qemu-e2k/target-unicore32/translate.c
Guan Xuetao 6e64da3cd6 unicore32: add target-unicore32 directory for unicore32-linux-user support
Signed-off-by: Guan Xuetao <gxt@mprc.pku.edu.cn>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2011-04-12 18:48:37 +00:00

2106 lines
57 KiB
C

/*
* UniCore32 translation
*
* Copyright (C) 2010-2011 GUAN Xue-tao
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "cpu.h"
#include "exec-all.h"
#include "disas.h"
#include "tcg-op.h"
#include "qemu-log.h"
#include "helper.h"
#define GEN_HELPER 1
#include "helper.h"
/* internal defines */
typedef struct DisasContext {
target_ulong pc;
int is_jmp;
/* Nonzero if this instruction has been conditionally skipped. */
int condjmp;
/* The label that will be jumped to when the instruction is skipped. */
int condlabel;
struct TranslationBlock *tb;
int singlestep_enabled;
} DisasContext;
#define IS_USER(s) 1
/* These instructions trap after executing, so defer them until after the
conditional executions state has been updated. */
#define DISAS_SYSCALL 5
static TCGv_ptr cpu_env;
static TCGv_i32 cpu_R[32];
/* FIXME: These should be removed. */
static TCGv cpu_F0s, cpu_F1s;
static TCGv_i64 cpu_F0d, cpu_F1d;
#include "gen-icount.h"
static const char *regnames[] = {
"r00", "r01", "r02", "r03", "r04", "r05", "r06", "r07",
"r08", "r09", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "pc" };
/* initialize TCG globals. */
void uc32_translate_init(void)
{
int i;
cpu_env = tcg_global_reg_new_ptr(TCG_AREG0, "env");
for (i = 0; i < 32; i++) {
cpu_R[i] = tcg_global_mem_new_i32(TCG_AREG0,
offsetof(CPUState, regs[i]), regnames[i]);
}
#define GEN_HELPER 2
#include "helper.h"
}
static int num_temps;
/* Allocate a temporary variable. */
static TCGv_i32 new_tmp(void)
{
num_temps++;
return tcg_temp_new_i32();
}
/* Release a temporary variable. */
static void dead_tmp(TCGv tmp)
{
tcg_temp_free(tmp);
num_temps--;
}
static inline TCGv load_cpu_offset(int offset)
{
TCGv tmp = new_tmp();
tcg_gen_ld_i32(tmp, cpu_env, offset);
return tmp;
}
#define load_cpu_field(name) load_cpu_offset(offsetof(CPUState, name))
static inline void store_cpu_offset(TCGv var, int offset)
{
tcg_gen_st_i32(var, cpu_env, offset);
dead_tmp(var);
}
#define store_cpu_field(var, name) \
store_cpu_offset(var, offsetof(CPUState, name))
/* Set a variable to the value of a CPU register. */
static void load_reg_var(DisasContext *s, TCGv var, int reg)
{
if (reg == 31) {
uint32_t addr;
/* normaly, since we updated PC */
addr = (long)s->pc;
tcg_gen_movi_i32(var, addr);
} else {
tcg_gen_mov_i32(var, cpu_R[reg]);
}
}
/* Create a new temporary and set it to the value of a CPU register. */
static inline TCGv load_reg(DisasContext *s, int reg)
{
TCGv tmp = new_tmp();
load_reg_var(s, tmp, reg);
return tmp;
}
/* Set a CPU register. The source must be a temporary and will be
marked as dead. */
static void store_reg(DisasContext *s, int reg, TCGv var)
{
if (reg == 31) {
tcg_gen_andi_i32(var, var, ~3);
s->is_jmp = DISAS_JUMP;
}
tcg_gen_mov_i32(cpu_R[reg], var);
dead_tmp(var);
}
/* Value extensions. */
#define gen_uxtb(var) tcg_gen_ext8u_i32(var, var)
#define gen_uxth(var) tcg_gen_ext16u_i32(var, var)
#define gen_sxtb(var) tcg_gen_ext8s_i32(var, var)
#define gen_sxth(var) tcg_gen_ext16s_i32(var, var)
#define UCOP_REG_M (((insn) >> 0) & 0x1f)
#define UCOP_REG_N (((insn) >> 19) & 0x1f)
#define UCOP_REG_D (((insn) >> 14) & 0x1f)
#define UCOP_REG_S (((insn) >> 9) & 0x1f)
#define UCOP_REG_LO (((insn) >> 14) & 0x1f)
#define UCOP_REG_HI (((insn) >> 9) & 0x1f)
#define UCOP_SH_OP (((insn) >> 6) & 0x03)
#define UCOP_SH_IM (((insn) >> 9) & 0x1f)
#define UCOP_OPCODES (((insn) >> 25) & 0x0f)
#define UCOP_IMM_9 (((insn) >> 0) & 0x1ff)
#define UCOP_IMM10 (((insn) >> 0) & 0x3ff)
#define UCOP_IMM14 (((insn) >> 0) & 0x3fff)
#define UCOP_COND (((insn) >> 25) & 0x0f)
#define UCOP_CMOV_COND (((insn) >> 19) & 0x0f)
#define UCOP_CPNUM (((insn) >> 10) & 0x0f)
#define UCOP_UCF64_FMT (((insn) >> 24) & 0x03)
#define UCOP_UCF64_FUNC (((insn) >> 6) & 0x0f)
#define UCOP_UCF64_COND (((insn) >> 6) & 0x0f)
#define UCOP_SET(i) ((insn) & (1 << (i)))
#define UCOP_SET_P UCOP_SET(28)
#define UCOP_SET_U UCOP_SET(27)
#define UCOP_SET_B UCOP_SET(26)
#define UCOP_SET_W UCOP_SET(25)
#define UCOP_SET_L UCOP_SET(24)
#define UCOP_SET_S UCOP_SET(24)
#define ILLEGAL cpu_abort(env, \
"Illegal UniCore32 instruction %x at line %d!", \
insn, __LINE__)
static inline void gen_set_asr(TCGv var, uint32_t mask)
{
TCGv tmp_mask = tcg_const_i32(mask);
gen_helper_asr_write(var, tmp_mask);
tcg_temp_free_i32(tmp_mask);
}
/* Set NZCV flags from the high 4 bits of var. */
#define gen_set_nzcv(var) gen_set_asr(var, ASR_NZCV)
static void gen_exception(int excp)
{
TCGv tmp = new_tmp();
tcg_gen_movi_i32(tmp, excp);
gen_helper_exception(tmp);
dead_tmp(tmp);
}
/* FIXME: Most targets have native widening multiplication.
