dcb32f1d8f
We currently search both the root and the tcg/ directories for tcg files: $ git grep '#include "tcg/' | wc -l 28 $ git grep '#include "tcg[^/]' | wc -l 94 To simplify the preprocessor search path, unify by expliciting the tcg/ directory. Patch created mechanically by running: $ for x in \ tcg.h tcg-mo.h tcg-op.h tcg-opc.h \ tcg-op-gvec.h tcg-gvec-desc.h; do \ sed -i "s,#include \"$x\",#include \"tcg/$x\"," \ $(git grep -l "#include \"$x\""); \ done Acked-by: David Gibson <david@gibson.dropbear.id.au> (ppc parts) Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Reviewed-by: Stefan Weil <sw@weilnetz.de> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com> Message-Id: <20200101112303.20724-2-philmd@redhat.com> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
11368 lines
350 KiB
C
11368 lines
350 KiB
C
/*
|
|
* ARM translation
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
* Copyright (c) 2005-2007 CodeSourcery
|
|
* Copyright (c) 2007 OpenedHand, Ltd.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
|
|
#include "cpu.h"
|
|
#include "internals.h"
|
|
#include "disas/disas.h"
|
|
#include "exec/exec-all.h"
|
|
#include "tcg/tcg-op.h"
|
|
#include "tcg/tcg-op-gvec.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/bitops.h"
|
|
#include "arm_ldst.h"
|
|
#include "hw/semihosting/semihost.h"
|
|
|
|
#include "exec/helper-proto.h"
|
|
#include "exec/helper-gen.h"
|
|
|
|
#include "trace-tcg.h"
|
|
#include "exec/log.h"
|
|
|
|
|
|
#define ENABLE_ARCH_4T arm_dc_feature(s, ARM_FEATURE_V4T)
|
|
#define ENABLE_ARCH_5 arm_dc_feature(s, ARM_FEATURE_V5)
|
|
/* currently all emulated v5 cores are also v5TE, so don't bother */
|
|
#define ENABLE_ARCH_5TE arm_dc_feature(s, ARM_FEATURE_V5)
|
|
#define ENABLE_ARCH_5J dc_isar_feature(jazelle, s)
|
|
#define ENABLE_ARCH_6 arm_dc_feature(s, ARM_FEATURE_V6)
|
|
#define ENABLE_ARCH_6K arm_dc_feature(s, ARM_FEATURE_V6K)
|
|
#define ENABLE_ARCH_6T2 arm_dc_feature(s, ARM_FEATURE_THUMB2)
|
|
#define ENABLE_ARCH_7 arm_dc_feature(s, ARM_FEATURE_V7)
|
|
#define ENABLE_ARCH_8 arm_dc_feature(s, ARM_FEATURE_V8)
|
|
|
|
#define ARCH(x) do { if (!ENABLE_ARCH_##x) goto illegal_op; } while(0)
|
|
|
|
#include "translate.h"
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
#define IS_USER(s) 1
|
|
#else
|
|
#define IS_USER(s) (s->user)
|
|
#endif
|
|
|
|
/* We reuse the same 64-bit temporaries for efficiency. */
|
|
static TCGv_i64 cpu_V0, cpu_V1, cpu_M0;
|
|
static TCGv_i32 cpu_R[16];
|
|
TCGv_i32 cpu_CF, cpu_NF, cpu_VF, cpu_ZF;
|
|
TCGv_i64 cpu_exclusive_addr;
|
|
TCGv_i64 cpu_exclusive_val;
|
|
|
|
#include "exec/gen-icount.h"
|
|
|
|
static const char * const regnames[] =
|
|
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "pc" };
|
|
|
|
/* Function prototypes for gen_ functions calling Neon helpers. */
|
|
typedef void NeonGenThreeOpEnvFn(TCGv_i32, TCGv_env, TCGv_i32,
|
|
TCGv_i32, TCGv_i32);
|
|
/* Function prototypes for gen_ functions for fix point conversions */
|
|
typedef void VFPGenFixPointFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
|
|
|
|
/* initialize TCG globals. */
|
|
void arm_translate_init(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
cpu_R[i] = tcg_global_mem_new_i32(cpu_env,
|
|
offsetof(CPUARMState, regs[i]),
|
|
regnames[i]);
|
|
}
|
|
cpu_CF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, CF), "CF");
|
|
cpu_NF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, NF), "NF");
|
|
cpu_VF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, VF), "VF");
|
|
cpu_ZF = tcg_global_mem_new_i32(cpu_env, offsetof(CPUARMState, ZF), "ZF");
|
|
|
|
cpu_exclusive_addr = tcg_global_mem_new_i64(cpu_env,
|
|
offsetof(CPUARMState, exclusive_addr), "exclusive_addr");
|
|
cpu_exclusive_val = tcg_global_mem_new_i64(cpu_env,
|
|
offsetof(CPUARMState, exclusive_val), "exclusive_val");
|
|
|
|
a64_translate_init();
|
|
}
|
|
|
|
/* Flags for the disas_set_da_iss info argument:
|
|
* lower bits hold the Rt register number, higher bits are flags.
|
|
*/
|
|
typedef enum ISSInfo {
|
|
ISSNone = 0,
|
|
ISSRegMask = 0x1f,
|
|
ISSInvalid = (1 << 5),
|
|
ISSIsAcqRel = (1 << 6),
|
|
ISSIsWrite = (1 << 7),
|
|
ISSIs16Bit = (1 << 8),
|
|
} ISSInfo;
|
|
|
|
/* Save the syndrome information for a Data Abort */
|
|
static void disas_set_da_iss(DisasContext *s, MemOp memop, ISSInfo issinfo)
|
|
{
|
|
uint32_t syn;
|
|
int sas = memop & MO_SIZE;
|
|
bool sse = memop & MO_SIGN;
|
|
bool is_acqrel = issinfo & ISSIsAcqRel;
|
|
bool is_write = issinfo & ISSIsWrite;
|
|
bool is_16bit = issinfo & ISSIs16Bit;
|
|
int srt = issinfo & ISSRegMask;
|
|
|
|
if (issinfo & ISSInvalid) {
|
|
/* Some callsites want to conditionally provide ISS info,
|
|
* eg "only if this was not a writeback"
|
|
*/
|
|
return;
|
|
}
|
|
|
|
if (srt == 15) {
|
|
/* For AArch32, insns where the src/dest is R15 never generate
|
|
* ISS information. Catching that here saves checking at all
|
|
* the call sites.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
syn = syn_data_abort_with_iss(0, sas, sse, srt, 0, is_acqrel,
|
|
0, 0, 0, is_write, 0, is_16bit);
|
|
disas_set_insn_syndrome(s, syn);
|
|
}
|
|
|
|
static inline int get_a32_user_mem_index(DisasContext *s)
|
|
{
|
|
/* Return the core mmu_idx to use for A32/T32 "unprivileged load/store"
|
|
* insns:
|
|
* if PL2, UNPREDICTABLE (we choose to implement as if PL0)
|
|
* otherwise, access as if at PL0.
|
|
*/
|
|
switch (s->mmu_idx) {
|
|
case ARMMMUIdx_S1E2: /* this one is UNPREDICTABLE */
|
|
case ARMMMUIdx_S12NSE0:
|
|
case ARMMMUIdx_S12NSE1:
|
|
return arm_to_core_mmu_idx(ARMMMUIdx_S12NSE0);
|
|
case ARMMMUIdx_S1E3:
|
|
case ARMMMUIdx_S1SE0:
|
|
case ARMMMUIdx_S1SE1:
|
|
return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0);
|
|
case ARMMMUIdx_MUser:
|
|
case ARMMMUIdx_MPriv:
|
|
return arm_to_core_mmu_idx(ARMMMUIdx_MUser);
|
|
case ARMMMUIdx_MUserNegPri:
|
|
case ARMMMUIdx_MPrivNegPri:
|
|
return arm_to_core_mmu_idx(ARMMMUIdx_MUserNegPri);
|
|
case ARMMMUIdx_MSUser:
|
|
case ARMMMUIdx_MSPriv:
|
|
return arm_to_core_mmu_idx(ARMMMUIdx_MSUser);
|
|
case ARMMMUIdx_MSUserNegPri:
|
|
case ARMMMUIdx_MSPrivNegPri:
|
|
return arm_to_core_mmu_idx(ARMMMUIdx_MSUserNegPri);
|
|
case ARMMMUIdx_S2NS:
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static inline TCGv_i32 load_cpu_offset(int offset)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_ld_i32(tmp, cpu_env, offset);
|
|
return tmp;
|
|
}
|
|
|
|
#define load_cpu_field(name) load_cpu_offset(offsetof(CPUARMState, name))
|
|
|
|
static inline void store_cpu_offset(TCGv_i32 var, int offset)
|
|
{
|
|
tcg_gen_st_i32(var, cpu_env, offset);
|
|
tcg_temp_free_i32(var);
|
|
}
|
|
|
|
#define store_cpu_field(var, name) \
|
|
store_cpu_offset(var, offsetof(CPUARMState, name))
|
|
|
|
/* The architectural value of PC. */
|
|
static uint32_t read_pc(DisasContext *s)
|
|
{
|
|
return s->pc_curr + (s->thumb ? 4 : 8);
|
|
}
|
|
|
|
/* Set a variable to the value of a CPU register. */
|
|
static void load_reg_var(DisasContext *s, TCGv_i32 var, int reg)
|
|
{
|
|
if (reg == 15) {
|
|
tcg_gen_movi_i32(var, read_pc(s));
|
|
} else {
|
|
tcg_gen_mov_i32(var, cpu_R[reg]);
|
|
}
|
|
}
|
|
|
|
/* Create a new temporary and set it to the value of a CPU register. */
|
|
static inline TCGv_i32 load_reg(DisasContext *s, int reg)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
load_reg_var(s, tmp, reg);
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* Create a new temp, REG + OFS, except PC is ALIGN(PC, 4).
|
|
* This is used for load/store for which use of PC implies (literal),
|
|
* or ADD that implies ADR.
|
|
*/
|
|
static TCGv_i32 add_reg_for_lit(DisasContext *s, int reg, int ofs)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
|
|
if (reg == 15) {
|
|
tcg_gen_movi_i32(tmp, (read_pc(s) & ~3) + ofs);
|
|
} else {
|
|
tcg_gen_addi_i32(tmp, cpu_R[reg], ofs);
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
/* Set a CPU register. The source must be a temporary and will be
|
|
marked as dead. */
|
|
static void store_reg(DisasContext *s, int reg, TCGv_i32 var)
|
|
{
|
|
if (reg == 15) {
|
|
/* In Thumb mode, we must ignore bit 0.
|
|
* In ARM mode, for ARMv4 and ARMv5, it is UNPREDICTABLE if bits [1:0]
|
|
* are not 0b00, but for ARMv6 and above, we must ignore bits [1:0].
|
|
* We choose to ignore [1:0] in ARM mode for all architecture versions.
|
|
*/
|
|
tcg_gen_andi_i32(var, var, s->thumb ? ~1 : ~3);
|
|
s->base.is_jmp = DISAS_JUMP;
|
|
}
|
|
tcg_gen_mov_i32(cpu_R[reg], var);
|
|
tcg_temp_free_i32(var);
|
|
}
|
|
|
|
/*
|
|
* Variant of store_reg which applies v8M stack-limit checks before updating
|
|
* SP. If the check fails this will result in an exception being taken.
|
|
* We disable the stack checks for CONFIG_USER_ONLY because we have
|
|
* no idea what the stack limits should be in that case.
|
|
* If stack checking is not being done this just acts like store_reg().
|
|
*/
|
|
static void store_sp_checked(DisasContext *s, TCGv_i32 var)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (s->v8m_stackcheck) {
|
|
gen_helper_v8m_stackcheck(cpu_env, var);
|
|
}
|
|
#endif
|
|
store_reg(s, 13, var);
|
|
}
|
|
|
|
/* Value extensions. */
|
|
#define gen_uxtb(var) tcg_gen_ext8u_i32(var, var)
|
|
#define gen_uxth(var) tcg_gen_ext16u_i32(var, var)
|
|
#define gen_sxtb(var) tcg_gen_ext8s_i32(var, var)
|
|
#define gen_sxth(var) tcg_gen_ext16s_i32(var, var)
|
|
|
|
#define gen_sxtb16(var) gen_helper_sxtb16(var, var)
|
|
#define gen_uxtb16(var) gen_helper_uxtb16(var, var)
|
|
|
|
|
|
static inline void gen_set_cpsr(TCGv_i32 var, uint32_t mask)
|
|
{
|
|
TCGv_i32 tmp_mask = tcg_const_i32(mask);
|
|
gen_helper_cpsr_write(cpu_env, var, tmp_mask);
|
|
tcg_temp_free_i32(tmp_mask);
|
|
}
|
|
/* Set NZCV flags from the high 4 bits of var. */
|
|
#define gen_set_nzcv(var) gen_set_cpsr(var, CPSR_NZCV)
|
|
|
|
static void gen_exception_internal(int excp)
|
|
{
|
|
TCGv_i32 tcg_excp = tcg_const_i32(excp);
|
|
|
|
assert(excp_is_internal(excp));
|
|
gen_helper_exception_internal(cpu_env, tcg_excp);
|
|
tcg_temp_free_i32(tcg_excp);
|
|
}
|
|
|
|
static void gen_step_complete_exception(DisasContext *s)
|
|
{
|
|
/* We just completed step of an insn. Move from Active-not-pending
|
|
* to Active-pending, and then also take the swstep exception.
|
|
* This corresponds to making the (IMPDEF) choice to prioritize
|
|
* swstep exceptions over asynchronous exceptions taken to an exception
|
|
* level where debug is disabled. This choice has the advantage that
|
|
* we do not need to maintain internal state corresponding to the
|
|
* ISV/EX syndrome bits between completion of the step and generation
|
|
* of the exception, and our syndrome information is always correct.
