qemu-e2k/include/disas/dis-asm.h

540 lines
20 KiB
C

/* Interface between the opcode library and its callers.
Written by Cygnus Support, 1993.
The opcode library (libopcodes.a) provides instruction decoders for
a large variety of instruction sets, callable with an identical
interface, for making instruction-processing programs more independent
of the instruction set being processed. */
#ifndef DISAS_DIS_ASM_H
#define DISAS_DIS_ASM_H
#include "qemu/bswap.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef void *PTR;
typedef uint64_t bfd_vma;
typedef int64_t bfd_signed_vma;
typedef uint8_t bfd_byte;
#define sprintf_vma(s,x) sprintf (s, "%0" PRIx64, x)
#define snprintf_vma(s,ss,x) snprintf (s, ss, "%0" PRIx64, x)
#define BFD64
enum bfd_flavour {
bfd_target_unknown_flavour,
bfd_target_aout_flavour,
bfd_target_coff_flavour,
bfd_target_ecoff_flavour,
bfd_target_elf_flavour,
bfd_target_ieee_flavour,
bfd_target_nlm_flavour,
bfd_target_oasys_flavour,
bfd_target_tekhex_flavour,
bfd_target_srec_flavour,
bfd_target_ihex_flavour,
bfd_target_som_flavour,
bfd_target_os9k_flavour,
bfd_target_versados_flavour,
bfd_target_msdos_flavour,
bfd_target_evax_flavour
};
enum bfd_endian { BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN };
enum bfd_architecture
{
bfd_arch_unknown, /* File arch not known */
bfd_arch_obscure, /* Arch known, not one of these */
bfd_arch_m68k, /* Motorola 68xxx */
#define bfd_mach_m68000 1
#define bfd_mach_m68008 2
#define bfd_mach_m68010 3
#define bfd_mach_m68020 4
#define bfd_mach_m68030 5
#define bfd_mach_m68040 6
#define bfd_mach_m68060 7
#define bfd_mach_cpu32 8
#define bfd_mach_mcf5200 9
#define bfd_mach_mcf5206e 10
#define bfd_mach_mcf5307 11
#define bfd_mach_mcf5407 12
#define bfd_mach_mcf528x 13
#define bfd_mach_mcfv4e 14
#define bfd_mach_mcf521x 15
#define bfd_mach_mcf5249 16
#define bfd_mach_mcf547x 17
#define bfd_mach_mcf548x 18
bfd_arch_vax, /* DEC Vax */
bfd_arch_i960, /* Intel 960 */
/* The order of the following is important.
lower number indicates a machine type that
only accepts a subset of the instructions
available to machines with higher numbers.
The exception is the "ca", which is
incompatible with all other machines except
"core". */
#define bfd_mach_i960_core 1
#define bfd_mach_i960_ka_sa 2
#define bfd_mach_i960_kb_sb 3
#define bfd_mach_i960_mc 4
#define bfd_mach_i960_xa 5
#define bfd_mach_i960_ca 6
#define bfd_mach_i960_jx 7
#define bfd_mach_i960_hx 8
bfd_arch_a29k, /* AMD 29000 */
bfd_arch_sparc, /* SPARC */
#define bfd_mach_sparc 1
/* The difference between v8plus and v9 is that v9 is a true 64 bit env. */
#define bfd_mach_sparc_sparclet 2
#define bfd_mach_sparc_sparclite 3
#define bfd_mach_sparc_v8plus 4
#define bfd_mach_sparc_v8plusa 5 /* with ultrasparc add'ns. */
#define bfd_mach_sparc_sparclite_le 6
#define bfd_mach_sparc_v9 7
#define bfd_mach_sparc_v9a 8 /* with ultrasparc add'ns. */
#define bfd_mach_sparc_v8plusb 9 /* with cheetah add'ns. */
#define bfd_mach_sparc_v9b 10 /* with cheetah add'ns. */
/* Nonzero if MACH has the v9 instruction set. */
#define bfd_mach_sparc_v9_p(mach) \
((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9b \
&& (mach) != bfd_mach_sparc_sparclite_le)