It would be good to use that instead of a full wide multiply. */
/* 32x32->64 multiply. Marks inputs as dead. */
static TCGv_i64 gen_mulu_i64_i32(TCGv a, TCGv b)
{
TCGv_i64 tmp1 = tcg_temp_new_i64();
TCGv_i64 tmp2 = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(tmp1, a);
dead_tmp(a);
tcg_gen_extu_i32_i64(tmp2, b);
dead_tmp(b);
tcg_gen_mul_i64(tmp1, tmp1, tmp2);
tcg_temp_free_i64(tmp2);
return tmp1;
}
static TCGv_i64 gen_muls_i64_i32(TCGv a, TCGv b)
{
TCGv_i64 tmp1 = tcg_temp_new_i64();
TCGv_i64 tmp2 = tcg_temp_new_i64();
tcg_gen_ext_i32_i64(tmp1, a);
dead_tmp(a);
tcg_gen_ext_i32_i64(tmp2, b);
dead_tmp(b);
tcg_gen_mul_i64(tmp1, tmp1, tmp2);
tcg_temp_free_i64(tmp2);
return tmp1;
}
#define gen_set_CF(var) tcg_gen_st_i32(var, cpu_env, offsetof(CPUState, CF))
/* Set CF to the top bit of var. */
static void gen_set_CF_bit31(TCGv var)
{
TCGv tmp = new_tmp();
tcg_gen_shri_i32(tmp, var, 31);
gen_set_CF(tmp);
dead_tmp(tmp);
}
/* Set N and Z flags from var. */
static inline void gen_logic_CC(TCGv var)
{
tcg_gen_st_i32(var, cpu_env, offsetof(CPUState, NF));
tcg_gen_st_i32(var, cpu_env, offsetof(CPUState, ZF));
}
/* dest = T0 + T1 + CF. */
static void gen_add_carry(TCGv dest, TCGv t0, TCGv t1)
{
TCGv tmp;
tcg_gen_add_i32(dest, t0, t1);
tmp = load_cpu_field(CF);
tcg_gen_add_i32(dest, dest, tmp);
dead_tmp(tmp);
}
/* dest = T0 - T1 + CF - 1. */
static void gen_sub_carry(TCGv dest, TCGv t0, TCGv t1)
{
TCGv tmp;
tcg_gen_sub_i32(dest, t0, t1);
tmp = load_cpu_field(CF);
tcg_gen_add_i32(dest, dest, tmp);
tcg_gen_subi_i32(dest, dest, 1);
dead_tmp(tmp);
}
static void shifter_out_im(TCGv var, int shift)
{
TCGv tmp = new_tmp();
if (shift == 0) {
tcg_gen_andi_i32(tmp, var, 1);
} else {
tcg_gen_shri_i32(tmp, var, shift);
if (shift != 31) {
tcg_gen_andi_i32(tmp, tmp, 1);
}
}
gen_set_CF(tmp);
dead_tmp(tmp);
}
/* Shift by immediate. Includes special handling for shift == 0. */
static inline void gen_uc32_shift_im(TCGv var, int shiftop, int shift,
int flags)
{
switch (shiftop) {
case 0: /* LSL */
if (shift != 0) {
if (flags) {
shifter_out_im(var, 32 - shift);
}
tcg_gen_shli_i32(var, var, shift);
}
break;
case 1: /* LSR */
if (shift == 0) {
if (flags) {
tcg_gen_shri_i32(var, var, 31);
gen_set_CF(var);
}
tcg_gen_movi_i32(var, 0);
} else {
if (flags) {
shifter_out_im(var, shift - 1);
}
tcg_gen_shri_i32(var, var, shift);
}
break;
case 2: /* ASR */
if (shift == 0) {
shift = 32;
}
if (flags) {
shifter_out_im(var, shift - 1);
}
if (shift == 32) {
shift = 31;
}
tcg_gen_sari_i32(var, var, shift);
break;
case 3: /* ROR/RRX */
if (shift != 0) {
if (flags) {
shifter_out_im(var, shift - 1);
}
tcg_gen_rotri_i32(var, var, shift); break;
} else {
TCGv tmp = load_cpu_field(CF);
if (flags) {
shifter_out_im(var, 0);
}
tcg_gen_shri_i32(var, var, 1);
tcg_gen_shli_i32(tmp, tmp, 31);
tcg_gen_or_i32(var, var, tmp);
dead_tmp(tmp);
}
}
};
static inline void gen_uc32_shift_reg(TCGv var, int shiftop,
TCGv shift, int flags)
{
if (flags) {
switch (shiftop) {
case 0:
gen_helper_shl_cc(var, var, shift);
break;
case 1:
gen_helper_shr_cc(var, var, shift);
break;
case 2:
gen_helper_sar_cc(var, var, shift);
break;
case 3:
gen_helper_ror_cc(var, var, shift);
break;
}
} else {
switch (shiftop) {
case 0:
gen_helper_shl(var, var, shift);
break;
case 1:
gen_helper_shr(var, var, shift);
break;
case 2:
gen_helper_sar(var, var, shift);
break;
case 3:
tcg_gen_andi_i32(shift, shift, 0x1f);
tcg_gen_rotr_i32(var, var, shift);
break;
}
}
dead_tmp(shift);
}
static void gen_test_cc(int cc, int label)
{
TCGv tmp;
TCGv tmp2;
int inv;
switch (cc) {
case 0: /* eq: Z */
tmp = load_cpu_field(ZF);
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
break;
case 1: /* ne: !Z */
tmp = load_cpu_field(ZF);
tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, label);
break;
case 2: /* cs: C */
tmp = load_cpu_field(CF);
tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, label);
break;
case 3: /* cc: !C */
tmp = load_cpu_field(CF);
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
break;
case 4: /* mi: N */
tmp = load_cpu_field(NF);
tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
break;
case 5: /* pl: !N */
tmp = load_cpu_field(NF);
tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
break;
case 6: /* vs: V */
tmp = load_cpu_field(VF);
tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
break;
case 7: /* vc: !V */
tmp = load_cpu_field(VF);
tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
break;
case 8: /* hi: C && !Z */
inv = gen_new_label();
tmp = load_cpu_field(CF);
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, inv);
dead_tmp(tmp);
tmp = load_cpu_field(ZF);
tcg_gen_brcondi_i32(TCG_COND_NE, tmp, 0, label);
gen_set_label(inv);
break;
case 9: /* ls: !C || Z */
tmp = load_cpu_field(CF);
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
dead_tmp(tmp);
tmp = load_cpu_field(ZF);
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
break;
case 10: /* ge: N == V -> N ^ V == 0 */
tmp = load_cpu_field(VF);
tmp2 = load_cpu_field(NF);
tcg_gen_xor_i32(tmp, tmp, tmp2);
dead_tmp(tmp2);
tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
break;
case 11: /* lt: N != V -> N ^ V != 0 */
tmp = load_cpu_field(VF);
tmp2 = load_cpu_field(NF);
tcg_gen_xor_i32(tmp, tmp, tmp2);
dead_tmp(tmp2);
tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
break;
case 12: /* gt: !Z && N == V */
inv = gen_new_label();
tmp = load_cpu_field(ZF);
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, inv);
dead_tmp(tmp);
tmp = load_cpu_field(VF);
tmp2 = load_cpu_field(NF);
tcg_gen_xor_i32(tmp, tmp, tmp2);