|
|
*/
|
|
gen_ss_advance(s);
|
|
gen_swstep_exception(s, 1, s->is_ldex);
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
static void gen_singlestep_exception(DisasContext *s)
|
|
{
|
|
/* Generate the right kind of exception for singlestep, which is
|
|
* either the architectural singlestep or EXCP_DEBUG for QEMU's
|
|
* gdb singlestepping.
|
|
*/
|
|
if (s->ss_active) {
|
|
gen_step_complete_exception(s);
|
|
} else {
|
|
gen_exception_internal(EXCP_DEBUG);
|
|
}
|
|
}
|
|
|
|
static inline bool is_singlestepping(DisasContext *s)
|
|
{
|
|
/* Return true if we are singlestepping either because of
|
|
* architectural singlestep or QEMU gdbstub singlestep. This does
|
|
* not include the command line '-singlestep' mode which is rather
|
|
* misnamed as it only means "one instruction per TB" and doesn't
|
|
* affect the code we generate.
|
|
*/
|
|
return s->base.singlestep_enabled || s->ss_active;
|
|
}
|
|
|
|
static void gen_smul_dual(TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 tmp1 = tcg_temp_new_i32();
|
|
TCGv_i32 tmp2 = tcg_temp_new_i32();
|
|
tcg_gen_ext16s_i32(tmp1, a);
|
|
tcg_gen_ext16s_i32(tmp2, b);
|
|
tcg_gen_mul_i32(tmp1, tmp1, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_gen_sari_i32(a, a, 16);
|
|
tcg_gen_sari_i32(b, b, 16);
|
|
tcg_gen_mul_i32(b, b, a);
|
|
tcg_gen_mov_i32(a, tmp1);
|
|
tcg_temp_free_i32(tmp1);
|
|
}
|
|
|
|
/* Byteswap each halfword. */
|
|
static void gen_rev16(TCGv_i32 dest, TCGv_i32 var)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
TCGv_i32 mask = tcg_const_i32(0x00ff00ff);
|
|
tcg_gen_shri_i32(tmp, var, 8);
|
|
tcg_gen_and_i32(tmp, tmp, mask);
|
|
tcg_gen_and_i32(var, var, mask);
|
|
tcg_gen_shli_i32(var, var, 8);
|
|
tcg_gen_or_i32(dest, var, tmp);
|
|
tcg_temp_free_i32(mask);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
|
|
/* Byteswap low halfword and sign extend. */
|
|
static void gen_revsh(TCGv_i32 dest, TCGv_i32 var)
|
|
{
|
|
tcg_gen_ext16u_i32(var, var);
|
|
tcg_gen_bswap16_i32(var, var);
|
|
tcg_gen_ext16s_i32(dest, var);
|
|
}
|
|
|
|
/* 32x32->64 multiply. Marks inputs as dead. */
|
|
static TCGv_i64 gen_mulu_i64_i32(TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 lo = tcg_temp_new_i32();
|
|
TCGv_i32 hi = tcg_temp_new_i32();
|
|
TCGv_i64 ret;
|
|
|
|
tcg_gen_mulu2_i32(lo, hi, a, b);
|
|
tcg_temp_free_i32(a);
|
|
tcg_temp_free_i32(b);
|
|
|
|
ret = tcg_temp_new_i64();
|
|
tcg_gen_concat_i32_i64(ret, lo, hi);
|
|
tcg_temp_free_i32(lo);
|
|
tcg_temp_free_i32(hi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static TCGv_i64 gen_muls_i64_i32(TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
TCGv_i32 lo = tcg_temp_new_i32();
|
|
TCGv_i32 hi = tcg_temp_new_i32();
|
|
TCGv_i64 ret;
|
|
|
|
tcg_gen_muls2_i32(lo, hi, a, b);
|
|
tcg_temp_free_i32(a);
|
|
tcg_temp_free_i32(b);
|
|
|
|
ret = tcg_temp_new_i64();
|
|
tcg_gen_concat_i32_i64(ret, lo, hi);
|
|
tcg_temp_free_i32(lo);
|
|
tcg_temp_free_i32(hi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Swap low and high halfwords. */
|
|
static void gen_swap_half(TCGv_i32 var)
|
|
{
|
|
tcg_gen_rotri_i32(var, var, 16);
|
|
}
|
|
|
|
/* Dual 16-bit add. Result placed in t0 and t1 is marked as dead.
|
|
tmp = (t0 ^ t1) & 0x8000;
|
|
t0 &= ~0x8000;
|
|
t1 &= ~0x8000;
|
|
t0 = (t0 + t1) ^ tmp;
|
|
*/
|
|
|
|
static void gen_add16(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_xor_i32(tmp, t0, t1);
|
|
tcg_gen_andi_i32(tmp, tmp, 0x8000);
|
|
tcg_gen_andi_i32(t0, t0, ~0x8000);
|
|
tcg_gen_andi_i32(t1, t1, ~0x8000);
|
|
tcg_gen_add_i32(t0, t0, t1);
|
|
tcg_gen_xor_i32(dest, t0, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
|
|
/* Set N and Z flags from var. */
|
|
static inline void gen_logic_CC(TCGv_i32 var)
|
|
{
|
|
tcg_gen_mov_i32(cpu_NF, var);
|
|
tcg_gen_mov_i32(cpu_ZF, var);
|
|
}
|
|
|
|
/* dest = T0 + T1 + CF. */
|
|
static void gen_add_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
tcg_gen_add_i32(dest, t0, t1);
|
|
tcg_gen_add_i32(dest, dest, cpu_CF);
|
|
}
|
|
|
|
/* dest = T0 - T1 + CF - 1. */
|
|
static void gen_sub_carry(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
tcg_gen_sub_i32(dest, t0, t1);
|
|
tcg_gen_add_i32(dest, dest, cpu_CF);
|
|
tcg_gen_subi_i32(dest, dest, 1);
|
|
}
|
|
|
|
/* dest = T0 + T1. Compute C, N, V and Z flags */
|
|
static void gen_add_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(tmp, 0);
|
|
tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, t1, tmp);
|
|
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
|
|
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0);
|
|
tcg_gen_xor_i32(tmp, t0, t1);
|
|
tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
tcg_gen_mov_i32(dest, cpu_NF);
|
|
}
|
|
|
|
/* dest = T0 + T1 + CF. Compute C, N, V and Z flags */
|
|
static void gen_adc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
if (TCG_TARGET_HAS_add2_i32) {
|
|
tcg_gen_movi_i32(tmp, 0);
|
|
tcg_gen_add2_i32(cpu_NF, cpu_CF, t0, tmp, cpu_CF, tmp);
|
|
tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1, tmp);
|
|
} else {
|
|
TCGv_i64 q0 = tcg_temp_new_i64();
|
|
TCGv_i64 q1 = tcg_temp_new_i64();
|
|
tcg_gen_extu_i32_i64(q0, t0);
|
|
tcg_gen_extu_i32_i64(q1, t1);
|
|
tcg_gen_add_i64(q0, q0, q1);
|
|
tcg_gen_extu_i32_i64(q1, cpu_CF);
|
|
tcg_gen_add_i64(q0, q0, q1);
|
|
tcg_gen_extr_i64_i32(cpu_NF, cpu_CF, q0);
|
|
tcg_temp_free_i64(q0);
|
|
tcg_temp_free_i64(q1);
|
|
}
|
|
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
|
|
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0);
|
|
tcg_gen_xor_i32(tmp, t0, t1);
|
|
tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
tcg_gen_mov_i32(dest, cpu_NF);
|
|
}
|
|
|
|
/* dest = T0 - T1. Compute C, N, V and Z flags */
|
|
static void gen_sub_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
TCGv_i32 tmp;
|
|
tcg_gen_sub_i32(cpu_NF, t0, t1);
|
|
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
|
|
tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0, t1);
|
|
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0);
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_xor_i32(tmp, t0, t1);
|
|
tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
tcg_gen_mov_i32(dest, cpu_NF);
|
|
}
|
|
|
|
/* dest = T0 + ~T1 + CF. Compute C, N, V and Z flags */
|
|
static void gen_sbc_CC(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_not_i32(tmp, t1);
|
|
gen_adc_CC(dest, t0, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
|
|
#define GEN_SHIFT(name) \
|
|
static void gen_##name(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1) \
|
|
{ \
|
|
TCGv_i32 tmp1, tmp2, tmp3; \
|
|
tmp1 = tcg_temp_new_i32(); \
|
|
tcg_gen_andi_i32(tmp1, t1, 0xff); \
|
|
tmp2 = tcg_const_i32(0); \
|
|
tmp3 = tcg_const_i32(0x1f); \
|
|
tcg_gen_movcond_i32(TCG_COND_GTU, tmp2, tmp1, tmp3, tmp2, t0); \
|
|
tcg_temp_free_i32(tmp3); \
|
|
tcg_gen_andi_i32(tmp1, tmp1, 0x1f); \
|
|
tcg_gen_##name##_i32(dest, tmp2, tmp1); \
|
|
tcg_temp_free_i32(tmp2); \
|
|
tcg_temp_free_i32(tmp1); \
|
|
}
|
|
GEN_SHIFT(shl)
|
|
GEN_SHIFT(shr)
|
|
#undef GEN_SHIFT
|
|
|
|
static void gen_sar(TCGv_i32 dest, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
TCGv_i32 tmp1, tmp2;
|
|
tmp1 = tcg_temp_new_i32();
|
|
tcg_gen_andi_i32(tmp1, t1, 0xff);
|
|
tmp2 = tcg_const_i32(0x1f);
|
|
tcg_gen_movcond_i32(TCG_COND_GTU, tmp1, tmp1, tmp2, tmp2, tmp1);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_gen_sar_i32(dest, t0, tmp1);
|
|
tcg_temp_free_i32(tmp1);
|
|
}
|
|
|
|
static void shifter_out_im(TCGv_i32 var, int shift)
|
|
{
|
|
tcg_gen_extract_i32(cpu_CF, var, shift, 1);
|
|
}
|
|
|
|
/* Shift by immediate. Includes special handling for shift == 0. */
|
|
static inline void gen_arm_shift_im(TCGv_i32 var, int shiftop,
|
|
int shift, int flags)
|
|
{
|
|
switch (shiftop) {
|
|
case 0: /* LSL */
|
|
if (shift != 0) {
|
|
if (flags)
|
|
shifter_out_im(var, 32 - shift);
|
|
tcg_gen_shli_i32(var, var, shift);
|
|
}
|
|
break;
|
|
case 1: /* LSR */
|
|
if (shift == 0) {
|
|
if (flags) {
|
|
tcg_gen_shri_i32(cpu_CF, var, 31);
|
|
}
|
|
tcg_gen_movi_i32(var, 0);
|
|
} else {
|
|
if (flags)
|
|
shifter_out_im(var, shift - 1);
|
|
tcg_gen_shri_i32(var, var, shift);
|
|
}
|
|
break;
|
|
case 2: /* ASR */
|
|
if (shift == 0)
|
|
shift = 32;
|
|
if (flags)
|
|
shifter_out_im(var, shift - 1);
|
|
if (shift == 32)
|
|
shift = 31;
|
|
tcg_gen_sari_i32(var, var, shift);
|
|
break;
|
|
case 3: /* ROR/RRX */
|
|
if (shift != 0) {
|
|
if (flags)
|
|
shifter_out_im(var, shift - 1);
|
|
tcg_gen_rotri_i32(var, var, shift); break;
|
|
} else {
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_shli_i32(tmp, cpu_CF, 31);
|
|
if (flags)
|
|
shifter_out_im(var, 0);
|
|
tcg_gen_shri_i32(var, var, 1);
|
|
tcg_gen_or_i32(var, var, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
}
|
|
};
|
|
|
|
static inline void gen_arm_shift_reg(TCGv_i32 var, int shiftop,
|
|
TCGv_i32 shift, int flags)
|
|
{
|
|
if (flags) {
|
|
switch (shiftop) {
|
|
case 0: gen_helper_shl_cc(var, cpu_env, var, shift); break;
|
|
case 1: gen_helper_shr_cc(var, cpu_env, var, shift); break;
|
|
case 2: gen_helper_sar_cc(var, cpu_env, var, shift); break;
|
|
case 3: gen_helper_ror_cc(var, cpu_env, var, shift); break;
|
|
}
|
|
} else {
|
|
switch (shiftop) {
|
|
case 0:
|
|
gen_shl(var, var, shift);
|
|
break;
|
|
case 1:
|
|
gen_shr(var, var, shift);
|
|
break;
|
|
case 2:
|
|
gen_sar(var, var, shift);
|
|
break;
|
|
case 3: tcg_gen_andi_i32(shift, shift, 0x1f);
|
|
tcg_gen_rotr_i32(var, var, shift); break;
|
|
}
|
|
}
|
|
tcg_temp_free_i32(shift);
|
|
}
|
|
|
|
/*
|
|
* Generate a conditional based on ARM condition code cc.
|
|
* This is common between ARM and Aarch64 targets.
