignore
|
|
* state to avoid getting unexpected interrupted syscalls.
|
|
*/
|
|
act1.sa_sigaction = (void *)SIG_IGN;
|
|
} else if (k->_sa_handler == TARGET_SIG_DFL) {
|
|
if (core_dump_signal(sig)) {
|
|
act1.sa_sigaction = host_signal_handler;
|
|
} else {
|
|
act1.sa_sigaction = (void *)SIG_DFL;
|
|
}
|
|
} else {
|
|
act1.sa_sigaction = host_signal_handler;
|
|
if (k->sa_flags & TARGET_SA_RESTART) {
|
|
act1.sa_flags |= SA_RESTART;
|
|
}
|
|
}
|
|
ret = sigaction(host_sig, &act1, NULL);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void handle_pending_signal(CPUArchState *cpu_env, int sig,
|
|
struct emulated_sigtable *k)
|
|
{
|
|
CPUState *cpu = env_cpu(cpu_env);
|
|
abi_ulong handler;
|
|
sigset_t set;
|
|
target_sigset_t target_old_set;
|
|
struct target_sigaction *sa;
|
|
TaskState *ts = cpu->opaque;
|
|
|
|
trace_user_handle_signal(cpu_env, sig);
|
|
/* dequeue signal */
|
|
k->pending = 0;
|
|
|
|
sig = gdb_handlesig(cpu, sig);
|
|
if (!sig) {
|
|
sa = NULL;
|
|
handler = TARGET_SIG_IGN;
|
|
} else {
|
|
sa = &sigact_table[sig - 1];
|
|
handler = sa->_sa_handler;
|
|
}
|
|
|
|
if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
|
|
print_taken_signal(sig, &k->info);
|
|
}
|
|
|
|
if (handler == TARGET_SIG_DFL) {
|
|
/* default handler : ignore some signal. The other are job control or fatal */
|
|
if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
|
|
kill(getpid(),SIGSTOP);
|
|
} else if (sig != TARGET_SIGCHLD &&
|
|
sig != TARGET_SIGURG &&
|
|
sig != TARGET_SIGWINCH &&
|
|
sig != TARGET_SIGCONT) {
|
|
dump_core_and_abort(cpu_env, sig);
|
|
}
|
|
} else if (handler == TARGET_SIG_IGN) {
|
|
/* ignore sig */
|
|
} else if (handler == TARGET_SIG_ERR) {
|
|
dump_core_and_abort(cpu_env, sig);
|
|
} else {
|
|
/* compute the blocked signals during the handler execution */
|
|
sigset_t *blocked_set;
|
|
|
|
target_to_host_sigset(&set, &sa->sa_mask);
|
|
/* SA_NODEFER indicates that the current signal should not be
|
|
blocked during the handler */
|
|
if (!(sa->sa_flags & TARGET_SA_NODEFER))
|
|
sigaddset(&set, target_to_host_signal(sig));
|
|
|
|
/* save the previous blocked signal state to restore it at the
|
|
end of the signal execution (see do_sigreturn) */
|
|
host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
|
|
|
|
/* block signals in the handler */
|
|
blocked_set = ts->in_sigsuspend ?
|
|
&ts->sigsuspend_mask : &ts->signal_mask;
|
|
sigorset(&ts->signal_mask, blocked_set, &set);
|
|
ts->in_sigsuspend = 0;
|
|
|
|
/* if the CPU is in VM86 mode, we restore the 32 bit values */
|
|
#if defined(TARGET_I386) && !defined(TARGET_X86_64)
|
|
{
|
|
CPUX86State *env = cpu_env;
|
|
if (env->eflags & VM_MASK)
|
|
save_v86_state(env);
|
|
}
|
|
#endif
|
|
/* prepare the stack frame of the virtual CPU */
|
|
#if defined(TARGET_ARCH_HAS_SETUP_FRAME)
|
|
if (sa->sa_flags & TARGET_SA_SIGINFO) {
|
|
setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
|
|
} else {
|
|
setup_frame(sig, sa, &target_old_set, cpu_env);
|
|
}
|
|
#else
|
|
/* These targets do not have traditional signals. */
|
|
setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
|
|
#endif
|
|
if (sa->sa_flags & TARGET_SA_RESETHAND) {
|
|
sa->_sa_handler = TARGET_SIG_DFL;
|
|
}
|
|
}
|
|
}
|
|
|
|
void process_pending_signals(CPUArchState *cpu_env)
|
|
{
|
|
CPUState *cpu = env_cpu(cpu_env);
|
|
int sig;
|
|
TaskState *ts = cpu->opaque;
|
|
sigset_t set;
|
|
sigset_t *blocked_set;
|
|
|
|
while (qatomic_read(&ts->signal_pending)) {
|
|
sigfillset(&set);
|
|
sigprocmask(SIG_SETMASK, &set, 0);
|
|
|
|
restart_scan:
|
|
sig = ts->sync_signal.pending;
|
|
if (sig) {
|
|
/* Synchronous signals are forced,
|
|
* see force_sig_info() and callers in Linux
|
|
* Note that not all of our queue_signal() calls in QEMU correspond
|
|
* to force_sig_info() calls in Linux (some are send_sig_info()).
|
|
* However it seems like a kernel bug to me to allow the process
|
|
* to block a synchronous signal since it could then just end up
|
|
* looping round and round indefinitely.
|
|
*/
|
|
if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
|
|
|| sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
|
|
sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
|
|
sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
|
|
}
|
|
|
|
handle_pending_signal(cpu_env, sig, &ts->sync_signal);
|
|
}
|
|
|
|
for (sig = 1; sig <= TARGET_NSIG; sig++) {
|
|
blocked_set = ts->in_sigsuspend ?
|
|
&ts->sigsuspend_mask : &ts->signal_mask;
|
|
|
|
if (ts->sigtab[sig - 1].pending &&
|
|
(!sigismember(blocked_set,
|
|
target_to_host_signal_table[sig]))) {
|
|
handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
|
|
/* Restart scan from the beginning, as handle_pending_signal
|
|
* might have resulted in a new synchronous signal (eg SIGSEGV).
|
|
*/
|
|
goto restart_scan;
|
|
}
|
|
}
|
|
|
|
/* if no signal is pending, unblock signals and recheck (the act
|
|
* of unblocking might cause us to take another host signal which
|
|
* will set signal_pending again).
|
|
*/
|
|
qatomic_set(&ts->signal_pending, 0);
|
|
ts->in_sigsuspend = 0;
|
|
set = ts->signal_mask;
|
|
sigdelset(&set, SIGSEGV);
|
|
sigdelset(&set, SIGBUS);
|
|
sigprocmask(SIG_SETMASK, &set, 0);
|
|
}
|
|
ts->in_sigsuspend = 0;
|
|
}
|
|
|
|
int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset,
|
|
target_ulong sigsize)
|
|
{
|
|
TaskState *ts = (TaskState *)thread_cpu->opaque;
|
|
sigset_t *host_set = &ts->sigsuspend_mask;
|
|
target_sigset_t *target_sigset;
|
|
|
|
if (sigsize != sizeof(*target_sigset)) {
|
|
/* Like the kernel, we enforce correct size sigsets */
|
|
return -TARGET_EINVAL;
|
|
}
|
|
|
|
target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1);
|
|
if (!target_sigset) {
|
|
return -TARGET_EFAULT;
|
|
}
|
|
target_to_host_sigset(host_set, target_sigset);
|
|
unlock_user(target_sigset, sigset, 0);
|
|
|
|
*pset = host_set;
|
|
return 0;
|
|
}
|