dead_tmp(tmp2);
tcg_gen_brcondi_i32(TCG_COND_GE, tmp, 0, label);
gen_set_label(inv);
break;
case 13: /* le: Z || N != V */
tmp = load_cpu_field(ZF);
tcg_gen_brcondi_i32(TCG_COND_EQ, tmp, 0, label);
dead_tmp(tmp);
tmp = load_cpu_field(VF);
tmp2 = load_cpu_field(NF);
tcg_gen_xor_i32(tmp, tmp, tmp2);
dead_tmp(tmp2);
tcg_gen_brcondi_i32(TCG_COND_LT, tmp, 0, label);
break;
default:
fprintf(stderr, "Bad condition code 0x%x\n", cc);
abort();
}
dead_tmp(tmp);
}
static const uint8_t table_logic_cc[16] = {
1, /* and */ 1, /* xor */ 0, /* sub */ 0, /* rsb */
0, /* add */ 0, /* adc */ 0, /* sbc */ 0, /* rsc */
1, /* andl */ 1, /* xorl */ 0, /* cmp */ 0, /* cmn */
1, /* orr */ 1, /* mov */ 1, /* bic */ 1, /* mvn */
};
/* Set PC state from an immediate address. */
static inline void gen_bx_im(DisasContext *s, uint32_t addr)
{
s->is_jmp = DISAS_UPDATE;
tcg_gen_movi_i32(cpu_R[31], addr & ~3);
}
/* Set PC state from var. var is marked as dead. */
static inline void gen_bx(DisasContext *s, TCGv var)
{
s->is_jmp = DISAS_UPDATE;
tcg_gen_andi_i32(cpu_R[31], var, ~3);
dead_tmp(var);
}
static inline void store_reg_bx(DisasContext *s, int reg, TCGv var)
{
store_reg(s, reg, var);
}
static inline TCGv gen_ld8s(TCGv addr, int index)
{
TCGv tmp = new_tmp();
tcg_gen_qemu_ld8s(tmp, addr, index);
return tmp;
}
static inline TCGv gen_ld8u(TCGv addr, int index)
{
TCGv tmp = new_tmp();
tcg_gen_qemu_ld8u(tmp, addr, index);
return tmp;
}
static inline TCGv gen_ld16s(TCGv addr, int index)
{
TCGv tmp = new_tmp();
tcg_gen_qemu_ld16s(tmp, addr, index);
return tmp;
}
static inline TCGv gen_ld16u(TCGv addr, int index)
{
TCGv tmp = new_tmp();
tcg_gen_qemu_ld16u(tmp, addr, index);
return tmp;
}
static inline TCGv gen_ld32(TCGv addr, int index)
{
TCGv tmp = new_tmp();
tcg_gen_qemu_ld32u(tmp, addr, index);
return tmp;
}
static inline TCGv_i64 gen_ld64(TCGv addr, int index)
{
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_qemu_ld64(tmp, addr, index);
return tmp;
}
static inline void gen_st8(TCGv val, TCGv addr, int index)
{
tcg_gen_qemu_st8(val, addr, index);
dead_tmp(val);
}
static inline void gen_st16(TCGv val, TCGv addr, int index)
{
tcg_gen_qemu_st16(val, addr, index);
dead_tmp(val);
}
static inline void gen_st32(TCGv val, TCGv addr, int index)
{
tcg_gen_qemu_st32(val, addr, index);
dead_tmp(val);
}
static inline void gen_st64(TCGv_i64 val, TCGv addr, int index)
{
tcg_gen_qemu_st64(val, addr, index);
tcg_temp_free_i64(val);
}
static inline void gen_set_pc_im(uint32_t val)
{
tcg_gen_movi_i32(cpu_R[31], val);
}
/* Force a TB lookup after an instruction that changes the CPU state. */
static inline void gen_lookup_tb(DisasContext *s)
{
tcg_gen_movi_i32(cpu_R[31], s->pc & ~1);
s->is_jmp = DISAS_UPDATE;
}
static inline void gen_add_data_offset(DisasContext *s, unsigned int insn,
TCGv var)
{
int val;
TCGv offset;
if (UCOP_SET(29)) {
/* immediate */
val = UCOP_IMM14;
if (!UCOP_SET_U) {
val = -val;
}
if (val != 0) {
tcg_gen_addi_i32(var, var, val);
}
} else {
/* shift/register */
offset = load_reg(s, UCOP_REG_M);
gen_uc32_shift_im(offset, UCOP_SH_OP, UCOP_SH_IM, 0);
if (!UCOP_SET_U) {
tcg_gen_sub_i32(var, var, offset);
} else {
tcg_gen_add_i32(var, var, offset);
}
dead_tmp(offset);
}
}
static inline void gen_add_datah_offset(DisasContext *s, unsigned int insn,
TCGv var)
{
int val;
TCGv offset;
if (UCOP_SET(26)) {
/* immediate */
val = (insn & 0x1f) | ((insn >> 4) & 0x3e0);
if (!UCOP_SET_U) {
val = -val;
}
if (val != 0) {
tcg_gen_addi_i32(var, var, val);
}
} else {
/* register */
offset = load_reg(s, UCOP_REG_M);
if (!UCOP_SET_U) {
tcg_gen_sub_i32(var, var, offset);
} else {
tcg_gen_add_i32(var, var, offset);
}
dead_tmp(offset);
}
}
static inline long ucf64_reg_offset(int reg)
{
if (reg & 1) {
return offsetof(CPUState, ucf64.regs[reg >> 1])
+ offsetof(CPU_DoubleU, l.upper);
} else {
return offsetof(CPUState, ucf64.regs[reg >> 1])
+ offsetof(CPU_DoubleU, l.lower);
}
}
#define ucf64_gen_ld32(reg) load_cpu_offset(ucf64_reg_offset(reg))
#define ucf64_gen_st32(var, reg) store_cpu_offset(var, ucf64_reg_offset(reg))
/* UniCore-F64 single load/store I_offset */
static void do_ucf64_ldst_i(CPUState *env, DisasContext *s, uint32_t insn)
{
int offset;
TCGv tmp;
TCGv addr;
addr = load_reg(s, UCOP_REG_N);
if (!UCOP_SET_P && !UCOP_SET_W) {
ILLEGAL;
}
if (UCOP_SET_P) {
offset = UCOP_IMM10 << 2;
if (!UCOP_SET_U) {
offset = -offset;
}
if (offset != 0) {
tcg_gen_addi_i32(addr, addr, offset);
}
}
if (UCOP_SET_L) { /* load */
tmp = gen_ld32(addr, IS_USER(s));
ucf64_gen_st32(tmp, UCOP_REG_D);
} else { /* store */
tmp = ucf64_gen_ld32(UCOP_REG_D);
gen_st32(tmp, addr, IS_USER(s));
}
if (!UCOP_SET_P) {
offset = UCOP_IMM10 << 2;
if (!UCOP_SET_U) {
offset = -offset;
}
if (offset != 0) {
tcg_gen_addi_i32(addr, addr, offset);
}
}
if (UCOP_SET_W) {
store_reg(s, UCOP_REG_N, addr);
} else {
dead_tmp(addr);
}
}
/* UniCore-F64 load/store multiple words */
static void do_ucf64_ldst_m(CPUState *env, DisasContext *s, uint32_t insn)
{
unsigned int i;
int j, n, freg;
TCGv tmp;
TCGv addr;
if (UCOP_REG_D != 0) {
ILLEGAL;
}
if (UCOP_REG_N == 31) {
ILLEGAL;
}
if ((insn << 24) == 0) {
ILLEGAL;
}
addr = load_reg(s, UCOP_REG_N);
n = 0;
for (i = 0; i < 8; i++) {
if (UCOP_SET(i)) {
n++;
}
}
if (UCOP_SET_U) {
if (UCOP_SET_P) { /* pre increment */
tcg_gen_addi_i32(addr, addr, 4);
} /* unnecessary to do anything when post increment */
} else {
if (UCOP_SET_P) { /* pre decrement */
tcg_gen_addi_i32(addr, addr, -(n * 4));
} else { /* post decrement */
if (n != 1) {
tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