bfd_arch_mips, /* MIPS Rxxxx */
#define bfd_mach_mips3000 3000
#define bfd_mach_mips3900 3900
#define bfd_mach_mips4000 4000
#define bfd_mach_mips4010 4010
#define bfd_mach_mips4100 4100
#define bfd_mach_mips4300 4300
#define bfd_mach_mips4400 4400
#define bfd_mach_mips4600 4600
#define bfd_mach_mips4650 4650
#define bfd_mach_mips5000 5000
#define bfd_mach_mips6000 6000
#define bfd_mach_mips8000 8000
#define bfd_mach_mips10000 10000
#define bfd_mach_mips16 16
bfd_arch_i386, /* Intel 386 */
#define bfd_mach_i386_i386 0
#define bfd_mach_i386_i8086 1
#define bfd_mach_i386_i386_intel_syntax 2
#define bfd_mach_x86_64 3
#define bfd_mach_x86_64_intel_syntax 4
bfd_arch_we32k, /* AT&T WE32xxx */
bfd_arch_tahoe, /* CCI/Harris Tahoe */
bfd_arch_i860, /* Intel 860 */
bfd_arch_romp, /* IBM ROMP PC/RT */
bfd_arch_alliant, /* Alliant */
bfd_arch_convex, /* Convex */
bfd_arch_m88k, /* Motorola 88xxx */
bfd_arch_pyramid, /* Pyramid Technology */
bfd_arch_h8300, /* Hitachi H8/300 */
#define bfd_mach_h8300 1
#define bfd_mach_h8300h 2
#define bfd_mach_h8300s 3
bfd_arch_powerpc, /* PowerPC */
#define bfd_mach_ppc 0
#define bfd_mach_ppc64 1
#define bfd_mach_ppc_403 403
#define bfd_mach_ppc_403gc 4030
#define bfd_mach_ppc_e500 500
#define bfd_mach_ppc_505 505
#define bfd_mach_ppc_601 601
#define bfd_mach_ppc_602 602
#define bfd_mach_ppc_603 603
#define bfd_mach_ppc_ec603e 6031
#define bfd_mach_ppc_604 604
#define bfd_mach_ppc_620 620
#define bfd_mach_ppc_630 630
#define bfd_mach_ppc_750 750
#define bfd_mach_ppc_860 860
#define bfd_mach_ppc_a35 35
#define bfd_mach_ppc_rs64ii 642
#define bfd_mach_ppc_rs64iii 643
#define bfd_mach_ppc_7400 7400
bfd_arch_rs6000, /* IBM RS/6000 */
bfd_arch_hppa, /* HP PA RISC */
#define bfd_mach_hppa10 10
#define bfd_mach_hppa11 11
#define bfd_mach_hppa20 20
#define bfd_mach_hppa20w 25
bfd_arch_d10v, /* Mitsubishi D10V */
bfd_arch_z8k, /* Zilog Z8000 */
#define bfd_mach_z8001 1
#define bfd_mach_z8002 2
bfd_arch_h8500, /* Hitachi H8/500 */
bfd_arch_sh, /* Hitachi SH */
#define bfd_mach_sh 1
#define bfd_mach_sh2 0x20
#define bfd_mach_sh_dsp 0x2d
#define bfd_mach_sh2a 0x2a
#define bfd_mach_sh2a_nofpu 0x2b
#define bfd_mach_sh2e 0x2e
#define bfd_mach_sh3 0x30
#define bfd_mach_sh3_nommu 0x31
#define bfd_mach_sh3_dsp 0x3d
#define bfd_mach_sh3e 0x3e
#define bfd_mach_sh4 0x40
#define bfd_mach_sh4_nofpu 0x41
#define bfd_mach_sh4_nommu_nofpu 0x42
#define bfd_mach_sh4a 0x4a
#define bfd_mach_sh4a_nofpu 0x4b
#define bfd_mach_sh4al_dsp 0x4d
#define bfd_mach_sh5 0x50
bfd_arch_alpha, /* Dec Alpha */
#define bfd_mach_alpha 1
#define bfd_mach_alpha_ev4 0x10
#define bfd_mach_alpha_ev5 0x20
#define bfd_mach_alpha_ev6 0x30
bfd_arch_arm, /* Advanced Risc Machines ARM */
#define bfd_mach_arm_unknown 0
#define bfd_mach_arm_2 1
#define bfd_mach_arm_2a 2
#define bfd_mach_arm_3 3
#define bfd_mach_arm_3M 4
#define bfd_mach_arm_4 5
#define bfd_mach_arm_4T 6
#define bfd_mach_arm_5 7
#define bfd_mach_arm_5T 8
#define bfd_mach_arm_5TE 9
#define bfd_mach_arm_XScale 10
#define bfd_mach_arm_ep9312 11
#define bfd_mach_arm_iWMMXt 12
#define bfd_mach_arm_iWMMXt2 13
bfd_arch_ns32k, /* National Semiconductors ns32000 */