|
|
*/
|
|
void arm_test_cc(DisasCompare *cmp, int cc)
|
|
{
|
|
TCGv_i32 value;
|
|
TCGCond cond;
|
|
bool global = true;
|
|
|
|
switch (cc) {
|
|
case 0: /* eq: Z */
|
|
case 1: /* ne: !Z */
|
|
cond = TCG_COND_EQ;
|
|
value = cpu_ZF;
|
|
break;
|
|
|
|
case 2: /* cs: C */
|
|
case 3: /* cc: !C */
|
|
cond = TCG_COND_NE;
|
|
value = cpu_CF;
|
|
break;
|
|
|
|
case 4: /* mi: N */
|
|
case 5: /* pl: !N */
|
|
cond = TCG_COND_LT;
|
|
value = cpu_NF;
|
|
break;
|
|
|
|
case 6: /* vs: V */
|
|
case 7: /* vc: !V */
|
|
cond = TCG_COND_LT;
|
|
value = cpu_VF;
|
|
break;
|
|
|
|
case 8: /* hi: C && !Z */
|
|
case 9: /* ls: !C || Z -> !(C && !Z) */
|
|
cond = TCG_COND_NE;
|
|
value = tcg_temp_new_i32();
|
|
global = false;
|
|
/* CF is 1 for C, so -CF is an all-bits-set mask for C;
|
|
ZF is non-zero for !Z; so AND the two subexpressions. */
|
|
tcg_gen_neg_i32(value, cpu_CF);
|
|
tcg_gen_and_i32(value, value, cpu_ZF);
|
|
break;
|
|
|
|
case 10: /* ge: N == V -> N ^ V == 0 */
|
|
case 11: /* lt: N != V -> N ^ V != 0 */
|
|
/* Since we're only interested in the sign bit, == 0 is >= 0. */
|
|
cond = TCG_COND_GE;
|
|
value = tcg_temp_new_i32();
|
|
global = false;
|
|
tcg_gen_xor_i32(value, cpu_VF, cpu_NF);
|
|
break;
|
|
|
|
case 12: /* gt: !Z && N == V */
|
|
case 13: /* le: Z || N != V */
|
|
cond = TCG_COND_NE;
|
|
value = tcg_temp_new_i32();
|
|
global = false;
|
|
/* (N == V) is equal to the sign bit of ~(NF ^ VF). Propagate
|
|
* the sign bit then AND with ZF to yield the result. */
|
|
tcg_gen_xor_i32(value, cpu_VF, cpu_NF);
|
|
tcg_gen_sari_i32(value, value, 31);
|
|
tcg_gen_andc_i32(value, cpu_ZF, value);
|
|
break;
|
|
|
|
case 14: /* always */
|
|
case 15: /* always */
|
|
/* Use the ALWAYS condition, which will fold early.
|
|
* It doesn't matter what we use for the value. */
|
|
cond = TCG_COND_ALWAYS;
|
|
value = cpu_ZF;
|
|
goto no_invert;
|
|
|
|
default:
|
|
fprintf(stderr, "Bad condition code 0x%x\n", cc);
|
|
abort();
|
|
}
|
|
|
|
if (cc & 1) {
|
|
cond = tcg_invert_cond(cond);
|
|
}
|
|
|
|
no_invert:
|
|
cmp->cond = cond;
|
|
cmp->value = value;
|
|
cmp->value_global = global;
|
|
}
|
|
|
|
void arm_free_cc(DisasCompare *cmp)
|
|
{
|
|
if (!cmp->value_global) {
|
|
tcg_temp_free_i32(cmp->value);
|
|
}
|
|
}
|
|
|
|
void arm_jump_cc(DisasCompare *cmp, TCGLabel *label)
|
|
{
|
|
tcg_gen_brcondi_i32(cmp->cond, cmp->value, 0, label);
|
|
}
|
|
|
|
void arm_gen_test_cc(int cc, TCGLabel *label)
|
|
{
|
|
DisasCompare cmp;
|
|
arm_test_cc(&cmp, cc);
|
|
arm_jump_cc(&cmp, label);
|
|
arm_free_cc(&cmp);
|
|
}
|
|
|
|
static inline void gen_set_condexec(DisasContext *s)
|
|
{
|
|
if (s->condexec_mask) {
|
|
uint32_t val = (s->condexec_cond << 4) | (s->condexec_mask >> 1);
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(tmp, val);
|
|
store_cpu_field(tmp, condexec_bits);
|
|
}
|
|
}
|
|
|
|
static inline void gen_set_pc_im(DisasContext *s, target_ulong val)
|
|
{
|
|
tcg_gen_movi_i32(cpu_R[15], val);
|
|
}
|
|
|
|
/* Set PC and Thumb state from var. var is marked as dead. */
|
|
static inline void gen_bx(DisasContext *s, TCGv_i32 var)
|
|
{
|
|
s->base.is_jmp = DISAS_JUMP;
|
|
tcg_gen_andi_i32(cpu_R[15], var, ~1);
|
|
tcg_gen_andi_i32(var, var, 1);
|
|
store_cpu_field(var, thumb);
|
|
}
|
|
|
|
/*
|
|
* Set PC and Thumb state from var. var is marked as dead.
|
|
* For M-profile CPUs, include logic to detect exception-return
|
|
* branches and handle them. This is needed for Thumb POP/LDM to PC, LDR to PC,
|
|
* and BX reg, and no others, and happens only for code in Handler mode.
|
|
* The Security Extension also requires us to check for the FNC_RETURN
|
|
* which signals a function return from non-secure state; this can happen
|
|
* in both Handler and Thread mode.
|
|
* To avoid having to do multiple comparisons in inline generated code,
|
|
* we make the check we do here loose, so it will match for EXC_RETURN
|
|
* in Thread mode. For system emulation do_v7m_exception_exit() checks
|
|
* for these spurious cases and returns without doing anything (giving
|
|
* the same behaviour as for a branch to a non-magic address).
|
|
*
|
|
* In linux-user mode it is unclear what the right behaviour for an
|
|
* attempted FNC_RETURN should be, because in real hardware this will go
|
|
* directly to Secure code (ie not the Linux kernel) which will then treat
|
|
* the error in any way it chooses. For QEMU we opt to make the FNC_RETURN
|
|
* attempt behave the way it would on a CPU without the security extension,
|
|
* which is to say "like a normal branch". That means we can simply treat
|
|
* all branches as normal with no magic address behaviour.
|
|
*/
|
|
static inline void gen_bx_excret(DisasContext *s, TCGv_i32 var)
|
|
{
|
|
/* Generate the same code here as for a simple bx, but flag via
|
|
* s->base.is_jmp that we need to do the rest of the work later.
|
|
*/
|
|
gen_bx(s, var);
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (arm_dc_feature(s, ARM_FEATURE_M_SECURITY) ||
|
|
(s->v7m_handler_mode && arm_dc_feature(s, ARM_FEATURE_M))) {
|
|
s->base.is_jmp = DISAS_BX_EXCRET;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static inline void gen_bx_excret_final_code(DisasContext *s)
|
|
{
|
|
/* Generate the code to finish possible exception return and end the TB */
|
|
TCGLabel *excret_label = gen_new_label();
|
|
uint32_t min_magic;
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_M_SECURITY)) {
|
|
/* Covers FNC_RETURN and EXC_RETURN magic */
|
|
min_magic = FNC_RETURN_MIN_MAGIC;
|
|
} else {
|
|
/* EXC_RETURN magic only */
|
|
min_magic = EXC_RETURN_MIN_MAGIC;
|
|
}
|
|
|
|
/* Is the new PC value in the magic range indicating exception return? */
|
|
tcg_gen_brcondi_i32(TCG_COND_GEU, cpu_R[15], min_magic, excret_label);
|
|
/* No: end the TB as we would for a DISAS_JMP */
|
|
if (is_singlestepping(s)) {
|
|
gen_singlestep_exception(s);
|
|
} else {
|
|
tcg_gen_exit_tb(NULL, 0);
|
|
}
|
|
gen_set_label(excret_label);
|
|
/* Yes: this is an exception return.
|
|
* At this point in runtime env->regs[15] and env->thumb will hold
|
|
* the exception-return magic number, which do_v7m_exception_exit()
|
|
* will read. Nothing else will be able to see those values because
|
|
* the cpu-exec main loop guarantees that we will always go straight
|
|
* from raising the exception to the exception-handling code.
|
|
*
|
|
* gen_ss_advance(s) does nothing on M profile currently but
|
|
* calling it is conceptually the right thing as we have executed
|
|
* this instruction (compare SWI, HVC, SMC handling).
|
|
*/
|
|
gen_ss_advance(s);
|
|
gen_exception_internal(EXCP_EXCEPTION_EXIT);
|
|
}
|
|
|
|
static inline void gen_bxns(DisasContext *s, int rm)
|
|
{
|
|
TCGv_i32 var = load_reg(s, rm);
|
|
|
|
/* The bxns helper may raise an EXCEPTION_EXIT exception, so in theory
|
|
* we need to sync state before calling it, but:
|
|
* - we don't need to do gen_set_pc_im() because the bxns helper will
|
|
* always set the PC itself
|
|
* - we don't need to do gen_set_condexec() because BXNS is UNPREDICTABLE
|
|
* unless it's outside an IT block or the last insn in an IT block,
|
|
* so we know that condexec == 0 (already set at the top of the TB)
|
|
* is correct in the non-UNPREDICTABLE cases, and we can choose
|
|
* "zeroes the IT bits" as our UNPREDICTABLE behaviour otherwise.
|
|
*/
|
|
gen_helper_v7m_bxns(cpu_env, var);
|
|
tcg_temp_free_i32(var);
|
|
s->base.is_jmp = DISAS_EXIT;
|
|
}
|
|
|
|
static inline void gen_blxns(DisasContext *s, int rm)
|
|
{
|
|
TCGv_i32 var = load_reg(s, rm);
|
|
|
|
/* We don't need to sync condexec state, for the same reason as bxns.
|
|
* We do however need to set the PC, because the blxns helper reads it.
|
|
* The blxns helper may throw an exception.
|
|
*/
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
gen_helper_v7m_blxns(cpu_env, var);
|
|
tcg_temp_free_i32(var);
|
|
s->base.is_jmp = DISAS_EXIT;
|
|
}
|
|
|
|
/* Variant of store_reg which uses branch&exchange logic when storing
|
|
to r15 in ARM architecture v7 and above. The source must be a temporary
|
|
and will be marked as dead. */
|
|
static inline void store_reg_bx(DisasContext *s, int reg, TCGv_i32 var)
|
|
{
|
|
if (reg == 15 && ENABLE_ARCH_7) {
|
|
gen_bx(s, var);
|
|
} else {
|
|
store_reg(s, reg, var);
|
|
}
|
|
}
|
|
|
|
/* Variant of store_reg which uses branch&exchange logic when storing
|
|
* to r15 in ARM architecture v5T and above. This is used for storing
|
|
* the results of a LDR/LDM/POP into r15, and corresponds to the cases
|
|
* in the ARM ARM which use the LoadWritePC() pseudocode function. */
|
|
static inline void store_reg_from_load(DisasContext *s, int reg, TCGv_i32 var)
|
|
{
|
|
if (reg == 15 && ENABLE_ARCH_5) {
|
|
gen_bx_excret(s, var);
|
|
} else {
|
|
store_reg(s, reg, var);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
#define IS_USER_ONLY 1
|
|
#else
|
|
#define IS_USER_ONLY 0
|
|
#endif
|
|
|
|
/* Abstractions of "generate code to do a guest load/store for
|
|
* AArch32", where a vaddr is always 32 bits (and is zero
|
|
* extended if we're a 64 bit core) and data is also
|
|
* 32 bits unless specifically doing a 64 bit access.
|
|
* These functions work like tcg_gen_qemu_{ld,st}* except
|
|
* that the address argument is TCGv_i32 rather than TCGv.
|
|
*/
|
|
|
|
static inline TCGv gen_aa32_addr(DisasContext *s, TCGv_i32 a32, MemOp op)
|
|
{
|
|
TCGv addr = tcg_temp_new();
|
|
tcg_gen_extu_i32_tl(addr, a32);
|
|
|
|
/* Not needed for user-mode BE32, where we use MO_BE instead. */
|
|
if (!IS_USER_ONLY && s->sctlr_b && (op & MO_SIZE) < MO_32) {
|
|
tcg_gen_xori_tl(addr, addr, 4 - (1 << (op & MO_SIZE)));
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
static void gen_aa32_ld_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32,
|
|
int index, MemOp opc)
|
|
{
|
|
TCGv addr;
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_M) &&
|
|
!arm_dc_feature(s, ARM_FEATURE_M_MAIN)) {
|
|
opc |= MO_ALIGN;
|
|
}
|
|
|
|
addr = gen_aa32_addr(s, a32, opc);
|
|
tcg_gen_qemu_ld_i32(val, addr, index, opc);
|
|
tcg_temp_free(addr);
|
|
}
|
|
|
|
static void gen_aa32_st_i32(DisasContext *s, TCGv_i32 val, TCGv_i32 a32,
|
|
int index, MemOp opc)
|
|
{
|
|
TCGv addr;
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_M) &&
|
|
!arm_dc_feature(s, ARM_FEATURE_M_MAIN)) {
|
|
opc |= MO_ALIGN;
|
|
}
|
|
|
|
addr = gen_aa32_addr(s, a32, opc);
|
|
tcg_gen_qemu_st_i32(val, addr, index, opc);
|
|
tcg_temp_free(addr);
|
|
}
|
|
|
|
#define DO_GEN_LD(SUFF, OPC) \
|
|
static inline void gen_aa32_ld##SUFF(DisasContext *s, TCGv_i32 val, \
|
|
TCGv_i32 a32, int index) \
|
|
{ \
|
|
gen_aa32_ld_i32(s, val, a32, index, OPC | s->be_data); \
|
|
}
|
|
|
|
#define DO_GEN_ST(SUFF, OPC) \
|
|
static inline void gen_aa32_st##SUFF(DisasContext *s, TCGv_i32 val, \
|
|
TCGv_i32 a32, int index) \
|
|
{ \
|
|
gen_aa32_st_i32(s, val, a32, index, OPC | s->be_data); \
|
|
}
|
|
|
|
static inline void gen_aa32_frob64(DisasContext *s, TCGv_i64 val)
|
|
{
|
|
/* Not needed for user-mode BE32, where we use MO_BE instead. */
|
|
if (!IS_USER_ONLY && s->sctlr_b) {
|
|
tcg_gen_rotri_i64(val, val, 32);
|
|
}
|
|
}
|
|
|
|
static void gen_aa32_ld_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32,
|
|
int index, MemOp opc)
|
|
{
|
|
TCGv addr = gen_aa32_addr(s, a32, opc);
|
|
tcg_gen_qemu_ld_i64(val, addr, index, opc);
|
|
gen_aa32_frob64(s, val);
|
|
tcg_temp_free(addr);
|
|
}
|
|
|
|
static inline void gen_aa32_ld64(DisasContext *s, TCGv_i64 val,
|
|
TCGv_i32 a32, int index)
|
|
{
|
|
gen_aa32_ld_i64(s, val, a32, index, MO_Q | s->be_data);
|
|
}
|
|
|
|
static void gen_aa32_st_i64(DisasContext *s, TCGv_i64 val, TCGv_i32 a32,
|
|
int index, MemOp opc)
|
|
{
|
|
TCGv addr = gen_aa32_addr(s, a32, opc);
|
|
|
|
/* Not needed for user-mode BE32, where we use MO_BE instead. */
|
|
if (!IS_USER_ONLY && s->sctlr_b) {
|
|
TCGv_i64 tmp = tcg_temp_new_i64();
|
|
tcg_gen_rotri_i64(tmp, val, 32);
|
|
tcg_gen_qemu_st_i64(tmp, addr, index, opc);
|
|
tcg_temp_free_i64(tmp);
|
|
} else {
|
|
tcg_gen_qemu_st_i64(val, addr, index, opc);
|
|
}
|
|
tcg_temp_free(addr);
|
|
}
|
|
|
|
static inline void gen_aa32_st64(DisasContext *s, TCGv_i64 val,
|
|
TCGv_i32 a32, int index)
|
|
{
|
|
gen_aa32_st_i64(s, val, a32, index, MO_Q | s->be_data);
|
|
}
|
|
|
|
DO_GEN_LD(8u, MO_UB)
|
|
DO_GEN_LD(16u, MO_UW)
|
|
DO_GEN_LD(32u, MO_UL)
|
|
DO_GEN_ST(8, MO_UB)
|
|
DO_GEN_ST(16, MO_UW)
|
|
DO_GEN_ST(32, MO_UL)
|
|
|
|
static inline void gen_hvc(DisasContext *s, int imm16)
|
|
{
|
|
/* The pre HVC helper handles cases when HVC gets trapped
|
|
* as an undefined insn by runtime configuration (ie before
|
|
* the insn really executes).