}
}
}
freg = ((insn >> 8) & 3) << 3; /* freg should be 0, 8, 16, 24 */
for (i = 0, j = 0; i < 8; i++, freg++) {
if (!UCOP_SET(i)) {
continue;
}
if (UCOP_SET_L) { /* load */
tmp = gen_ld32(addr, IS_USER(s));
ucf64_gen_st32(tmp, freg);
} else { /* store */
tmp = ucf64_gen_ld32(freg);
gen_st32(tmp, addr, IS_USER(s));
}
j++;
/* unnecessary to add after the last transfer */
if (j != n) {
tcg_gen_addi_i32(addr, addr, 4);
}
}
if (UCOP_SET_W) { /* write back */
if (UCOP_SET_U) {
if (!UCOP_SET_P) { /* post increment */
tcg_gen_addi_i32(addr, addr, 4);
} /* unnecessary to do anything when pre increment */
} else {
if (UCOP_SET_P) {
/* pre decrement */
if (n != 1) {
tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
}
} else {
/* post decrement */
tcg_gen_addi_i32(addr, addr, -(n * 4));
}
}
store_reg(s, UCOP_REG_N, addr);
} else {
dead_tmp(addr);
}
}
/* UniCore-F64 mrc/mcr */
static void do_ucf64_trans(CPUState *env, DisasContext *s, uint32_t insn)
{
TCGv tmp;
if ((insn & 0xfe0003ff) == 0xe2000000) {
/* control register */
if ((UCOP_REG_N != UC32_UCF64_FPSCR) || (UCOP_REG_D == 31)) {
ILLEGAL;
}
if (UCOP_SET(24)) {
/* CFF */
tmp = new_tmp();
gen_helper_ucf64_get_fpscr(tmp, cpu_env);
store_reg(s, UCOP_REG_D, tmp);
} else {
/* CTF */
tmp = load_reg(s, UCOP_REG_D);
gen_helper_ucf64_set_fpscr(cpu_env, tmp);
dead_tmp(tmp);
gen_lookup_tb(s);
}
return;
}
if ((insn & 0xfe0003ff) == 0xe0000000) {
/* general register */
if (UCOP_REG_D == 31) {
ILLEGAL;
}
if (UCOP_SET(24)) { /* MFF */
tmp = ucf64_gen_ld32(UCOP_REG_N);
store_reg(s, UCOP_REG_D, tmp);
} else { /* MTF */
tmp = load_reg(s, UCOP_REG_D);
ucf64_gen_st32(tmp, UCOP_REG_N);
}
return;
}
if ((insn & 0xfb000000) == 0xe9000000) {
/* MFFC */
if (UCOP_REG_D != 31) {
ILLEGAL;
}
if (UCOP_UCF64_COND & 0x8) {
ILLEGAL;
}
tmp = new_tmp();
tcg_gen_movi_i32(tmp, UCOP_UCF64_COND);
if (UCOP_SET(26)) {
tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_N));
tcg_gen_ld_i64(cpu_F1d, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_cmpd(cpu_F0d, cpu_F1d, tmp, cpu_env);
} else {
tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_N));
tcg_gen_ld_i32(cpu_F1s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_cmps(cpu_F0s, cpu_F1s, tmp, cpu_env);
}
dead_tmp(tmp);
return;
}
ILLEGAL;
}
/* UniCore-F64 convert instructions */
static void do_ucf64_fcvt(CPUState *env, DisasContext *s, uint32_t insn)
{
if (UCOP_UCF64_FMT == 3) {
ILLEGAL;
}
if (UCOP_REG_N != 0) {
ILLEGAL;
}
switch (UCOP_UCF64_FUNC) {
case 0: /* cvt.s */
switch (UCOP_UCF64_FMT) {
case 1 /* d */:
tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_df2sf(cpu_F0s, cpu_F0d, cpu_env);
tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D));
break;
case 2 /* w */:
tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_si2sf(cpu_F0s, cpu_F0s, cpu_env);
tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D));
break;
default /* s */:
ILLEGAL;
break;
}
break;
case 1: /* cvt.d */
switch (UCOP_UCF64_FMT) {
case 0 /* s */:
tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_sf2df(cpu_F0d, cpu_F0s, cpu_env);
tcg_gen_st_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_D));
break;
case 2 /* w */:
tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_si2df(cpu_F0d, cpu_F0s, cpu_env);
tcg_gen_st_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_D));
break;
default /* d */:
ILLEGAL;
break;
}
break;
case 4: /* cvt.w */
switch (UCOP_UCF64_FMT) {
case 0 /* s */:
tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_sf2si(cpu_F0s, cpu_F0s, cpu_env);
tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D));
break;
case 1 /* d */:
tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_M));
gen_helper_ucf64_df2si(cpu_F0s, cpu_F0d, cpu_env);
tcg_gen_st_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_D));
break;
default /* w */:
ILLEGAL;
break;
}
break;
default:
ILLEGAL;
}
}
/* UniCore-F64 compare instructions */
static void do_ucf64_fcmp(CPUState *env, DisasContext *s, uint32_t insn)
{
if (UCOP_SET(25)) {
ILLEGAL;
}
if (UCOP_REG_D != 0) {
ILLEGAL;
}
ILLEGAL; /* TODO */
if (UCOP_SET(24)) {
tcg_gen_ld_i64(cpu_F0d, cpu_env, ucf64_reg_offset(UCOP_REG_N));
tcg_gen_ld_i64(cpu_F1d, cpu_env, ucf64_reg_offset(UCOP_REG_M));
/* gen_helper_ucf64_cmpd(cpu_F0d, cpu_F1d, cpu_env); */
} else {
tcg_gen_ld_i32(cpu_F0s, cpu_env, ucf64_reg_offset(UCOP_REG_N));
tcg_gen_ld_i32(cpu_F1s, cpu_env, ucf64_reg_offset(UCOP_REG_M));
/* gen_helper_ucf64_cmps(cpu_F0s, cpu_F1s, cpu_env); */
}
}
#define gen_helper_ucf64_movs(x, y) do { } while (0)
#define gen_helper_ucf64_movd(x, y) do { } while (0)
#define UCF64_OP1(name) do { \
if (UCOP_REG_N != 0) { \
ILLEGAL; \
} \
switch (UCOP_UCF64_FMT) { \
case 0 /* s */: \
tcg_gen_ld_i32(cpu_F0s, cpu_env, \
ucf64_reg_offset(UCOP_REG_M)); \
gen_helper_ucf64_##name##s(cpu_F0s, cpu_F0s); \
tcg_gen_st_i32(cpu_F0s, cpu_env, \
ucf64_reg_offset(UCOP_REG_D)); \
break; \
case 1 /* d */: \
tcg_gen_ld_i64(cpu_F0d, cpu_env, \
ucf64_reg_offset(UCOP_REG_M)); \
gen_helper_ucf64_##name##d(cpu_F0d, cpu_F0d); \
tcg_gen_st_i64(cpu_F0d, cpu_env, \
ucf64_reg_offset(UCOP_REG_D)); \
break; \
case 2 /* w */: \
ILLEGAL; \
break; \
} \
} while (0)
#define UCF64_OP2(name) do { \
switch (UCOP_UCF64_FMT) { \
case 0 /* s */: \
tcg_gen_ld_i32(cpu_F0s, cpu_env, \
ucf64_reg_offset(UCOP_REG_N)); \
tcg_gen_ld_i32(cpu_F1s, cpu_env, \
ucf64_reg_offset(UCOP_REG_M)); \
gen_helper_ucf64_##name##s(cpu_F0s, \
cpu_F0s, cpu_F1s, cpu_env); \
tcg_gen_st_i32(cpu_F0s, cpu_env, \
ucf64_reg_offset(UCOP_REG_D)); \
break; \
case 1 /* d */: \
tcg_gen_ld_i64(cpu_F0d, cpu_env, \