bfd_arch_w65, /* WDC 65816 */
bfd_arch_tic30, /* Texas Instruments TMS320C30 */
bfd_arch_v850, /* NEC V850 */
#define bfd_mach_v850 0
bfd_arch_arc, /* Argonaut RISC Core */
#define bfd_mach_arc_base 0
bfd_arch_m32r, /* Mitsubishi M32R/D */
#define bfd_mach_m32r 0 /* backwards compatibility */
bfd_arch_mn10200, /* Matsushita MN10200 */
bfd_arch_mn10300, /* Matsushita MN10300 */
bfd_arch_avr, /* AVR microcontrollers */
#define bfd_mach_avr1 1
#define bfd_mach_avr2 2
#define bfd_mach_avr25 25
#define bfd_mach_avr3 3
#define bfd_mach_avr31 31
#define bfd_mach_avr35 35
#define bfd_mach_avr4 4
#define bfd_mach_avr5 5
#define bfd_mach_avr51 51
#define bfd_mach_avr6 6
#define bfd_mach_avrtiny 100
#define bfd_mach_avrxmega1 101
#define bfd_mach_avrxmega2 102
#define bfd_mach_avrxmega3 103
#define bfd_mach_avrxmega4 104
#define bfd_mach_avrxmega5 105
#define bfd_mach_avrxmega6 106
#define bfd_mach_avrxmega7 107
bfd_arch_cris, /* Axis CRIS */
#define bfd_mach_cris_v0_v10 255
#define bfd_mach_cris_v32 32
#define bfd_mach_cris_v10_v32 1032
bfd_arch_microblaze, /* Xilinx MicroBlaze. */
bfd_arch_e2k, /* MCST E2K. */
/* It's crucial that the underlying `bfd_mach_e2k*' have the same values as */
/* the corresponding `E_E2K_MACH_*'s!!! */
#define bfd_mach_e2k_generic 0
#define bfd_mach_e2k_ev1 1
/* This is interpreted as the common subset of all Elbrus V2 iterations.
Currently it is the same as the common subset of all elbrus-2c+. */
#define bfd_mach_e2k_ev2 2
#define bfd_mach_e2k_ev3 3
#define bfd_mach_e2k_ev4 4
#define bfd_mach_e2k_ev5 5
#define bfd_mach_e2k_ev6 6
/* Values 16, 17 and 18 used to be reserved for the first three iterations
of `elbrus-v2'. See `include/elf/e2k.h' for why they can't be reused right
now. */
#define bfd_mach_e2k_8c 19
#define bfd_mach_e2k_1cplus 20
bfd_arch_moxie, /* The Moxie core. */
bfd_arch_ia64, /* HP/Intel ia64 */
#define bfd_mach_ia64_elf64 64
#define bfd_mach_ia64_elf32 32
bfd_arch_nios2, /* Nios II */
#define bfd_mach_nios2 0
#define bfd_mach_nios2r1 1
#define bfd_mach_nios2r2 2
bfd_arch_rx, /* Renesas RX */
#define bfd_mach_rx 0x75
#define bfd_mach_rx_v2 0x76
#define bfd_mach_rx_v3 0x77
bfd_arch_loongarch,
bfd_arch_last
};
#define bfd_mach_s390_31 31
#define bfd_mach_s390_64 64
typedef struct symbol_cache_entry
{
const char *name;
union
{
PTR p;
bfd_vma i;
} udata;
} asymbol;
typedef int (*fprintf_function)(FILE *f, const char *fmt, ...)
G_GNUC_PRINTF(2, 3);
enum dis_insn_type {
dis_noninsn, /* Not a valid instruction */
dis_nonbranch, /* Not a branch instruction */
dis_branch, /* Unconditional branch */
dis_condbranch, /* Conditional branch */
dis_jsr, /* Jump to subroutine */
dis_condjsr, /* Conditional jump to subroutine */
dis_dref, /* Data reference instruction */
dis_dref2 /* Two data references in instruction */
};
/* This struct is passed into the instruction decoding routine,
and is passed back out into each callback. The various fields are used
for conveying information from your main routine into your callbacks,
for passing information into the instruction decoders (such as the
addresses of the callback functions), or for passing information
back from the instruction decoders to their callers.