|
|
*/
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
gen_helper_pre_hvc(cpu_env);
|
|
/* Otherwise we will treat this as a real exception which
|
|
* happens after execution of the insn. (The distinction matters
|
|
* for the PC value reported to the exception handler and also
|
|
* for single stepping.)
|
|
*/
|
|
s->svc_imm = imm16;
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
s->base.is_jmp = DISAS_HVC;
|
|
}
|
|
|
|
static inline void gen_smc(DisasContext *s)
|
|
{
|
|
/* As with HVC, we may take an exception either before or after
|
|
* the insn executes.
|
|
*/
|
|
TCGv_i32 tmp;
|
|
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
tmp = tcg_const_i32(syn_aa32_smc());
|
|
gen_helper_pre_smc(cpu_env, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
s->base.is_jmp = DISAS_SMC;
|
|
}
|
|
|
|
static void gen_exception_internal_insn(DisasContext *s, uint32_t pc, int excp)
|
|
{
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, pc);
|
|
gen_exception_internal(excp);
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
static void gen_exception_insn(DisasContext *s, uint32_t pc, int excp,
|
|
int syn, uint32_t target_el)
|
|
{
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, pc);
|
|
gen_exception(excp, syn, target_el);
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syn)
|
|
{
|
|
TCGv_i32 tcg_syn;
|
|
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
tcg_syn = tcg_const_i32(syn);
|
|
gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
|
|
tcg_temp_free_i32(tcg_syn);
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
static void unallocated_encoding(DisasContext *s)
|
|
{
|
|
/* Unallocated and reserved encodings are uncategorized */
|
|
gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_uncategorized(),
|
|
default_exception_el(s));
|
|
}
|
|
|
|
/* Force a TB lookup after an instruction that changes the CPU state. */
|
|
static inline void gen_lookup_tb(DisasContext *s)
|
|
{
|
|
tcg_gen_movi_i32(cpu_R[15], s->base.pc_next);
|
|
s->base.is_jmp = DISAS_EXIT;
|
|
}
|
|
|
|
static inline void gen_hlt(DisasContext *s, int imm)
|
|
{
|
|
/* HLT. This has two purposes.
|
|
* Architecturally, it is an external halting debug instruction.
|
|
* Since QEMU doesn't implement external debug, we treat this as
|
|
* it is required for halting debug disabled: it will UNDEF.
|
|
* Secondly, "HLT 0x3C" is a T32 semihosting trap instruction,
|
|
* and "HLT 0xF000" is an A32 semihosting syscall. These traps
|
|
* must trigger semihosting even for ARMv7 and earlier, where
|
|
* HLT was an undefined encoding.
|
|
* In system mode, we don't allow userspace access to
|
|
* semihosting, to provide some semblance of security
|
|
* (and for consistency with our 32-bit semihosting).
|
|
*/
|
|
if (semihosting_enabled() &&
|
|
#ifndef CONFIG_USER_ONLY
|
|
s->current_el != 0 &&
|
|
#endif
|
|
(imm == (s->thumb ? 0x3c : 0xf000))) {
|
|
gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST);
|
|
return;
|
|
}
|
|
|
|
unallocated_encoding(s);
|
|
}
|
|
|
|
static TCGv_ptr get_fpstatus_ptr(int neon)
|
|
{
|
|
TCGv_ptr statusptr = tcg_temp_new_ptr();
|
|
int offset;
|
|
if (neon) {
|
|
offset = offsetof(CPUARMState, vfp.standard_fp_status);
|
|
} else {
|
|
offset = offsetof(CPUARMState, vfp.fp_status);
|
|
}
|
|
tcg_gen_addi_ptr(statusptr, cpu_env, offset);
|
|
return statusptr;
|
|
}
|
|
|
|
static inline long vfp_reg_offset(bool dp, unsigned reg)
|
|
{
|
|
if (dp) {
|
|
return offsetof(CPUARMState, vfp.zregs[reg >> 1].d[reg & 1]);
|
|
} else {
|
|
long ofs = offsetof(CPUARMState, vfp.zregs[reg >> 2].d[(reg >> 1) & 1]);
|
|
if (reg & 1) {
|
|
ofs += offsetof(CPU_DoubleU, l.upper);
|
|
} else {
|
|
ofs += offsetof(CPU_DoubleU, l.lower);
|
|
}
|
|
return ofs;
|
|
}
|
|
}
|
|
|
|
/* Return the offset of a 32-bit piece of a NEON register.
|
|
zero is the least significant end of the register. */
|
|
static inline long
|
|
neon_reg_offset (int reg, int n)
|
|
{
|
|
int sreg;
|
|
sreg = reg * 2 + n;
|
|
return vfp_reg_offset(0, sreg);
|
|
}
|
|
|
|
/* Return the offset of a 2**SIZE piece of a NEON register, at index ELE,
|
|
* where 0 is the least significant end of the register.
|
|
*/
|
|
static inline long
|
|
neon_element_offset(int reg, int element, MemOp size)
|
|
{
|
|
int element_size = 1 << size;
|
|
int ofs = element * element_size;
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
/* Calculate the offset assuming fully little-endian,
|
|
* then XOR to account for the order of the 8-byte units.
|
|
*/
|
|
if (element_size < 8) {
|
|
ofs ^= 8 - element_size;
|
|
}
|
|
#endif
|
|
return neon_reg_offset(reg, 0) + ofs;
|
|
}
|
|
|
|
static TCGv_i32 neon_load_reg(int reg, int pass)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_ld_i32(tmp, cpu_env, neon_reg_offset(reg, pass));
|
|
return tmp;
|
|
}
|
|
|
|
static void neon_load_element(TCGv_i32 var, int reg, int ele, MemOp mop)
|
|
{
|
|
long offset = neon_element_offset(reg, ele, mop & MO_SIZE);
|
|
|
|
switch (mop) {
|
|
case MO_UB:
|
|
tcg_gen_ld8u_i32(var, cpu_env, offset);
|
|
break;
|
|
case MO_UW:
|
|
tcg_gen_ld16u_i32(var, cpu_env, offset);
|
|
break;
|
|
case MO_UL:
|
|
tcg_gen_ld_i32(var, cpu_env, offset);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void neon_load_element64(TCGv_i64 var, int reg, int ele, MemOp mop)
|
|
{
|
|
long offset = neon_element_offset(reg, ele, mop & MO_SIZE);
|
|
|
|
switch (mop) {
|
|
case MO_UB:
|
|
tcg_gen_ld8u_i64(var, cpu_env, offset);
|
|
break;
|
|
case MO_UW:
|
|
tcg_gen_ld16u_i64(var, cpu_env, offset);
|
|
break;
|
|
case MO_UL:
|
|
tcg_gen_ld32u_i64(var, cpu_env, offset);
|
|
break;
|
|
case MO_Q:
|
|
tcg_gen_ld_i64(var, cpu_env, offset);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void neon_store_reg(int reg, int pass, TCGv_i32 var)
|
|
{
|
|
tcg_gen_st_i32(var, cpu_env, neon_reg_offset(reg, pass));
|
|
tcg_temp_free_i32(var);
|
|
}
|
|
|
|
static void neon_store_element(int reg, int ele, MemOp size, TCGv_i32 var)
|
|
{
|
|
long offset = neon_element_offset(reg, ele, size);
|
|
|
|
switch (size) {
|
|
case MO_8:
|
|
tcg_gen_st8_i32(var, cpu_env, offset);
|
|
break;
|
|
case MO_16:
|
|
tcg_gen_st16_i32(var, cpu_env, offset);
|
|
break;
|
|
case MO_32:
|
|
tcg_gen_st_i32(var, cpu_env, offset);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void neon_store_element64(int reg, int ele, MemOp size, TCGv_i64 var)
|
|
{
|
|
long offset = neon_element_offset(reg, ele, size);
|
|
|
|
switch (size) {
|
|
case MO_8:
|
|
tcg_gen_st8_i64(var, cpu_env, offset);
|
|
break;
|
|
case MO_16:
|
|
tcg_gen_st16_i64(var, cpu_env, offset);
|
|
break;
|
|
case MO_32:
|
|
tcg_gen_st32_i64(var, cpu_env, offset);
|
|
break;
|
|
case MO_64:
|
|
tcg_gen_st_i64(var, cpu_env, offset);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static inline void neon_load_reg64(TCGv_i64 var, int reg)
|
|
{
|
|
tcg_gen_ld_i64(var, cpu_env, vfp_reg_offset(1, reg));
|
|
}
|
|
|
|
static inline void neon_store_reg64(TCGv_i64 var, int reg)
|
|
{
|
|
tcg_gen_st_i64(var, cpu_env, vfp_reg_offset(1, reg));
|
|
}
|
|
|
|
static inline void neon_load_reg32(TCGv_i32 var, int reg)
|
|
{
|
|
tcg_gen_ld_i32(var, cpu_env, vfp_reg_offset(false, reg));
|
|
}
|
|
|
|
static inline void neon_store_reg32(TCGv_i32 var, int reg)
|
|
{
|
|
tcg_gen_st_i32(var, cpu_env, vfp_reg_offset(false, reg));
|
|
}
|
|
|
|
static TCGv_ptr vfp_reg_ptr(bool dp, int reg)
|
|
{
|
|
TCGv_ptr ret = tcg_temp_new_ptr();
|
|
tcg_gen_addi_ptr(ret, cpu_env, vfp_reg_offset(dp, reg));
|
|
return ret;
|
|
}
|
|
|
|
#define ARM_CP_RW_BIT (1 << 20)
|
|
|
|
/* Include the VFP decoder */
|
|
#include "translate-vfp.inc.c"
|
|
|
|
static inline void iwmmxt_load_reg(TCGv_i64 var, int reg)
|
|
{
|
|
tcg_gen_ld_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg]));
|
|
}
|
|
|
|
static inline void iwmmxt_store_reg(TCGv_i64 var, int reg)
|
|
{
|
|
tcg_gen_st_i64(var, cpu_env, offsetof(CPUARMState, iwmmxt.regs[reg]));
|
|
}
|
|
|
|
static inline TCGv_i32 iwmmxt_load_creg(int reg)
|
|
{
|
|
TCGv_i32 var = tcg_temp_new_i32();
|
|
tcg_gen_ld_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg]));
|
|
return var;
|
|
}
|
|
|
|
static inline void iwmmxt_store_creg(int reg, TCGv_i32 var)
|
|
{
|
|
tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, iwmmxt.cregs[reg]));
|
|
tcg_temp_free_i32(var);
|
|
}
|
|
|
|
static inline void gen_op_iwmmxt_movq_wRn_M0(int rn)
|
|
{
|
|
iwmmxt_store_reg(cpu_M0, rn);
|
|
}
|
|
|
|
static inline void gen_op_iwmmxt_movq_M0_wRn(int rn)
|
|
{
|
|
iwmmxt_load_reg(cpu_M0, rn);
|
|
}
|
|
|
|
static inline void gen_op_iwmmxt_orq_M0_wRn(int rn)
|
|
{
|
|
iwmmxt_load_reg(cpu_V1, rn);
|
|
tcg_gen_or_i64(cpu_M0, cpu_M0, cpu_V1);
|
|
}
|
|
|
|
static inline void gen_op_iwmmxt_andq_M0_wRn(int rn)
|
|
{
|
|
iwmmxt_load_reg(cpu_V1, rn);
|
|
tcg_gen_and_i64(cpu_M0, cpu_M0, cpu_V1);
|
|
}
|
|
|
|
static inline void gen_op_iwmmxt_xorq_M0_wRn(int rn)
|
|
{
|
|
iwmmxt_load_reg(cpu_V1, rn);
|
|
tcg_gen_xor_i64(cpu_M0, cpu_M0, cpu_V1);
|
|
}
|
|
|
|
#define IWMMXT_OP(name) \
|
|
static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \
|
|
{ \
|
|
iwmmxt_load_reg(cpu_V1, rn); \
|
|
gen_helper_iwmmxt_##name(cpu_M0, cpu_M0, cpu_V1); \
|
|
}
|
|
|
|
#define IWMMXT_OP_ENV(name) \
|
|
static inline void gen_op_iwmmxt_##name##_M0_wRn(int rn) \
|
|
{ \
|
|
iwmmxt_load_reg(cpu_V1, rn); \
|
|
gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0, cpu_V1); \
|
|
}
|
|
|
|
#define IWMMXT_OP_ENV_SIZE(name) \
|
|
IWMMXT_OP_ENV(name##b) \
|
|
IWMMXT_OP_ENV(name##w) \
|
|
IWMMXT_OP_ENV(name##l)
|
|
|
|
#define IWMMXT_OP_ENV1(name) \
|
|
static inline void gen_op_iwmmxt_##name##_M0(void) \
|
|
{ \
|
|
gen_helper_iwmmxt_##name(cpu_M0, cpu_env, cpu_M0); \
|
|
}
|
|
|
|
IWMMXT_OP(maddsq)
|
|
IWMMXT_OP(madduq)
|
|
IWMMXT_OP(sadb)
|
|
IWMMXT_OP(sadw)
|
|
IWMMXT_OP(mulslw)
|
|
IWMMXT_OP(mulshw)
|
|
IWMMXT_OP(mululw)
|
|
IWMMXT_OP(muluhw)
|
|
IWMMXT_OP(macsw)
|
|
IWMMXT_OP(macuw)
|
|
|
|
IWMMXT_OP_ENV_SIZE(unpackl)
|
|