ucf64_reg_offset(UCOP_REG_N)); \
tcg_gen_ld_i64(cpu_F1d, cpu_env, \
ucf64_reg_offset(UCOP_REG_M)); \
gen_helper_ucf64_##name##d(cpu_F0d, \
cpu_F0d, cpu_F1d, cpu_env); \
tcg_gen_st_i64(cpu_F0d, cpu_env, \
ucf64_reg_offset(UCOP_REG_D)); \
break; \
case 2 /* w */: \
ILLEGAL; \
break; \
} \
} while (0)
/* UniCore-F64 data processing */
static void do_ucf64_datap(CPUState *env, DisasContext *s, uint32_t insn)
{
if (UCOP_UCF64_FMT == 3) {
ILLEGAL;
}
switch (UCOP_UCF64_FUNC) {
case 0: /* add */
UCF64_OP2(add);
break;
case 1: /* sub */
UCF64_OP2(sub);
break;
case 2: /* mul */
UCF64_OP2(mul);
break;
case 4: /* div */
UCF64_OP2(div);
break;
case 5: /* abs */
UCF64_OP1(abs);
break;
case 6: /* mov */
UCF64_OP1(mov);
break;
case 7: /* neg */
UCF64_OP1(neg);
break;
default:
ILLEGAL;
}
}
/* Disassemble an F64 instruction */
static void disas_ucf64_insn(CPUState *env, DisasContext *s, uint32_t insn)
{
if (!UCOP_SET(29)) {
if (UCOP_SET(26)) {
do_ucf64_ldst_m(env, s, insn);
} else {
do_ucf64_ldst_i(env, s, insn);
}
} else {
if (UCOP_SET(5)) {
switch ((insn >> 26) & 0x3) {
case 0:
do_ucf64_datap(env, s, insn);
break;
case 1:
ILLEGAL;
break;
case 2:
do_ucf64_fcvt(env, s, insn);
break;
case 3:
do_ucf64_fcmp(env, s, insn);
break;
}
} else {
do_ucf64_trans(env, s, insn);
}
}
}
static inline void gen_goto_tb(DisasContext *s, int n, uint32_t dest)
{
TranslationBlock *tb;
tb = s->tb;
if ((tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK)) {
tcg_gen_goto_tb(n);
gen_set_pc_im(dest);
tcg_gen_exit_tb((long)tb + n);
} else {
gen_set_pc_im(dest);
tcg_gen_exit_tb(0);
}
}
static inline void gen_jmp(DisasContext *s, uint32_t dest)
{
if (unlikely(s->singlestep_enabled)) {
/* An indirect jump so that we still trigger the debug exception. */
gen_bx_im(s, dest);
} else {
gen_goto_tb(s, 0, dest);
s->is_jmp = DISAS_TB_JUMP;
}
}
static inline void gen_mulxy(TCGv t0, TCGv t1, int x, int y)
{
if (x) {
tcg_gen_sari_i32(t0, t0, 16);
} else {
gen_sxth(t0);
}
if (y) {
tcg_gen_sari_i32(t1, t1, 16);
} else {
gen_sxth(t1);
}
tcg_gen_mul_i32(t0, t0, t1);
}
/* Returns nonzero if access to the PSR is not permitted. Marks t0 as dead. */
static int gen_set_psr(DisasContext *s, uint32_t mask, int bsr, TCGv t0)
{
TCGv tmp;
if (bsr) {
/* ??? This is also undefined in system mode. */
if (IS_USER(s)) {
return 1;
}
tmp = load_cpu_field(bsr);
tcg_gen_andi_i32(tmp, tmp, ~mask);
tcg_gen_andi_i32(t0, t0, mask);
tcg_gen_or_i32(tmp, tmp, t0);
store_cpu_field(tmp, bsr);
} else {
gen_set_asr(t0, mask);
}
dead_tmp(t0);
gen_lookup_tb(s);
return 0;
}
/* Generate an old-style exception return. Marks pc as dead. */
static void gen_exception_return(DisasContext *s, TCGv pc)
{
TCGv tmp;
store_reg(s, 31, pc);
tmp = load_cpu_field(bsr);
gen_set_asr(tmp, 0xffffffff);
dead_tmp(tmp);
s->is_jmp = DISAS_UPDATE;
}
static void disas_coproc_insn(CPUState *env, DisasContext *s, uint32_t insn)
{
switch (UCOP_CPNUM) {
case 2:
disas_ucf64_insn(env, s, insn);
break;
default:
/* Unknown coprocessor. */
cpu_abort(env, "Unknown coprocessor!");
}
}
/* Store a 64-bit value to a register pair. Clobbers val. */
static void gen_storeq_reg(DisasContext *s, int rlow, int rhigh, TCGv_i64 val)
{
TCGv tmp;
tmp = new_tmp();
tcg_gen_trunc_i64_i32(tmp, val);
store_reg(s, rlow, tmp);
tmp = new_tmp();
tcg_gen_shri_i64(val, val, 32);
tcg_gen_trunc_i64_i32(tmp, val);
store_reg(s, rhigh, tmp);
}
/* load and add a 64-bit value from a register pair. */
static void gen_addq(DisasContext *s, TCGv_i64 val, int rlow, int rhigh)
{
TCGv_i64 tmp;
TCGv tmpl;
TCGv tmph;
/* Load 64-bit value rd:rn. */
tmpl = load_reg(s, rlow);
tmph = load_reg(s, rhigh);
tmp = tcg_temp_new_i64();
tcg_gen_concat_i32_i64(tmp, tmpl, tmph);
dead_tmp(tmpl);
dead_tmp(tmph);
tcg_gen_add_i64(val, val, tmp);
tcg_temp_free_i64(tmp);
}
/* data processing instructions */
static void do_datap(CPUState *env, DisasContext *s, uint32_t insn)
{
TCGv tmp;
TCGv tmp2;
int logic_cc;
if (UCOP_OPCODES == 0x0f || UCOP_OPCODES == 0x0d) {
if (UCOP_SET(23)) { /* CMOV instructions */
if ((UCOP_CMOV_COND == 0xe) || (UCOP_CMOV_COND == 0xf)) {
ILLEGAL;
}
/* if not always execute, we generate a conditional jump to
next instruction */
s->condlabel = gen_new_label();
gen_test_cc(UCOP_CMOV_COND ^ 1, s->condlabel);
s->condjmp = 1;
}
}
logic_cc = table_logic_cc[UCOP_OPCODES] & (UCOP_SET_S >> 24);
if (UCOP_SET(29)) {
unsigned int val;
/* immediate operand */
val = UCOP_IMM_9;
if (UCOP_SH_IM) {
val = (val >> UCOP_SH_IM) | (val << (32 - UCOP_SH_IM));
}
tmp2 = new_tmp();
tcg_gen_movi_i32(tmp2, val);
if (logic_cc && UCOP_SH_IM) {
gen_set_CF_bit31(tmp2);
}
} else {
/* register */
tmp2 = load_reg(s, UCOP_REG_M);
if (UCOP_SET(5)) {
tmp = load_reg(s, UCOP_REG_S);
gen_uc32_shift_reg(tmp2, UCOP_SH_OP, tmp, logic_cc);
} else {
gen_uc32_shift_im(tmp2, UCOP_SH_OP, UCOP_SH_IM, logic_cc);
}
}
if (UCOP_OPCODES != 0x0f && UCOP_OPCODES != 0x0d) {
tmp = load_reg(s, UCOP_REG_N);
} else {
TCGV_UNUSED(tmp);
}
switch (UCOP_OPCODES) {
case 0x00:
tcg_gen_and_i32(tmp, tmp, tmp2);
if (logic_cc) {
gen_logic_CC(tmp);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x01:
tcg_gen_xor_i32(tmp, tmp, tmp2);
if (logic_cc) {
gen_logic_CC(tmp);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x02:
if (UCOP_SET_S && UCOP_REG_D == 31) {
/* SUBS r31, ... is used for exception return. */
if (IS_USER(s)) {
ILLEGAL;
}
gen_helper_sub_cc(tmp, tmp, tmp2);
gen_exception_return(s, tmp);
} else {
if (UCOP_SET_S) {
gen_helper_sub_cc(tmp, tmp, tmp2);
} else {
tcg_gen_sub_i32(tmp, tmp, tmp2);
}
store_reg_bx(s, UCOP_REG_D, tmp);
}
break;