It must be initialized before it is first passed; this can be done
by hand, or using one of the initialization macros below. */
typedef struct disassemble_info {
fprintf_function fprintf_func;
FILE *stream;
PTR application_data;
/* Target description. We could replace this with a pointer to the bfd,
but that would require one. There currently isn't any such requirement
so to avoid introducing one we record these explicitly. */
/* The bfd_flavour. This can be bfd_target_unknown_flavour. */
enum bfd_flavour flavour;
/* The bfd_arch value. */
enum bfd_architecture arch;
/* The bfd_mach value. */
unsigned long mach;
/* Endianness (for bi-endian cpus). Mono-endian cpus can ignore this. */
enum bfd_endian endian;
/* An array of pointers to symbols either at the location being disassembled
or at the start of the function being disassembled. The array is sorted
so that the first symbol is intended to be the one used. The others are
present for any misc. purposes. This is not set reliably, but if it is
not NULL, it is correct. */
asymbol **symbols;
/* Number of symbols in array. */
int num_symbols;
/* For use by the disassembler.
The top 16 bits are reserved for public use (and are documented here).
The bottom 16 bits are for the internal use of the disassembler. */
unsigned long flags;
#define INSN_HAS_RELOC 0x80000000
#define INSN_ARM_BE32 0x00010000
PTR private_data;
/* Function used to get bytes to disassemble. MEMADDR is the
address of the stuff to be disassembled, MYADDR is the address to
put the bytes in, and LENGTH is the number of bytes to read.
INFO is a pointer to this struct.
Returns an errno value or 0 for success. */
int (*read_memory_func)
(bfd_vma memaddr, bfd_byte *myaddr, int length,
struct disassemble_info *info);
/* Function which should be called if we get an error that we can't
recover from. STATUS is the errno value from read_memory_func and
MEMADDR is the address that we were trying to read. INFO is a
pointer to this struct. */
void (*memory_error_func)
(int status, bfd_vma memaddr, struct disassemble_info *info);
/* Function called to print ADDR. */
void (*print_address_func)
(bfd_vma addr, struct disassemble_info *info);
/* Function called to print an instruction. The function is architecture
* specific.
*/
int (*print_insn)(bfd_vma addr, struct disassemble_info *info);
/* Function called to determine if there is a symbol at the given ADDR.
If there is, the function returns 1, otherwise it returns 0.
This is used by ports which support an overlay manager where
the overlay number is held in the top part of an address. In
some circumstances we want to include the overlay number in the
address, (normally because there is a symbol associated with
that address), but sometimes we want to mask out the overlay bits. */
int (* symbol_at_address_func)
(bfd_vma addr, struct disassemble_info * info);
/* These are for buffer_read_memory. */
const bfd_byte *buffer;
bfd_vma buffer_vma;
int buffer_length;
/* This variable may be set by the instruction decoder. It suggests
the number of bytes objdump should display on a single line. If
the instruction decoder sets this, it should always set it to
the same value in order to get reasonable looking output. */
int bytes_per_line;
/* the next two variables control the way objdump displays the raw data */
/* For example, if bytes_per_line is 8 and bytes_per_chunk is 4, the */
/* output will look like this:
00: 00000000 00000000
with the chunks displayed according to "display_endian". */
int bytes_per_chunk;
enum bfd_endian display_endian;
/* Results from instruction decoders. Not all decoders yet support
this information. This info is set each time an instruction is
decoded, and is only valid for the last such instruction.
To determine whether this decoder supports this information, set
insn_info_valid to 0, decode an instruction, then check it. */
char insn_info_valid; /* Branch info has been set. */
char branch_delay_insns; /* How many sequential insn's will run before
a branch takes effect. (0 = normal) */
char data_size; /* Size of data reference in insn, in bytes */
enum dis_insn_type insn_type; /* Type of instruction */
bfd_vma target; /* Target address of branch or dref, if known;
zero if unknown. */
bfd_vma target2; /* Second target address for dref2 */
/* Command line options specific to the target disassembler. */
char * disassembler_options;
/* Field intended to be used by targets in any way they deem suitable. */
int64_t target_info;
/* Options for Capstone disassembly. */
int cap_arch;
int cap_mode;
int cap_insn_unit;
int cap_insn_split;
/* If non-zero then try not disassemble beyond this address, even if
there are values left in the buffer. This address is the address
of the nearest symbol forwards from the start of the disassembly,
and it is assumed that it lies on the boundary between instructions.