IWMMXT_OP_ENV_SIZE(unpackh)
|
|
|
|
IWMMXT_OP_ENV1(unpacklub)
|
|
IWMMXT_OP_ENV1(unpackluw)
|
|
IWMMXT_OP_ENV1(unpacklul)
|
|
IWMMXT_OP_ENV1(unpackhub)
|
|
IWMMXT_OP_ENV1(unpackhuw)
|
|
IWMMXT_OP_ENV1(unpackhul)
|
|
IWMMXT_OP_ENV1(unpacklsb)
|
|
IWMMXT_OP_ENV1(unpacklsw)
|
|
IWMMXT_OP_ENV1(unpacklsl)
|
|
IWMMXT_OP_ENV1(unpackhsb)
|
|
IWMMXT_OP_ENV1(unpackhsw)
|
|
IWMMXT_OP_ENV1(unpackhsl)
|
|
|
|
IWMMXT_OP_ENV_SIZE(cmpeq)
|
|
IWMMXT_OP_ENV_SIZE(cmpgtu)
|
|
IWMMXT_OP_ENV_SIZE(cmpgts)
|
|
|
|
IWMMXT_OP_ENV_SIZE(mins)
|
|
IWMMXT_OP_ENV_SIZE(minu)
|
|
IWMMXT_OP_ENV_SIZE(maxs)
|
|
IWMMXT_OP_ENV_SIZE(maxu)
|
|
|
|
IWMMXT_OP_ENV_SIZE(subn)
|
|
IWMMXT_OP_ENV_SIZE(addn)
|
|
IWMMXT_OP_ENV_SIZE(subu)
|
|
IWMMXT_OP_ENV_SIZE(addu)
|
|
IWMMXT_OP_ENV_SIZE(subs)
|
|
IWMMXT_OP_ENV_SIZE(adds)
|
|
|
|
IWMMXT_OP_ENV(avgb0)
|
|
IWMMXT_OP_ENV(avgb1)
|
|
IWMMXT_OP_ENV(avgw0)
|
|
IWMMXT_OP_ENV(avgw1)
|
|
|
|
IWMMXT_OP_ENV(packuw)
|
|
IWMMXT_OP_ENV(packul)
|
|
IWMMXT_OP_ENV(packuq)
|
|
IWMMXT_OP_ENV(packsw)
|
|
IWMMXT_OP_ENV(packsl)
|
|
IWMMXT_OP_ENV(packsq)
|
|
|
|
static void gen_op_iwmmxt_set_mup(void)
|
|
{
|
|
TCGv_i32 tmp;
|
|
tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]);
|
|
tcg_gen_ori_i32(tmp, tmp, 2);
|
|
store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]);
|
|
}
|
|
|
|
static void gen_op_iwmmxt_set_cup(void)
|
|
{
|
|
TCGv_i32 tmp;
|
|
tmp = load_cpu_field(iwmmxt.cregs[ARM_IWMMXT_wCon]);
|
|
tcg_gen_ori_i32(tmp, tmp, 1);
|
|
store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCon]);
|
|
}
|
|
|
|
static void gen_op_iwmmxt_setpsr_nz(void)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
gen_helper_iwmmxt_setpsr_nz(tmp, cpu_M0);
|
|
store_cpu_field(tmp, iwmmxt.cregs[ARM_IWMMXT_wCASF]);
|
|
}
|
|
|
|
static inline void gen_op_iwmmxt_addl_M0_wRn(int rn)
|
|
{
|
|
iwmmxt_load_reg(cpu_V1, rn);
|
|
tcg_gen_ext32u_i64(cpu_V1, cpu_V1);
|
|
tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1);
|
|
}
|
|
|
|
static inline int gen_iwmmxt_address(DisasContext *s, uint32_t insn,
|
|
TCGv_i32 dest)
|
|
{
|
|
int rd;
|
|
uint32_t offset;
|
|
TCGv_i32 tmp;
|
|
|
|
rd = (insn >> 16) & 0xf;
|
|
tmp = load_reg(s, rd);
|
|
|
|
offset = (insn & 0xff) << ((insn >> 7) & 2);
|
|
if (insn & (1 << 24)) {
|
|
/* Pre indexed */
|
|
if (insn & (1 << 23))
|
|
tcg_gen_addi_i32(tmp, tmp, offset);
|
|
else
|
|
tcg_gen_addi_i32(tmp, tmp, -offset);
|
|
tcg_gen_mov_i32(dest, tmp);
|
|
if (insn & (1 << 21))
|
|
store_reg(s, rd, tmp);
|
|
else
|
|
tcg_temp_free_i32(tmp);
|
|
} else if (insn & (1 << 21)) {
|
|
/* Post indexed */
|
|
tcg_gen_mov_i32(dest, tmp);
|
|
if (insn & (1 << 23))
|
|
tcg_gen_addi_i32(tmp, tmp, offset);
|
|
else
|
|
tcg_gen_addi_i32(tmp, tmp, -offset);
|
|
store_reg(s, rd, tmp);
|
|
} else if (!(insn & (1 << 23)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static inline int gen_iwmmxt_shift(uint32_t insn, uint32_t mask, TCGv_i32 dest)
|
|
{
|
|
int rd = (insn >> 0) & 0xf;
|
|
TCGv_i32 tmp;
|
|
|
|
if (insn & (1 << 8)) {
|
|
if (rd < ARM_IWMMXT_wCGR0 || rd > ARM_IWMMXT_wCGR3) {
|
|
return 1;
|
|
} else {
|
|
tmp = iwmmxt_load_creg(rd);
|
|
}
|
|
} else {
|
|
tmp = tcg_temp_new_i32();
|
|
iwmmxt_load_reg(cpu_V0, rd);
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_V0);
|
|
}
|
|
tcg_gen_andi_i32(tmp, tmp, mask);
|
|
tcg_gen_mov_i32(dest, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
return 0;
|
|
}
|
|
|
|
/* Disassemble an iwMMXt instruction. Returns nonzero if an error occurred
|
|
(ie. an undefined instruction). */
|
|
static int disas_iwmmxt_insn(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd, wrd;
|
|
int rdhi, rdlo, rd0, rd1, i;
|
|
TCGv_i32 addr;
|
|
TCGv_i32 tmp, tmp2, tmp3;
|
|
|
|
if ((insn & 0x0e000e00) == 0x0c000000) {
|
|
if ((insn & 0x0fe00ff0) == 0x0c400000) {
|
|
wrd = insn & 0xf;
|
|
rdlo = (insn >> 12) & 0xf;
|
|
rdhi = (insn >> 16) & 0xf;
|
|
if (insn & ARM_CP_RW_BIT) { /* TMRRC */
|
|
iwmmxt_load_reg(cpu_V0, wrd);
|
|
tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0);
|
|
tcg_gen_extrh_i64_i32(cpu_R[rdhi], cpu_V0);
|
|
} else { /* TMCRR */
|
|
tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]);
|
|
iwmmxt_store_reg(cpu_V0, wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
wrd = (insn >> 12) & 0xf;
|
|
addr = tcg_temp_new_i32();
|
|
if (gen_iwmmxt_address(s, insn, addr)) {
|
|
tcg_temp_free_i32(addr);
|
|
return 1;
|
|
}
|
|
if (insn & ARM_CP_RW_BIT) {
|
|
if ((insn >> 28) == 0xf) { /* WLDRW wCx */
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
|
|
iwmmxt_store_creg(wrd, tmp);
|
|
} else {
|
|
i = 1;
|
|
if (insn & (1 << 8)) {
|
|
if (insn & (1 << 22)) { /* WLDRD */
|
|
gen_aa32_ld64(s, cpu_M0, addr, get_mem_index(s));
|
|
i = 0;
|
|
} else { /* WLDRW wRd */
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
|
|
}
|
|
} else {
|
|
tmp = tcg_temp_new_i32();
|
|
if (insn & (1 << 22)) { /* WLDRH */
|
|
gen_aa32_ld16u(s, tmp, addr, get_mem_index(s));
|
|
} else { /* WLDRB */
|
|
gen_aa32_ld8u(s, tmp, addr, get_mem_index(s));
|
|
}
|
|
}
|
|
if (i) {
|
|
tcg_gen_extu_i32_i64(cpu_M0, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
}
|
|
} else {
|
|
if ((insn >> 28) == 0xf) { /* WSTRW wCx */
|
|
tmp = iwmmxt_load_creg(wrd);
|
|
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
|
|
} else {
|
|
gen_op_iwmmxt_movq_M0_wRn(wrd);
|
|
tmp = tcg_temp_new_i32();
|
|
if (insn & (1 << 8)) {
|
|
if (insn & (1 << 22)) { /* WSTRD */
|
|
gen_aa32_st64(s, cpu_M0, addr, get_mem_index(s));
|
|
} else { /* WSTRW wRd */
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
|
|
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
|
|
}
|
|
} else {
|
|
if (insn & (1 << 22)) { /* WSTRH */
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
|
|
gen_aa32_st16(s, tmp, addr, get_mem_index(s));
|
|
} else { /* WSTRB */
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
|
|
gen_aa32_st8(s, tmp, addr, get_mem_index(s));
|
|
}
|
|
}
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
tcg_temp_free_i32(addr);
|
|
return 0;
|
|
}
|
|
|
|
if ((insn & 0x0f000000) != 0x0e000000)
|
|
return 1;
|
|
|
|
switch (((insn >> 12) & 0xf00) | ((insn >> 4) & 0xff)) {
|
|
case 0x000: /* WOR */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 0) & 0xf;
|
|
rd1 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
gen_op_iwmmxt_orq_M0_wRn(rd1);
|
|
gen_op_iwmmxt_setpsr_nz();
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x011: /* TMCR */
|
|
if (insn & 0xf)
|
|
return 1;
|
|
rd = (insn >> 12) & 0xf;
|
|
wrd = (insn >> 16) & 0xf;
|
|
switch (wrd) {
|
|
case ARM_IWMMXT_wCID:
|
|
case ARM_IWMMXT_wCASF:
|
|
break;
|
|
case ARM_IWMMXT_wCon:
|
|
gen_op_iwmmxt_set_cup();
|
|
/* Fall through. */
|
|
case ARM_IWMMXT_wCSSF:
|
|
tmp = iwmmxt_load_creg(wrd);
|
|
tmp2 = load_reg(s, rd);
|
|
tcg_gen_andc_i32(tmp, tmp, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
iwmmxt_store_creg(wrd, tmp);
|
|
break;
|
|
case ARM_IWMMXT_wCGR0:
|
|
case ARM_IWMMXT_wCGR1:
|
|
case ARM_IWMMXT_wCGR2:
|
|
case ARM_IWMMXT_wCGR3:
|
|
gen_op_iwmmxt_set_cup();
|
|
tmp = load_reg(s, rd);
|
|
iwmmxt_store_creg(wrd, tmp);
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
break;
|
|
case 0x100: /* WXOR */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 0) & 0xf;
|
|
rd1 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
gen_op_iwmmxt_xorq_M0_wRn(rd1);
|
|
gen_op_iwmmxt_setpsr_nz();
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x111: /* TMRC */
|
|
if (insn & 0xf)
|
|
return 1;
|
|
rd = (insn >> 12) & 0xf;
|
|
wrd = (insn >> 16) & 0xf;
|
|
tmp = iwmmxt_load_creg(wrd);
|
|
store_reg(s, rd, tmp);
|
|
break;
|
|
case 0x300: /* WANDN */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 0) & 0xf;
|
|
rd1 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tcg_gen_neg_i64(cpu_M0, cpu_M0);
|
|
gen_op_iwmmxt_andq_M0_wRn(rd1);
|
|
gen_op_iwmmxt_setpsr_nz();
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x200: /* WAND */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 0) & 0xf;
|
|
rd1 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
gen_op_iwmmxt_andq_M0_wRn(rd1);
|
|
gen_op_iwmmxt_setpsr_nz();
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x810: case 0xa10: /* WMADD */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 0) & 0xf;
|
|
rd1 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_maddsq_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_madduq_M0_wRn(rd1);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x10e: case 0x50e: case 0x90e: case 0xd0e: /* WUNPCKIL */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
gen_op_iwmmxt_unpacklb_M0_wRn(rd1);
|
|
break;
|
|
case 1:
|
|
gen_op_iwmmxt_unpacklw_M0_wRn(rd1);
|
|
break;
|
|
case 2:
|
|
gen_op_iwmmxt_unpackll_M0_wRn(rd1);
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x10c: case 0x50c: case 0x90c: case 0xd0c: /* WUNPCKIH */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
gen_op_iwmmxt_unpackhb_M0_wRn(rd1);
|
|
break;
|
|
case 1:
|
|
gen_op_iwmmxt_unpackhw_M0_wRn(rd1);
|
|
break;
|
|
case 2:
|
|
gen_op_iwmmxt_unpackhl_M0_wRn(rd1);
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x012: case 0x112: case 0x412: case 0x512: /* WSAD */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
if (insn & (1 << 22))
|
|
gen_op_iwmmxt_sadw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_sadb_M0_wRn(rd1);
|
|
if (!(insn & (1 << 20)))
|
|
gen_op_iwmmxt_addl_M0_wRn(wrd);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x010: case 0x110: case 0x210: case 0x310: /* WMUL */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
if (insn & (1 << 21)) {
|
|
if (insn & (1 << 20))
|
|
gen_op_iwmmxt_mulshw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_mulslw_M0_wRn(rd1);
|
|
} else {
|
|
if (insn & (1 << 20))
|
|
gen_op_iwmmxt_muluhw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_mululw_M0_wRn(rd1);
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x410: case 0x510: case 0x610: case 0x710: /* WMAC */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_macsw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_macuw_M0_wRn(rd1);