case 0x03:
if (UCOP_SET_S) {
gen_helper_sub_cc(tmp, tmp2, tmp);
} else {
tcg_gen_sub_i32(tmp, tmp2, tmp);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x04:
if (UCOP_SET_S) {
gen_helper_add_cc(tmp, tmp, tmp2);
} else {
tcg_gen_add_i32(tmp, tmp, tmp2);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x05:
if (UCOP_SET_S) {
gen_helper_adc_cc(tmp, tmp, tmp2);
} else {
gen_add_carry(tmp, tmp, tmp2);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x06:
if (UCOP_SET_S) {
gen_helper_sbc_cc(tmp, tmp, tmp2);
} else {
gen_sub_carry(tmp, tmp, tmp2);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x07:
if (UCOP_SET_S) {
gen_helper_sbc_cc(tmp, tmp2, tmp);
} else {
gen_sub_carry(tmp, tmp2, tmp);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x08:
if (UCOP_SET_S) {
tcg_gen_and_i32(tmp, tmp, tmp2);
gen_logic_CC(tmp);
}
dead_tmp(tmp);
break;
case 0x09:
if (UCOP_SET_S) {
tcg_gen_xor_i32(tmp, tmp, tmp2);
gen_logic_CC(tmp);
}
dead_tmp(tmp);
break;
case 0x0a:
if (UCOP_SET_S) {
gen_helper_sub_cc(tmp, tmp, tmp2);
}
dead_tmp(tmp);
break;
case 0x0b:
if (UCOP_SET_S) {
gen_helper_add_cc(tmp, tmp, tmp2);
}
dead_tmp(tmp);
break;
case 0x0c:
tcg_gen_or_i32(tmp, tmp, tmp2);
if (logic_cc) {
gen_logic_CC(tmp);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
case 0x0d:
if (logic_cc && UCOP_REG_D == 31) {
/* MOVS r31, ... is used for exception return. */
if (IS_USER(s)) {
ILLEGAL;
}
gen_exception_return(s, tmp2);
} else {
if (logic_cc) {
gen_logic_CC(tmp2);
}
store_reg_bx(s, UCOP_REG_D, tmp2);
}
break;
case 0x0e:
tcg_gen_andc_i32(tmp, tmp, tmp2);
if (logic_cc) {
gen_logic_CC(tmp);
}
store_reg_bx(s, UCOP_REG_D, tmp);
break;
default:
case 0x0f:
tcg_gen_not_i32(tmp2, tmp2);
if (logic_cc) {
gen_logic_CC(tmp2);
}
store_reg_bx(s, UCOP_REG_D, tmp2);
break;
}
if (UCOP_OPCODES != 0x0f && UCOP_OPCODES != 0x0d) {
dead_tmp(tmp2);
}
}
/* multiply */
static void do_mult(CPUState *env, DisasContext *s, uint32_t insn)
{
TCGv tmp;
TCGv tmp2;
TCGv_i64 tmp64;
if (UCOP_SET(27)) {
/* 64 bit mul */
tmp = load_reg(s, UCOP_REG_M);
tmp2 = load_reg(s, UCOP_REG_N);
if (UCOP_SET(26)) {
tmp64 = gen_muls_i64_i32(tmp, tmp2);
} else {
tmp64 = gen_mulu_i64_i32(tmp, tmp2);
}
if (UCOP_SET(25)) { /* mult accumulate */
gen_addq(s, tmp64, UCOP_REG_LO, UCOP_REG_HI);
}
gen_storeq_reg(s, UCOP_REG_LO, UCOP_REG_HI, tmp64);
tcg_temp_free_i64(tmp64);
} else {
/* 32 bit mul */
tmp = load_reg(s, UCOP_REG_M);
tmp2 = load_reg(s, UCOP_REG_N);
tcg_gen_mul_i32(tmp, tmp, tmp2);
dead_tmp(tmp2);
if (UCOP_SET(25)) {
/* Add */
tmp2 = load_reg(s, UCOP_REG_S);
tcg_gen_add_i32(tmp, tmp, tmp2);
dead_tmp(tmp2);
}
if (UCOP_SET_S) {
gen_logic_CC(tmp);
}
store_reg(s, UCOP_REG_D, tmp);
}
}
/* miscellaneous instructions */
static void do_misc(CPUState *env, DisasContext *s, uint32_t insn)
{
unsigned int val;
TCGv tmp;
if ((insn & 0xffffffe0) == 0x10ffc120) {
/* Trivial implementation equivalent to bx. */
tmp = load_reg(s, UCOP_REG_M);
gen_bx(s, tmp);
return;
}
if ((insn & 0xfbffc000) == 0x30ffc000) {
/* PSR = immediate */
val = UCOP_IMM_9;
if (UCOP_SH_IM) {
val = (val >> UCOP_SH_IM) | (val << (32 - UCOP_SH_IM));
}
tmp = new_tmp();
tcg_gen_movi_i32(tmp, val);
if (gen_set_psr(s, ~ASR_RESERVED, UCOP_SET_B, tmp)) {
ILLEGAL;
}
return;
}
if ((insn & 0xfbffffe0) == 0x12ffc020) {
/* PSR.flag = reg */
tmp = load_reg(s, UCOP_REG_M);
if (gen_set_psr(s, ASR_NZCV, UCOP_SET_B, tmp)) {
ILLEGAL;
}
return;
}
if ((insn & 0xfbffffe0) == 0x10ffc020) {
/* PSR = reg */
tmp = load_reg(s, UCOP_REG_M);
if (gen_set_psr(s, ~ASR_RESERVED, UCOP_SET_B, tmp)) {
ILLEGAL;
}
return;
}
if ((insn & 0xfbf83fff) == 0x10f80000) {
/* reg = PSR */
if (UCOP_SET_B) {
if (IS_USER(s)) {
ILLEGAL;
}
tmp = load_cpu_field(bsr);
} else {
tmp = new_tmp();
gen_helper_asr_read(tmp);
}
store_reg(s, UCOP_REG_D, tmp);
return;
}
if ((insn & 0xfbf83fe0) == 0x12f80120) {
/* clz */
tmp = load_reg(s, UCOP_REG_M);
if (UCOP_SET(26)) {
gen_helper_clo(tmp, tmp);
} else {
gen_helper_clz(tmp, tmp);
}
store_reg(s, UCOP_REG_D, tmp);
return;
}
/* otherwise */
ILLEGAL;
}
/* load/store I_offset and R_offset */
static void do_ldst_ir(CPUState *env, DisasContext *s, uint32_t insn)
{
unsigned int i;
TCGv tmp;
TCGv tmp2;
tmp2 = load_reg(s, UCOP_REG_N);
i = (IS_USER(s) || (!UCOP_SET_P && UCOP_SET_W));
/* immediate */
if (UCOP_SET_P) {
gen_add_data_offset(s, insn, tmp2);
}
if (UCOP_SET_L) {
/* load */
if (UCOP_SET_B) {
tmp = gen_ld8u(tmp2, i);
} else {
tmp = gen_ld32(tmp2, i);
}
} else {
/* store */
tmp = load_reg(s, UCOP_REG_D);
if (UCOP_SET_B) {
gen_st8(tmp, tmp2, i);
} else {
gen_st32(tmp, tmp2, i);
}
}
if (!UCOP_SET_P) {
gen_add_data_offset(s, insn, tmp2);
store_reg(s, UCOP_REG_N, tmp2);
} else if (UCOP_SET_W) {
store_reg(s, UCOP_REG_N, tmp2);
} else {
dead_tmp(tmp2);
}
if (UCOP_SET_L) {
/* Complete the load. */
if (UCOP_REG_D == 31) {
gen_bx(s, tmp);
} else {
store_reg(s, UCOP_REG_D, tmp);
}
}
}
/* SWP instruction */
static void do_swap(CPUState *env, DisasContext *s, uint32_t insn)
{
TCGv addr;
TCGv tmp;
TCGv tmp2;
if ((insn & 0xff003fe0) != 0x40000120) {
ILLEGAL;
}
/* ??? This is not really atomic. However we know
we never have multiple CPUs running in parallel,
so it is good enough. */
addr = load_reg(s, UCOP_REG_N);
tmp = load_reg(s, UCOP_REG_M);
if (UCOP_SET_B) {
tmp2 = gen_ld8u(addr, IS_USER(s));
gen_st8(tmp, addr, IS_USER(s));
} else {
tmp2 = gen_ld32(addr, IS_USER(s));
gen_st32(tmp, addr, IS_USER(s));
}
dead_tmp(addr);
store_reg(s, UCOP_REG_D, tmp2);
}
/* load/store hw/sb */
static void do_ldst_hwsb(CPUState *env, DisasContext *s, uint32_t insn)
{
TCGv addr;
TCGv tmp;