If an instruction spans this address then this is an error in the
file being disassembled. */
bfd_vma stop_vma;
} disassemble_info;
/* Standard disassemblers. Disassemble one instruction at the given
target address. Return number of bytes processed. */
typedef int (*disassembler_ftype) (bfd_vma, disassemble_info *);
int print_insn_tci(bfd_vma, disassemble_info*);
int print_insn_big_mips (bfd_vma, disassemble_info*);
int print_insn_little_mips (bfd_vma, disassemble_info*);
int print_insn_nanomips (bfd_vma, disassemble_info*);
int print_insn_m68k (bfd_vma, disassemble_info*);
int print_insn_z8001 (bfd_vma, disassemble_info*);
int print_insn_z8002 (bfd_vma, disassemble_info*);
int print_insn_h8300 (bfd_vma, disassemble_info*);
int print_insn_h8300h (bfd_vma, disassemble_info*);
int print_insn_h8300s (bfd_vma, disassemble_info*);
int print_insn_h8500 (bfd_vma, disassemble_info*);
int print_insn_arm_a64 (bfd_vma, disassemble_info*);
int print_insn_alpha (bfd_vma, disassemble_info*);
disassembler_ftype arc_get_disassembler (int, int);
int print_insn_sparc (bfd_vma, disassemble_info*);
int print_insn_big_a29k (bfd_vma, disassemble_info*);
int print_insn_little_a29k (bfd_vma, disassemble_info*);
int print_insn_i960 (bfd_vma, disassemble_info*);
int print_insn_sh (bfd_vma, disassemble_info*);
int print_insn_shl (bfd_vma, disassemble_info*);
int print_insn_hppa (bfd_vma, disassemble_info*);
int print_insn_m32r (bfd_vma, disassemble_info*);
int print_insn_m88k (bfd_vma, disassemble_info*);
int print_insn_mn10200 (bfd_vma, disassemble_info*);
int print_insn_mn10300 (bfd_vma, disassemble_info*);
int print_insn_ns32k (bfd_vma, disassemble_info*);
int print_insn_big_powerpc (bfd_vma, disassemble_info*);
int print_insn_little_powerpc (bfd_vma, disassemble_info*);
int print_insn_rs6000 (bfd_vma, disassemble_info*);
int print_insn_w65 (bfd_vma, disassemble_info*);
int print_insn_d10v (bfd_vma, disassemble_info*);
int print_insn_v850 (bfd_vma, disassemble_info*);
int print_insn_tic30 (bfd_vma, disassemble_info*);
int print_insn_crisv32 (bfd_vma, disassemble_info*);
int print_insn_crisv10 (bfd_vma, disassemble_info*);
int print_insn_microblaze (bfd_vma, disassemble_info*);
int print_insn_ia64 (bfd_vma, disassemble_info*);
int print_insn_nios2(bfd_vma, disassemble_info*);
int print_insn_xtensa (bfd_vma, disassemble_info*);
int print_insn_riscv32 (bfd_vma, disassemble_info*);
int print_insn_riscv64 (bfd_vma, disassemble_info*);
int print_insn_riscv128 (bfd_vma, disassemble_info*);
int print_insn_rx(bfd_vma, disassemble_info *);
int print_insn_hexagon(bfd_vma, disassemble_info *);
int print_insn_loongarch(bfd_vma, disassemble_info *);
int print_insn_e2k (bfd_vma, disassemble_info*);
#ifdef CONFIG_CAPSTONE
bool cap_disas_target(disassemble_info *info, uint64_t pc, size_t size);
bool cap_disas_host(disassemble_info *info, const void *code, size_t size);
bool cap_disas_monitor(disassemble_info *info, uint64_t pc, int count);
bool cap_disas_plugin(disassemble_info *info, uint64_t pc, size_t size);
#else
# define cap_disas_target(i, p, s) false
# define cap_disas_host(i, p, s) false
# define cap_disas_monitor(i, p, c) false
# define cap_disas_plugin(i, p, c) false
#endif /* CONFIG_CAPSTONE */
#ifndef ATTRIBUTE_UNUSED
#define ATTRIBUTE_UNUSED __attribute__((unused))
#endif
/* from libbfd */
static inline bfd_vma bfd_getl64(const bfd_byte *addr)
{
return ldq_le_p(addr);
}
static inline bfd_vma bfd_getl32(const bfd_byte *addr)
{
return (uint32_t)ldl_le_p(addr);
}
static inline bfd_vma bfd_getl16(const bfd_byte *addr)
{
return lduw_le_p(addr);
}
static inline bfd_vma bfd_getb32(const bfd_byte *addr)
{
return (uint32_t)ldl_be_p(addr);
}
static inline bfd_vma bfd_getb16(const bfd_byte *addr)
{
return lduw_be_p(addr);
}
typedef bool bfd_boolean;
#ifdef __cplusplus
}
#endif
#endif /* DISAS_DIS_ASM_H */