|
|
if (!(insn & (1 << 20))) {
|
|
iwmmxt_load_reg(cpu_V1, wrd);
|
|
tcg_gen_add_i64(cpu_M0, cpu_M0, cpu_V1);
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x006: case 0x406: case 0x806: case 0xc06: /* WCMPEQ */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
gen_op_iwmmxt_cmpeqb_M0_wRn(rd1);
|
|
break;
|
|
case 1:
|
|
gen_op_iwmmxt_cmpeqw_M0_wRn(rd1);
|
|
break;
|
|
case 2:
|
|
gen_op_iwmmxt_cmpeql_M0_wRn(rd1);
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x800: case 0x900: case 0xc00: case 0xd00: /* WAVG2 */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
if (insn & (1 << 22)) {
|
|
if (insn & (1 << 20))
|
|
gen_op_iwmmxt_avgw1_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_avgw0_M0_wRn(rd1);
|
|
} else {
|
|
if (insn & (1 << 20))
|
|
gen_op_iwmmxt_avgb1_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_avgb0_M0_wRn(rd1);
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x802: case 0x902: case 0xa02: case 0xb02: /* WALIGNR */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = iwmmxt_load_creg(ARM_IWMMXT_wCGR0 + ((insn >> 20) & 3));
|
|
tcg_gen_andi_i32(tmp, tmp, 7);
|
|
iwmmxt_load_reg(cpu_V1, rd1);
|
|
gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x601: case 0x605: case 0x609: case 0x60d: /* TINSR */
|
|
if (((insn >> 6) & 3) == 3)
|
|
return 1;
|
|
rd = (insn >> 12) & 0xf;
|
|
wrd = (insn >> 16) & 0xf;
|
|
tmp = load_reg(s, rd);
|
|
gen_op_iwmmxt_movq_M0_wRn(wrd);
|
|
switch ((insn >> 6) & 3) {
|
|
case 0:
|
|
tmp2 = tcg_const_i32(0xff);
|
|
tmp3 = tcg_const_i32((insn & 7) << 3);
|
|
break;
|
|
case 1:
|
|
tmp2 = tcg_const_i32(0xffff);
|
|
tmp3 = tcg_const_i32((insn & 3) << 4);
|
|
break;
|
|
case 2:
|
|
tmp2 = tcg_const_i32(0xffffffff);
|
|
tmp3 = tcg_const_i32((insn & 1) << 5);
|
|
break;
|
|
default:
|
|
tmp2 = NULL;
|
|
tmp3 = NULL;
|
|
}
|
|
gen_helper_iwmmxt_insr(cpu_M0, cpu_M0, tmp, tmp2, tmp3);
|
|
tcg_temp_free_i32(tmp3);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x107: case 0x507: case 0x907: case 0xd07: /* TEXTRM */
|
|
rd = (insn >> 12) & 0xf;
|
|
wrd = (insn >> 16) & 0xf;
|
|
if (rd == 15 || ((insn >> 22) & 3) == 3)
|
|
return 1;
|
|
gen_op_iwmmxt_movq_M0_wRn(wrd);
|
|
tmp = tcg_temp_new_i32();
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 7) << 3);
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
|
|
if (insn & 8) {
|
|
tcg_gen_ext8s_i32(tmp, tmp);
|
|
} else {
|
|
tcg_gen_andi_i32(tmp, tmp, 0xff);
|
|
}
|
|
break;
|
|
case 1:
|
|
tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 3) << 4);
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
|
|
if (insn & 8) {
|
|
tcg_gen_ext16s_i32(tmp, tmp);
|
|
} else {
|
|
tcg_gen_andi_i32(tmp, tmp, 0xffff);
|
|
}
|
|
break;
|
|
case 2:
|
|
tcg_gen_shri_i64(cpu_M0, cpu_M0, (insn & 1) << 5);
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_M0);
|
|
break;
|
|
}
|
|
store_reg(s, rd, tmp);
|
|
break;
|
|
case 0x117: case 0x517: case 0x917: case 0xd17: /* TEXTRC */
|
|
if ((insn & 0x000ff008) != 0x0003f000 || ((insn >> 22) & 3) == 3)
|
|
return 1;
|
|
tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
tcg_gen_shri_i32(tmp, tmp, ((insn & 7) << 2) + 0);
|
|
break;
|
|
case 1:
|
|
tcg_gen_shri_i32(tmp, tmp, ((insn & 3) << 3) + 4);
|
|
break;
|
|
case 2:
|
|
tcg_gen_shri_i32(tmp, tmp, ((insn & 1) << 4) + 12);
|
|
break;
|
|
}
|
|
tcg_gen_shli_i32(tmp, tmp, 28);
|
|
gen_set_nzcv(tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
break;
|
|
case 0x401: case 0x405: case 0x409: case 0x40d: /* TBCST */
|
|
if (((insn >> 6) & 3) == 3)
|
|
return 1;
|
|
rd = (insn >> 12) & 0xf;
|
|
wrd = (insn >> 16) & 0xf;
|
|
tmp = load_reg(s, rd);
|
|
switch ((insn >> 6) & 3) {
|
|
case 0:
|
|
gen_helper_iwmmxt_bcstb(cpu_M0, tmp);
|
|
break;
|
|
case 1:
|
|
gen_helper_iwmmxt_bcstw(cpu_M0, tmp);
|
|
break;
|
|
case 2:
|
|
gen_helper_iwmmxt_bcstl(cpu_M0, tmp);
|
|
break;
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x113: case 0x513: case 0x913: case 0xd13: /* TANDC */
|
|
if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3)
|
|
return 1;
|
|
tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF);
|
|
tmp2 = tcg_temp_new_i32();
|
|
tcg_gen_mov_i32(tmp2, tmp);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
for (i = 0; i < 7; i ++) {
|
|
tcg_gen_shli_i32(tmp2, tmp2, 4);
|
|
tcg_gen_and_i32(tmp, tmp, tmp2);
|
|
}
|
|
break;
|
|
case 1:
|
|
for (i = 0; i < 3; i ++) {
|
|
tcg_gen_shli_i32(tmp2, tmp2, 8);
|
|
tcg_gen_and_i32(tmp, tmp, tmp2);
|
|
}
|
|
break;
|
|
case 2:
|
|
tcg_gen_shli_i32(tmp2, tmp2, 16);
|
|
tcg_gen_and_i32(tmp, tmp, tmp2);
|
|
break;
|
|
}
|
|
gen_set_nzcv(tmp);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
break;
|
|
case 0x01c: case 0x41c: case 0x81c: case 0xc1c: /* WACC */
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
gen_helper_iwmmxt_addcb(cpu_M0, cpu_M0);
|
|
break;
|
|
case 1:
|
|
gen_helper_iwmmxt_addcw(cpu_M0, cpu_M0);
|
|
break;
|
|
case 2:
|
|
gen_helper_iwmmxt_addcl(cpu_M0, cpu_M0);
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x115: case 0x515: case 0x915: case 0xd15: /* TORC */
|
|
if ((insn & 0x000ff00f) != 0x0003f000 || ((insn >> 22) & 3) == 3)
|
|
return 1;
|
|
tmp = iwmmxt_load_creg(ARM_IWMMXT_wCASF);
|
|
tmp2 = tcg_temp_new_i32();
|
|
tcg_gen_mov_i32(tmp2, tmp);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
for (i = 0; i < 7; i ++) {
|
|
tcg_gen_shli_i32(tmp2, tmp2, 4);
|
|
tcg_gen_or_i32(tmp, tmp, tmp2);
|
|
}
|
|
break;
|
|
case 1:
|
|
for (i = 0; i < 3; i ++) {
|
|
tcg_gen_shli_i32(tmp2, tmp2, 8);
|
|
tcg_gen_or_i32(tmp, tmp, tmp2);
|
|
}
|
|
break;
|
|
case 2:
|
|
tcg_gen_shli_i32(tmp2, tmp2, 16);
|
|
tcg_gen_or_i32(tmp, tmp, tmp2);
|
|
break;
|
|
}
|
|
gen_set_nzcv(tmp);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
break;
|
|
case 0x103: case 0x503: case 0x903: case 0xd03: /* TMOVMSK */
|
|
rd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
if ((insn & 0xf) != 0 || ((insn >> 22) & 3) == 3)
|
|
return 1;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = tcg_temp_new_i32();
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
gen_helper_iwmmxt_msbb(tmp, cpu_M0);
|
|
break;
|
|
case 1:
|
|
gen_helper_iwmmxt_msbw(tmp, cpu_M0);
|
|
break;
|
|
case 2:
|
|
gen_helper_iwmmxt_msbl(tmp, cpu_M0);
|
|
break;
|
|
}
|
|
store_reg(s, rd, tmp);
|
|
break;
|
|
case 0x106: case 0x306: case 0x506: case 0x706: /* WCMPGT */
|
|
case 0x906: case 0xb06: case 0xd06: case 0xf06:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_cmpgtsb_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_cmpgtub_M0_wRn(rd1);
|
|
break;
|
|
case 1:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_cmpgtsw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_cmpgtuw_M0_wRn(rd1);
|
|
break;
|
|
case 2:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_cmpgtsl_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_cmpgtul_M0_wRn(rd1);
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x00e: case 0x20e: case 0x40e: case 0x60e: /* WUNPCKEL */
|
|
case 0x80e: case 0xa0e: case 0xc0e: case 0xe0e:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_unpacklsb_M0();
|
|
else
|
|
gen_op_iwmmxt_unpacklub_M0();
|
|
break;
|
|
case 1:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_unpacklsw_M0();
|
|
else
|
|
gen_op_iwmmxt_unpackluw_M0();
|
|
break;
|
|
case 2:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_unpacklsl_M0();
|
|
else
|
|
gen_op_iwmmxt_unpacklul_M0();
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x00c: case 0x20c: case 0x40c: case 0x60c: /* WUNPCKEH */
|
|
case 0x80c: case 0xa0c: case 0xc0c: case 0xe0c:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_unpackhsb_M0();
|
|
else
|
|
gen_op_iwmmxt_unpackhub_M0();
|
|
break;
|
|
case 1:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_unpackhsw_M0();
|
|
else
|
|
gen_op_iwmmxt_unpackhuw_M0();
|
|
break;
|
|
case 2:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_unpackhsl_M0();
|
|
else
|
|
gen_op_iwmmxt_unpackhul_M0();
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x204: case 0x604: case 0xa04: case 0xe04: /* WSRL */
|
|
case 0x214: case 0x614: case 0xa14: case 0xe14:
|
|
if (((insn >> 22) & 3) == 0)
|
|
return 1;
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = tcg_temp_new_i32();
|
|
if (gen_iwmmxt_shift(insn, 0xff, tmp)) {
|
|
tcg_temp_free_i32(tmp);
|
|
return 1;
|
|
}
|
|
switch ((insn >> 22) & 3) {
|
|
case 1:
|
|
gen_helper_iwmmxt_srlw(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 2:
|
|
gen_helper_iwmmxt_srll(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 3:
|
|
gen_helper_iwmmxt_srlq(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x004: case 0x404: case 0x804: case 0xc04: /* WSRA */
|
|
case 0x014: case 0x414: case 0x814: case 0xc14:
|
|
if (((insn >> 22) & 3) == 0)
|
|
return 1;
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = tcg_temp_new_i32();
|
|
if (gen_iwmmxt_shift(insn, 0xff, tmp)) {
|
|
tcg_temp_free_i32(tmp);
|
|
return 1;
|
|
}
|
|
switch ((insn >> 22) & 3) {
|
|
case 1:
|
|
gen_helper_iwmmxt_sraw(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 2:
|
|
gen_helper_iwmmxt_sral(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 3:
|
|
gen_helper_iwmmxt_sraq(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x104: case 0x504: case 0x904: case 0xd04: /* WSLL */
|
|
case 0x114: case 0x514: case 0x914: case 0xd14:
|
|
if (((insn >> 22) & 3) == 0)
|
|
return 1;
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = tcg_temp_new_i32();
|
|
if (gen_iwmmxt_shift(insn, 0xff, tmp)) {
|
|
tcg_temp_free_i32(tmp);
|
|
return 1;
|
|
}
|
|
switch ((insn >> 22) & 3) {
|
|
case 1:
|
|
gen_helper_iwmmxt_sllw(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 2:
|
|
gen_helper_iwmmxt_slll(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 3:
|
|
gen_helper_iwmmxt_sllq(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x304: case 0x704: case 0xb04: case 0xf04: /* WROR */
|
|
case 0x314: case 0x714: case 0xb14: case 0xf14:
|
|
if (((insn >> 22) & 3) == 0)
|
|
return 1;
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = tcg_temp_new_i32();
|
|
switch ((insn >> 22) & 3) {
|
|
case 1:
|
|
if (gen_iwmmxt_shift(insn, 0xf, tmp)) {
|
|
tcg_temp_free_i32(tmp);
|
|
return 1;
|
|
}
|
|
gen_helper_iwmmxt_rorw(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 2:
|
|
if (gen_iwmmxt_shift(insn, 0x1f, tmp)) {
|
|
tcg_temp_free_i32(tmp);
|
|
return 1;
|
|
}
|
|
gen_helper_iwmmxt_rorl(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
case 3:
|
|
if (gen_iwmmxt_shift(insn, 0x3f, tmp)) {
|
|
tcg_temp_free_i32(tmp);
|
|
return 1;
|
|
}
|
|
gen_helper_iwmmxt_rorq(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
break;
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x116: case 0x316: case 0x516: case 0x716: /* WMIN */
|
|
case 0x916: case 0xb16: case 0xd16: case 0xf16:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_minsb_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_minub_M0_wRn(rd1);
|
|
break;
|
|
case 1:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_minsw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_minuw_M0_wRn(rd1);
|
|
break;
|
|
case 2:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_minsl_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_minul_M0_wRn(rd1);
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x016: case 0x216: case 0x416: case 0x616: /* WMAX */
|
|
case 0x816: case 0xa16: case 0xc16: case 0xe16:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 0:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_maxsb_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_maxub_M0_wRn(rd1);
|
|
break;
|
|
case 1:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_maxsw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_maxuw_M0_wRn(rd1);
|
|
break;
|
|
case 2:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_maxsl_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_maxul_M0_wRn(rd1);
|
|
break;
|
|
case 3:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x002: case 0x102: case 0x202: case 0x302: /* WALIGNI */
|
|
case 0x402: case 0x502: case 0x602: case 0x702:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = tcg_const_i32((insn >> 20) & 3);
|
|
iwmmxt_load_reg(cpu_V1, rd1);
|
|
gen_helper_iwmmxt_align(cpu_M0, cpu_M0, cpu_V1, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
case 0x01a: case 0x11a: case 0x21a: case 0x31a: /* WSUB */
|
|
case 0x41a: case 0x51a: case 0x61a: case 0x71a:
|
|
case 0x81a: case 0x91a: case 0xa1a: case 0xb1a:
|
|
case 0xc1a: case 0xd1a: case 0xe1a: case 0xf1a:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 20) & 0xf) {
|
|
case 0x0:
|
|
gen_op_iwmmxt_subnb_M0_wRn(rd1);
|
|
break;
|
|
case 0x1:
|
|
gen_op_iwmmxt_subub_M0_wRn(rd1);
|
|
break;
|
|
case 0x3:
|
|
gen_op_iwmmxt_subsb_M0_wRn(rd1);
|
|
break;
|
|
case 0x4:
|
|
gen_op_iwmmxt_subnw_M0_wRn(rd1);
|
|
break;
|
|
case 0x5:
|
|
gen_op_iwmmxt_subuw_M0_wRn(rd1);
|
|
break;
|
|
case 0x7:
|
|
gen_op_iwmmxt_subsw_M0_wRn(rd1);
|
|
break;
|
|
case 0x8:
|
|
gen_op_iwmmxt_subnl_M0_wRn(rd1);
|
|
break;
|
|
case 0x9:
|
|
gen_op_iwmmxt_subul_M0_wRn(rd1);
|
|
break;
|
|
case 0xb:
|
|
gen_op_iwmmxt_subsl_M0_wRn(rd1);
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x01e: case 0x11e: case 0x21e: case 0x31e: /* WSHUFH */
|
|
case 0x41e: case 0x51e: case 0x61e: case 0x71e:
|
|
case 0x81e: case 0x91e: case 0xa1e: case 0xb1e:
|
|
case 0xc1e: case 0xd1e: case 0xe1e: case 0xf1e:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
tmp = tcg_const_i32(((insn >> 16) & 0xf0) | (insn & 0x0f));
|
|
gen_helper_iwmmxt_shufh(cpu_M0, cpu_env, cpu_M0, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x018: case 0x118: case 0x218: case 0x318: /* WADD */
|
|
case 0x418: case 0x518: case 0x618: case 0x718:
|
|
case 0x818: case 0x918: case 0xa18: case 0xb18:
|
|
case 0xc18: case 0xd18: case 0xe18: case 0xf18:
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 20) & 0xf) {
|
|
case 0x0:
|
|
gen_op_iwmmxt_addnb_M0_wRn(rd1);
|
|
break;
|
|
case 0x1:
|
|
gen_op_iwmmxt_addub_M0_wRn(rd1);
|
|
break;
|
|
case 0x3:
|
|
gen_op_iwmmxt_addsb_M0_wRn(rd1);
|
|
break;
|
|
case 0x4:
|
|
gen_op_iwmmxt_addnw_M0_wRn(rd1);
|
|
break;
|
|
case 0x5:
|
|
gen_op_iwmmxt_adduw_M0_wRn(rd1);
|
|
break;
|
|
case 0x7:
|
|
gen_op_iwmmxt_addsw_M0_wRn(rd1);
|
|
break;
|
|
case 0x8:
|
|
gen_op_iwmmxt_addnl_M0_wRn(rd1);
|
|
break;
|
|
case 0x9:
|
|
gen_op_iwmmxt_addul_M0_wRn(rd1);
|
|
break;
|
|
case 0xb:
|
|
gen_op_iwmmxt_addsl_M0_wRn(rd1);
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x008: case 0x108: case 0x208: case 0x308: /* WPACK */
|
|
case 0x408: case 0x508: case 0x608: case 0x708:
|
|
case 0x808: case 0x908: case 0xa08: case 0xb08:
|
|
case 0xc08: case 0xd08: case 0xe08: case 0xf08:
|
|
if (!(insn & (1 << 20)) || ((insn >> 22) & 3) == 0)
|
|
return 1;
|
|
wrd = (insn >> 12) & 0xf;
|
|
rd0 = (insn >> 16) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
gen_op_iwmmxt_movq_M0_wRn(rd0);
|
|
switch ((insn >> 22) & 3) {
|
|
case 1:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_packsw_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_packuw_M0_wRn(rd1);
|
|
break;
|
|
case 2:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_packsl_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_packul_M0_wRn(rd1);
|
|
break;
|
|
case 3:
|
|
if (insn & (1 << 21))
|
|
gen_op_iwmmxt_packsq_M0_wRn(rd1);
|
|
else
|
|
gen_op_iwmmxt_packuq_M0_wRn(rd1);
|
|
break;
|
|
}
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
gen_op_iwmmxt_set_cup();
|
|
break;
|
|
case 0x201: case 0x203: case 0x205: case 0x207:
|
|
case 0x209: case 0x20b: case 0x20d: case 0x20f:
|
|
case 0x211: case 0x213: case 0x215: case 0x217:
|
|
case 0x219: case 0x21b: case 0x21d: case 0x21f:
|
|
wrd = (insn >> 5) & 0xf;
|
|
rd0 = (insn >> 12) & 0xf;
|
|
rd1 = (insn >> 0) & 0xf;
|
|
if (rd0 == 0xf || rd1 == 0xf)
|
|
return 1;
|
|
gen_op_iwmmxt_movq_M0_wRn(wrd);
|
|
tmp = load_reg(s, rd0);
|
|
tmp2 = load_reg(s, rd1);
|
|
switch ((insn >> 16) & 0xf) {
|
|
case 0x0: /* TMIA */
|
|
gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2);
|
|
break;
|
|
case 0x8: /* TMIAPH */
|
|
gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2);
|
|
break;
|
|
case 0xc: case 0xd: case 0xe: case 0xf: /* TMIAxy */
|
|
if (insn & (1 << 16))
|
|
tcg_gen_shri_i32(tmp, tmp, 16);
|
|
if (insn & (1 << 17))
|
|
tcg_gen_shri_i32(tmp2, tmp2, 16);
|
|
gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2);
|
|
break;
|
|
default:
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
return 1;
|
|
}
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_op_iwmmxt_movq_wRn_M0(wrd);
|
|
gen_op_iwmmxt_set_mup();
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Disassemble an XScale DSP instruction. Returns nonzero if an error occurred
|
|
(ie. an undefined instruction). */
|
|
static int disas_dsp_insn(DisasContext *s, uint32_t insn)
|
|
{
|
|
int acc, rd0, rd1, rdhi, rdlo;
|
|
TCGv_i32 tmp, tmp2;
|
|
|
|
if ((insn & 0x0ff00f10) == 0x0e200010) {
|
|
/* Multiply with Internal Accumulate Format */
|
|
rd0 = (insn >> 12) & 0xf;
|
|
rd1 = insn & 0xf;
|
|
acc = (insn >> 5) & 7;
|
|
|
|
if (acc != 0)
|
|
return 1;
|
|
|
|
tmp = load_reg(s, rd0);
|
|
tmp2 = load_reg(s, rd1);
|
|
switch ((insn >> 16) & 0xf) {
|
|
case 0x0: /* MIA */
|
|
gen_helper_iwmmxt_muladdsl(cpu_M0, cpu_M0, tmp, tmp2);
|
|
break;
|
|
case 0x8: /* MIAPH */
|
|
gen_helper_iwmmxt_muladdsw(cpu_M0, cpu_M0, tmp, tmp2);
|
|
break;
|
|
case 0xc: /* MIABB */
|
|
case 0xd: /* MIABT */
|
|
case 0xe: /* MIATB */
|
|
case 0xf: /* MIATT */
|
|
if (insn & (1 << 16))
|
|
tcg_gen_shri_i32(tmp, tmp, 16);
|
|
if (insn & (1 << 17))
|
|
tcg_gen_shri_i32(tmp2, tmp2, 16);
|
|
gen_helper_iwmmxt_muladdswl(cpu_M0, cpu_M0, tmp, tmp2);
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
gen_op_iwmmxt_movq_wRn_M0(acc);
|
|
return 0;
|
|
}
|
|
|
|
if ((insn & 0x0fe00ff8) == 0x0c400000) {
|
|
/* Internal Accumulator Access Format */
|
|
rdhi = (insn >> 16) & 0xf;
|
|
rdlo = (insn >> 12) & 0xf;
|
|
acc = insn & 7;
|
|
|
|
if (acc != 0)
|
|
return 1;
|
|
|
|
if (insn & ARM_CP_RW_BIT) { /* MRA */
|
|
iwmmxt_load_reg(cpu_V0, acc);
|
|
tcg_gen_extrl_i64_i32(cpu_R[rdlo], cpu_V0);
|
|
tcg_gen_extrh_i64_i32(cpu_R[rdhi], cpu_V0);
|
|
tcg_gen_andi_i32(cpu_R[rdhi], cpu_R[rdhi], (1 << (40 - 32)) - 1);
|
|
} else { /* MAR */
|
|
tcg_gen_concat_i32_i64(cpu_V0, cpu_R[rdlo], cpu_R[rdhi]);
|
|
iwmmxt_store_reg(cpu_V0, acc);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
#define VFP_REG_SHR(x, n) (((n) > 0) ? (x) >> (n) : (x) << -(n))
|
|
#define VFP_SREG(insn, bigbit, smallbit) \
|
|
((VFP_REG_SHR(insn, bigbit - 1) & 0x1e) | (((insn) >> (smallbit)) & 1))
|
|
#define VFP_DREG(reg, insn, bigbit, smallbit) do { \
|
|
if (arm_dc_feature(s, ARM_FEATURE_VFP3)) { \
|
|
reg = (((insn) >> (bigbit)) & 0x0f) \
|
|
| (((insn) >> ((smallbit) - 4)) & 0x10); \
|
|
} else { \
|
|
if (insn & (1 << (smallbit))) \
|
|
return 1; \
|
|
reg = ((insn) >> (bigbit)) & 0x0f; \
|
|
}} while (0)
|
|
|
|
#define VFP_SREG_D(insn) VFP_SREG(insn, 12, 22)
|
|
#define VFP_DREG_D(reg, insn) VFP_DREG(reg, insn, 12, 22)
|
|
#define VFP_SREG_N(insn) VFP_SREG(insn, 16, 7)
|
|
#define VFP_DREG_N(reg, insn) VFP_DREG(reg, insn, 16, 7)
|
|
#define VFP_SREG_M(insn) VFP_SREG(insn, 0, 5)
|
|
#define VFP_DREG_M(reg, insn) VFP_DREG(reg, insn, 0, 5)
|
|
|
|
static void gen_neon_dup_low16(TCGv_i32 var)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_ext16u_i32(var, var);
|
|
tcg_gen_shli_i32(tmp, var, 16);
|
|
tcg_gen_or_i32(var, var, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
|
|
static void gen_neon_dup_high16(TCGv_i32 var)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_andi_i32(var, var, 0xffff0000);
|
|
tcg_gen_shri_i32(tmp, var, 16);
|
|
tcg_gen_or_i32(var, var, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
|
|
/*
|
|
* Disassemble a VFP instruction. Returns nonzero if an error occurred
|
|
* (ie. an undefined instruction).