if (UCOP_SH_OP == 0) {
do_swap(env, s, insn);
return;
}
addr = load_reg(s, UCOP_REG_N);
if (UCOP_SET_P) {
gen_add_datah_offset(s, insn, addr);
}
if (UCOP_SET_L) { /* load */
switch (UCOP_SH_OP) {
case 1:
tmp = gen_ld16u(addr, IS_USER(s));
break;
case 2:
tmp = gen_ld8s(addr, IS_USER(s));
break;
default: /* see do_swap */
case 3:
tmp = gen_ld16s(addr, IS_USER(s));
break;
}
} else { /* store */
if (UCOP_SH_OP != 1) {
ILLEGAL;
}
tmp = load_reg(s, UCOP_REG_D);
gen_st16(tmp, addr, IS_USER(s));
}
/* Perform base writeback before the loaded value to
ensure correct behavior with overlapping index registers. */
if (!UCOP_SET_P) {
gen_add_datah_offset(s, insn, addr);
store_reg(s, UCOP_REG_N, addr);
} else if (UCOP_SET_W) {
store_reg(s, UCOP_REG_N, addr);
} else {
dead_tmp(addr);
}
if (UCOP_SET_L) {
/* Complete the load. */
store_reg(s, UCOP_REG_D, tmp);
}
}
/* load/store multiple words */
static void do_ldst_m(CPUState *env, DisasContext *s, uint32_t insn)
{
unsigned int val, i;
int j, n, reg, user, loaded_base;
TCGv tmp;
TCGv tmp2;
TCGv addr;
TCGv loaded_var;
if (UCOP_SET(7)) {
ILLEGAL;
}
/* XXX: store correct base if write back */
user = 0;
if (UCOP_SET_B) { /* S bit in instruction table */
if (IS_USER(s)) {
ILLEGAL; /* only usable in supervisor mode */
}
if (UCOP_SET(18) == 0) { /* pc reg */
user = 1;
}
}
addr = load_reg(s, UCOP_REG_N);
/* compute total size */
loaded_base = 0;
TCGV_UNUSED(loaded_var);
n = 0;
for (i = 0; i < 6; i++) {
if (UCOP_SET(i)) {
n++;
}
}
for (i = 9; i < 19; i++) {
if (UCOP_SET(i)) {
n++;
}
}
/* XXX: test invalid n == 0 case ? */
if (UCOP_SET_U) {
if (UCOP_SET_P) {
/* pre increment */
tcg_gen_addi_i32(addr, addr, 4);
} else {
/* post increment */
}
} else {
if (UCOP_SET_P) {
/* pre decrement */
tcg_gen_addi_i32(addr, addr, -(n * 4));
} else {
/* post decrement */
if (n != 1) {
tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
}
}
}
j = 0;
reg = UCOP_SET(6) ? 16 : 0;
for (i = 0; i < 19; i++, reg++) {
if (i == 6) {
i = i + 3;
}
if (UCOP_SET(i)) {
if (UCOP_SET_L) { /* load */
tmp = gen_ld32(addr, IS_USER(s));
if (reg == 31) {
gen_bx(s, tmp);
} else if (user) {
tmp2 = tcg_const_i32(reg);
gen_helper_set_user_reg(tmp2, tmp);
tcg_temp_free_i32(tmp2);
dead_tmp(tmp);
} else if (reg == UCOP_REG_N) {
loaded_var = tmp;
loaded_base = 1;
} else {
store_reg(s, reg, tmp);
}
} else { /* store */
if (reg == 31) {
/* special case: r31 = PC + 4 */
val = (long)s->pc;
tmp = new_tmp();
tcg_gen_movi_i32(tmp, val);
} else if (user) {
tmp = new_tmp();
tmp2 = tcg_const_i32(reg);
gen_helper_get_user_reg(tmp, tmp2);
tcg_temp_free_i32(tmp2);
} else {
tmp = load_reg(s, reg);
}
gen_st32(tmp, addr, IS_USER(s));
}
j++;
/* no need to add after the last transfer */
if (j != n) {
tcg_gen_addi_i32(addr, addr, 4);
}
}
}
if (UCOP_SET_W) { /* write back */
if (UCOP_SET_U) {
if (UCOP_SET_P) {
/* pre increment */
} else {
/* post increment */
tcg_gen_addi_i32(addr, addr, 4);
}
} else {
if (UCOP_SET_P) {
/* pre decrement */
if (n != 1) {
tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
}
} else {
/* post decrement */
tcg_gen_addi_i32(addr, addr, -(n * 4));
}
}
store_reg(s, UCOP_REG_N, addr);
} else {
dead_tmp(addr);
}
if (loaded_base) {
store_reg(s, UCOP_REG_N, loaded_var);
}
if (UCOP_SET_B && !user) {
/* Restore ASR from BSR. */
tmp = load_cpu_field(bsr);
gen_set_asr(tmp, 0xffffffff);
dead_tmp(tmp);
s->is_jmp = DISAS_UPDATE;
}
}
/* branch (and link) */
static void do_branch(CPUState *env, DisasContext *s, uint32_t insn)
{
unsigned int val;
int32_t offset;
TCGv tmp;
if (UCOP_COND == 0xf) {
ILLEGAL;
}
if (UCOP_COND != 0xe) {
/* if not always execute, we generate a conditional jump to
next instruction */
s->condlabel = gen_new_label();
gen_test_cc(UCOP_COND ^ 1, s->condlabel);
s->condjmp = 1;
}
val = (int32_t)s->pc;
if (UCOP_SET_L) {
tmp = new_tmp();
tcg_gen_movi_i32(tmp, val);
store_reg(s, 30, tmp);
}
offset = (((int32_t)insn << 8) >> 8);
val += (offset << 2); /* unicore is pc+4 */
gen_jmp(s, val);
}
static void disas_uc32_insn(CPUState *env, DisasContext *s)
{
unsigned int insn;
insn = ldl_code(s->pc);
s->pc += 4;
/* UniCore instructions class:
* AAAB BBBC xxxx xxxx xxxx xxxD xxEx xxxx
* AAA : see switch case
* BBBB : opcodes or cond or PUBW
* C : S OR L
* D : 8
* E : 5
*/
switch (insn >> 29) {
case 0b000:
if (UCOP_SET(5) && UCOP_SET(8) && !UCOP_SET(28)) {
do_mult(env, s, insn);
break;
}
if (UCOP_SET(8)) {
do_misc(env, s, insn);
break;
}
case 0b001:
if (((UCOP_OPCODES >> 2) == 2) && !UCOP_SET_S) {
do_misc(env, s, insn);
break;
}
do_datap(env, s, insn);
break;
case 0b010:
if (UCOP_SET(8) && UCOP_SET(5)) {
do_ldst_hwsb(env, s, insn);
break;
}
if (UCOP_SET(8) || UCOP_SET(5)) {
ILLEGAL;
}
case 0b011:
do_ldst_ir(env, s, insn);
break;
case 0b100:
if (UCOP_SET(8)) {
ILLEGAL; /* extended instructions */
}
do_ldst_m(env, s, insn);
break;
case 0b101:
do_branch(env, s, insn);
break;
case 0b110:
/* Coprocessor. */
disas_coproc_insn(env, s, insn);
break;
case 0b111:
if (!UCOP_SET(28)) {
disas_coproc_insn(env, s, insn);
break;
}
if ((insn & 0xff000000) == 0xff000000) { /* syscall */
gen_set_pc_im(s->pc);
s->is_jmp = DISAS_SYSCALL;
break;
}
ILLEGAL;
}
return;
}
/* generate intermediate code in gen_opc_buf and gen_opparam_buf for
basic block 'tb'. If search_pc is TRUE, also generate PC
information for each intermediate instruction. */
static inline void gen_intermediate_code_internal(CPUState *env,
TranslationBlock *tb, int search_pc)
{
DisasContext dc1, *dc = &dc1;
CPUBreakpoint *bp;
uint16_t *gen_opc_end;
int j, lj;
target_ulong pc_start;
uint32_t next_page_start;
int num_insns;
int max_insns;
/* generate intermediate code */
num_temps = 0;
pc_start = tb->pc;
dc->tb = tb;
gen_opc_end = gen_opc_buf + OPC_MAX_SIZE;
dc->is_jmp = DISAS_NEXT;
dc->pc = pc_start;
dc->singlestep_enabled = env->singlestep_enabled;
dc->condjmp = 0;
cpu_F0s = tcg_temp_new_i32();
cpu_F1s = tcg_temp_new_i32();
cpu_F0d = tcg_temp_new_i64();
cpu_F1d = tcg_temp_new_i64();
next_page_start = (pc_start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
lj = -1;
num_insns = 0;
max_insns = tb->cflags & CF_COUNT_MASK;
if (max_insns == 0) {
max_insns = CF_COUNT_MASK;
}
gen_icount_start();
do {
if (unlikely(!QTAILQ_EMPTY(&env->breakpoints))) {
QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
if (bp->pc == dc->pc) {
gen_set_pc_im(dc->pc);
gen_exception(EXCP_DEBUG);
dc->is_jmp = DISAS_JUMP;
/* Advance PC so that clearing the breakpoint will
invalidate this TB. */
dc->pc += 2; /* FIXME */
goto done_generating;
break;
}
}
}
if (search_pc) {
j = gen_opc_ptr - gen_opc_buf;
if (lj < j) {
lj++;
while (lj < j) {
gen_opc_instr_start[lj++] = 0;
}
}
gen_opc_pc[lj] = dc->pc;
gen_opc_instr_start[lj] = 1;
gen_opc_icount[lj] = num_insns;
}
if (num_insns + 1 == max_insns && (tb->cflags & CF_LAST_IO)) {
gen_io_start();
}
disas_uc32_insn(env, dc);
if (num_temps) {
fprintf(stderr, "Internal resource leak before %08x\n", dc->pc);
num_temps = 0;
}
if (dc->condjmp && !dc->is_jmp) {
gen_set_label(dc->condlabel);
dc->condjmp = 0;
}
/* Translation stops when a conditional branch is encountered.
* Otherwise the subsequent code could get translated several times.
* Also stop translation when a page boundary is reached. This
* ensures prefetch aborts occur at the right place. */
num_insns++;
} while (!dc->is_jmp && gen_opc_ptr < gen_opc_end &&
!env->singlestep_enabled &&
!singlestep &&
dc->pc < next_page_start &&
num_insns < max_insns);
if (tb->cflags & CF_LAST_IO) {
if (dc->condjmp) {
/* FIXME: This can theoretically happen with self-modifying
code. */
cpu_abort(env, "IO on conditional branch instruction");
}
gen_io_end();
}
/* At this stage dc->condjmp will only be set when the skipped
instruction was a conditional branch or trap, and the PC has
already been written. */
if (unlikely(env->singlestep_enabled)) {
/* Make sure the pc is updated, and raise a debug exception. */
if (dc->condjmp) {
if (dc->is_jmp == DISAS_SYSCALL) {
gen_exception(UC32_EXCP_PRIV);
} else {
gen_exception(EXCP_DEBUG);
}
gen_set_label(dc->condlabel);
}
if (dc->condjmp || !dc->is_jmp) {
gen_set_pc_im(dc->pc);
dc->condjmp = 0;
}
if (dc->is_jmp == DISAS_SYSCALL && !dc->condjmp) {
gen_exception(UC32_EXCP_PRIV);
} else {
gen_exception(EXCP_DEBUG);
}
} else {
/* While branches must always occur at the end of an IT block,
there are a few other things that can cause us to terminate
the TB in the middel of an IT block:
- Exception generating instructions (bkpt, swi, undefined).
- Page boundaries.
- Hardware watchpoints.
Hardware breakpoints have already been handled and skip this code.
*/
switch (dc->is_jmp) {
case DISAS_NEXT:
gen_goto_tb(dc, 1, dc->pc);
break;
default:
case DISAS_JUMP:
case DISAS_UPDATE:
/* indicate that the hash table must be used to find the next TB */
tcg_gen_exit_tb(0);
break;
case DISAS_TB_JUMP:
/* nothing more to generate */
break;
case DISAS_SYSCALL:
gen_exception(UC32_EXCP_PRIV);
break;
}
if (dc->condjmp) {
gen_set_label(dc->condlabel);
gen_goto_tb(dc, 1, dc->pc);
dc->condjmp = 0;
}
}
done_generating:
gen_icount_end(tb, num_insns);
*gen_opc_ptr = INDEX_op_end;
#ifdef DEBUG_DISAS
if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
qemu_log("----------------\n");
qemu_log("IN: %s\n", lookup_symbol(pc_start));
log_target_disas(pc_start, dc->pc - pc_start, 0);
qemu_log("\n");
}
#endif
if (search_pc) {
j = gen_opc_ptr - gen_opc_buf;
lj++;
while (lj <= j) {
gen_opc_instr_start[lj++] = 0;
}
} else {
tb->size = dc->pc - pc_start;
tb->icount = num_insns;
}
}
void gen_intermediate_code(CPUState *env, TranslationBlock *tb)
{
gen_intermediate_code_internal(env, tb, 0);
}
void gen_intermediate_code_pc(CPUState *env, TranslationBlock *tb)
{
gen_intermediate_code_internal(env, tb, 1);
}
static const char *cpu_mode_names[16] = {
"USER", "REAL", "INTR", "PRIV", "UM14", "UM15", "UM16", "TRAP",
"UM18", "UM19", "UM1A", "EXTN", "UM1C", "UM1D", "UM1E", "SUSR"
};
#define UCF64_DUMP_STATE
void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
int flags)
{
int i;
#ifdef UCF64_DUMP_STATE
union {
uint32_t i;
float s;
} s0, s1;
CPU_DoubleU d;
/* ??? This assumes float64 and double have the same layout.
Oh well, it's only debug dumps. */
union {
float64 f64;
double d;
} d0;
#endif
uint32_t psr;
for (i = 0; i < 32; i++) {
cpu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
if ((i % 4) == 3) {
cpu_fprintf(f, "\n");
} else {
cpu_fprintf(f, " ");
}
}
psr = cpu_asr_read(env);
cpu_fprintf(f, "PSR=%08x %c%c%c%c %s\n",
psr,
psr & (1 << 31) ? 'N' : '-',
psr & (1 << 30) ? 'Z' : '-',
psr & (1 << 29) ? 'C' : '-',
psr & (1 << 28) ? 'V' : '-',
cpu_mode_names[psr & 0xf]);
#ifdef UCF64_DUMP_STATE
for (i = 0; i < 16; i++) {
d.d = env->ucf64.regs[i];
s0.i = d.l.lower;
s1.i = d.l.upper;
d0.f64 = d.d;
cpu_fprintf(f, "s%02d=%08x(%8g) s%02d=%08x(%8g) d%02d=%" PRIx64 "(%8g)\n",
i * 2, (int)s0.i, s0.s,
i * 2 + 1, (int)s1.i, s1.s,
i, (uint64_t)d0.f64, d0.d);
}
cpu_fprintf(f, "FPSCR: %08x\n", (int)env->ucf64.xregs[UC32_UCF64_FPSCR]);
#endif
}
void gen_pc_load(CPUState *env, TranslationBlock *tb,
unsigned long searched_pc, int pc_pos, void *puc)
{
env->regs[31] = gen_opc_pc[pc_pos];
}