|
|
*/
|
|
static int disas_vfp_insn(DisasContext *s, uint32_t insn)
|
|
{
|
|
if (!arm_dc_feature(s, ARM_FEATURE_VFP)) {
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If the decodetree decoder handles this insn it will always
|
|
* emit code to either execute the insn or generate an appropriate
|
|
* exception; so we don't need to ever return non-zero to tell
|
|
* the calling code to emit an UNDEF exception.
|
|
*/
|
|
if (extract32(insn, 28, 4) == 0xf) {
|
|
if (disas_vfp_uncond(s, insn)) {
|
|
return 0;
|
|
}
|
|
} else {
|
|
if (disas_vfp(s, insn)) {
|
|
return 0;
|
|
}
|
|
}
|
|
/* If the decodetree decoder didn't handle this insn, it must be UNDEF */
|
|
return 1;
|
|
}
|
|
|
|
static inline bool use_goto_tb(DisasContext *s, target_ulong dest)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
return (s->base.tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK) ||
|
|
((s->base.pc_next - 1) & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK);
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
static void gen_goto_ptr(void)
|
|
{
|
|
tcg_gen_lookup_and_goto_ptr();
|
|
}
|
|
|
|
/* This will end the TB but doesn't guarantee we'll return to
|
|
* cpu_loop_exec. Any live exit_requests will be processed as we
|
|
* enter the next TB.
|
|
*/
|
|
static void gen_goto_tb(DisasContext *s, int n, target_ulong dest)
|
|
{
|
|
if (use_goto_tb(s, dest)) {
|
|
tcg_gen_goto_tb(n);
|
|
gen_set_pc_im(s, dest);
|
|
tcg_gen_exit_tb(s->base.tb, n);
|
|
} else {
|
|
gen_set_pc_im(s, dest);
|
|
gen_goto_ptr();
|
|
}
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
static inline void gen_jmp (DisasContext *s, uint32_t dest)
|
|
{
|
|
if (unlikely(is_singlestepping(s))) {
|
|
/* An indirect jump so that we still trigger the debug exception. */
|
|
gen_set_pc_im(s, dest);
|
|
s->base.is_jmp = DISAS_JUMP;
|
|
} else {
|
|
gen_goto_tb(s, 0, dest);
|
|
}
|
|
}
|
|
|
|
static inline void gen_mulxy(TCGv_i32 t0, TCGv_i32 t1, int x, int y)
|
|
{
|
|
if (x)
|
|
tcg_gen_sari_i32(t0, t0, 16);
|
|
else
|
|
gen_sxth(t0);
|
|
if (y)
|
|
tcg_gen_sari_i32(t1, t1, 16);
|
|
else
|
|
gen_sxth(t1);
|
|
tcg_gen_mul_i32(t0, t0, t1);
|
|
}
|
|
|
|
/* Return the mask of PSR bits set by a MSR instruction. */
|
|
static uint32_t msr_mask(DisasContext *s, int flags, int spsr)
|
|
{
|
|
uint32_t mask;
|
|
|
|
mask = 0;
|
|
if (flags & (1 << 0))
|
|
mask |= 0xff;
|
|
if (flags & (1 << 1))
|
|
mask |= 0xff00;
|
|
if (flags & (1 << 2))
|
|
mask |= 0xff0000;
|
|
if (flags & (1 << 3))
|
|
mask |= 0xff000000;
|
|
|
|
/* Mask out undefined bits. */
|
|
mask &= ~CPSR_RESERVED;
|
|
if (!arm_dc_feature(s, ARM_FEATURE_V4T)) {
|
|
mask &= ~CPSR_T;
|
|
}
|
|
if (!arm_dc_feature(s, ARM_FEATURE_V5)) {
|
|
mask &= ~CPSR_Q; /* V5TE in reality*/
|
|
}
|
|
if (!arm_dc_feature(s, ARM_FEATURE_V6)) {
|
|
mask &= ~(CPSR_E | CPSR_GE);
|
|
}
|
|
if (!arm_dc_feature(s, ARM_FEATURE_THUMB2)) {
|
|
mask &= ~CPSR_IT;
|
|
}
|
|
/* Mask out execution state and reserved bits. */
|
|
if (!spsr) {
|
|
mask &= ~(CPSR_EXEC | CPSR_RESERVED);
|
|
}
|
|
/* Mask out privileged bits. */
|
|
if (IS_USER(s))
|
|
mask &= CPSR_USER;
|
|
return mask;
|
|
}
|
|
|
|
/* Returns nonzero if access to the PSR is not permitted. Marks t0 as dead. */
|
|
static int gen_set_psr(DisasContext *s, uint32_t mask, int spsr, TCGv_i32 t0)
|
|
{
|
|
TCGv_i32 tmp;
|
|
if (spsr) {
|
|
/* ??? This is also undefined in system mode. */
|
|
if (IS_USER(s))
|
|
return 1;
|
|
|
|
tmp = load_cpu_field(spsr);
|
|
tcg_gen_andi_i32(tmp, tmp, ~mask);
|
|
tcg_gen_andi_i32(t0, t0, mask);
|
|
tcg_gen_or_i32(tmp, tmp, t0);
|
|
store_cpu_field(tmp, spsr);
|
|
} else {
|
|
gen_set_cpsr(t0, mask);
|
|
}
|
|
tcg_temp_free_i32(t0);
|
|
gen_lookup_tb(s);
|
|
return 0;
|
|
}
|
|
|
|
/* Returns nonzero if access to the PSR is not permitted. */
|
|
static int gen_set_psr_im(DisasContext *s, uint32_t mask, int spsr, uint32_t val)
|
|
{
|
|
TCGv_i32 tmp;
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(tmp, val);
|
|
return gen_set_psr(s, mask, spsr, tmp);
|
|
}
|
|
|
|
static bool msr_banked_access_decode(DisasContext *s, int r, int sysm, int rn,
|
|
int *tgtmode, int *regno)
|
|
{
|
|
/* Decode the r and sysm fields of MSR/MRS banked accesses into
|
|
* the target mode and register number, and identify the various
|
|
* unpredictable cases.
|
|
* MSR (banked) and MRS (banked) are CONSTRAINED UNPREDICTABLE if:
|
|
* + executed in user mode
|
|
* + using R15 as the src/dest register
|
|
* + accessing an unimplemented register
|
|
* + accessing a register that's inaccessible at current PL/security state*
|
|
* + accessing a register that you could access with a different insn
|
|
* We choose to UNDEF in all these cases.
|
|
* Since we don't know which of the various AArch32 modes we are in
|
|
* we have to defer some checks to runtime.
|
|
* Accesses to Monitor mode registers from Secure EL1 (which implies
|
|
* that EL3 is AArch64) must trap to EL3.
|
|
*
|
|
* If the access checks fail this function will emit code to take
|
|
* an exception and return false. Otherwise it will return true,
|
|
* and set *tgtmode and *regno appropriately.
|
|
*/
|
|
int exc_target = default_exception_el(s);
|
|
|
|
/* These instructions are present only in ARMv8, or in ARMv7 with the
|
|
* Virtualization Extensions.
|
|
*/
|
|
if (!arm_dc_feature(s, ARM_FEATURE_V8) &&
|
|
!arm_dc_feature(s, ARM_FEATURE_EL2)) {
|
|
goto undef;
|
|
}
|
|
|
|
if (IS_USER(s) || rn == 15) {
|
|
goto undef;
|
|
}
|
|
|
|
/* The table in the v8 ARM ARM section F5.2.3 describes the encoding
|
|
* of registers into (r, sysm).
|
|
*/
|
|
if (r) {
|
|
/* SPSRs for other modes */
|
|
switch (sysm) {
|
|
case 0xe: /* SPSR_fiq */
|
|
*tgtmode = ARM_CPU_MODE_FIQ;
|
|
break;
|
|
case 0x10: /* SPSR_irq */
|
|
*tgtmode = ARM_CPU_MODE_IRQ;
|
|
break;
|
|
case 0x12: /* SPSR_svc */
|
|
*tgtmode = ARM_CPU_MODE_SVC;
|
|
break;
|
|
case 0x14: /* SPSR_abt */
|
|
*tgtmode = ARM_CPU_MODE_ABT;
|
|
break;
|
|
case 0x16: /* SPSR_und */
|
|
*tgtmode = ARM_CPU_MODE_UND;
|
|
break;
|
|
case 0x1c: /* SPSR_mon */
|
|
*tgtmode = ARM_CPU_MODE_MON;
|
|
break;
|
|
case 0x1e: /* SPSR_hyp */
|
|
*tgtmode = ARM_CPU_MODE_HYP;
|
|
break;
|
|
default: /* unallocated */
|
|
goto undef;
|
|
}
|
|
/* We arbitrarily assign SPSR a register number of 16. */
|
|
*regno = 16;
|
|
} else {
|
|
/* general purpose registers for other modes */
|
|
switch (sysm) {
|
|
case 0x0 ... 0x6: /* 0b00xxx : r8_usr ... r14_usr */
|
|
*tgtmode = ARM_CPU_MODE_USR;
|
|
*regno = sysm + 8;
|
|
break;
|
|
case 0x8 ... 0xe: /* 0b01xxx : r8_fiq ... r14_fiq */
|
|
*tgtmode = ARM_CPU_MODE_FIQ;
|
|
*regno = sysm;
|
|
break;
|
|
case 0x10 ... 0x11: /* 0b1000x : r14_irq, r13_irq */
|
|
*tgtmode = ARM_CPU_MODE_IRQ;
|
|
*regno = sysm & 1 ? 13 : 14;
|
|
break;
|
|
case 0x12 ... 0x13: /* 0b1001x : r14_svc, r13_svc */
|
|
*tgtmode = ARM_CPU_MODE_SVC;
|
|
*regno = sysm & 1 ? 13 : 14;
|
|
break;
|
|
case 0x14 ... 0x15: /* 0b1010x : r14_abt, r13_abt */
|
|
*tgtmode = ARM_CPU_MODE_ABT;
|
|
*regno = sysm & 1 ? 13 : 14;
|
|
break;
|
|
case 0x16 ... 0x17: /* 0b1011x : r14_und, r13_und */
|
|
*tgtmode = ARM_CPU_MODE_UND;
|
|
*regno = sysm & 1 ? 13 : 14;
|
|
break;
|
|
case 0x1c ... 0x1d: /* 0b1110x : r14_mon, r13_mon */
|
|
*tgtmode = ARM_CPU_MODE_MON;
|
|
*regno = sysm & 1 ? 13 : 14;
|
|
break;
|
|
case 0x1e ... 0x1f: /* 0b1111x : elr_hyp, r13_hyp */
|
|
*tgtmode = ARM_CPU_MODE_HYP;
|
|
/* Arbitrarily pick 17 for ELR_Hyp (which is not a banked LR!) */
|
|
*regno = sysm & 1 ? 13 : 17;
|
|
break;
|
|
default: /* unallocated */
|
|
goto undef;
|
|
}
|
|
}
|
|
|
|
/* Catch the 'accessing inaccessible register' cases we can detect
|
|
* at translate time.
|
|
*/
|
|
switch (*tgtmode) {
|
|
case ARM_CPU_MODE_MON:
|
|
if (!arm_dc_feature(s, ARM_FEATURE_EL3) || s->ns) {
|
|
goto undef;
|
|
}
|
|
if (s->current_el == 1) {
|
|
/* If we're in Secure EL1 (which implies that EL3 is AArch64)
|
|
* then accesses to Mon registers trap to EL3
|
|
*/
|
|
exc_target = 3;
|
|
goto undef;
|
|
}
|
|
break;
|
|
case ARM_CPU_MODE_HYP:
|
|
/*
|
|
* SPSR_hyp and r13_hyp can only be accessed from Monitor mode
|
|
* (and so we can forbid accesses from EL2 or below). elr_hyp
|
|
* can be accessed also from Hyp mode, so forbid accesses from
|
|
* EL0 or EL1.
|
|
*/
|
|
if (!arm_dc_feature(s, ARM_FEATURE_EL2) || s->current_el < 2 ||
|
|
(s->current_el < 3 && *regno != 17)) {
|
|
goto undef;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
|
|
undef:
|
|
/* If we get here then some access check did not pass */
|
|
gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
|
|
syn_uncategorized(), exc_target);
|
|
return false;
|
|
}
|
|
|
|
static void gen_msr_banked(DisasContext *s, int r, int sysm, int rn)
|
|
{
|
|
TCGv_i32 tcg_reg, tcg_tgtmode, tcg_regno;
|
|
int tgtmode = 0, regno = 0;
|
|
|
|
if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, ®no)) {
|
|
return;
|
|
}
|
|
|
|
/* Sync state because msr_banked() can raise exceptions */
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
tcg_reg = load_reg(s, rn);
|
|
tcg_tgtmode = tcg_const_i32(tgtmode);
|
|
tcg_regno = tcg_const_i32(regno);
|
|
gen_helper_msr_banked(cpu_env, tcg_reg, tcg_tgtmode, tcg_regno);
|
|
tcg_temp_free_i32(tcg_tgtmode);
|
|
tcg_temp_free_i32(tcg_regno);
|
|
tcg_temp_free_i32(tcg_reg);
|
|
s->base.is_jmp = DISAS_UPDATE;
|
|
}
|
|
|
|
static void gen_mrs_banked(DisasContext *s, int r, int sysm, int rn)
|
|
{
|
|
TCGv_i32 tcg_reg, tcg_tgtmode, tcg_regno;
|
|
int tgtmode = 0, regno = 0;
|
|
|
|
if (!msr_banked_access_decode(s, r, sysm, rn, &tgtmode, ®no)) {
|
|
return;
|
|
}
|
|
|
|
/* Sync state because mrs_banked() can raise exceptions */
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
tcg_reg = tcg_temp_new_i32();
|
|
tcg_tgtmode = tcg_const_i32(tgtmode);
|
|
tcg_regno = tcg_const_i32(regno);
|
|
gen_helper_mrs_banked(tcg_reg, cpu_env, tcg_tgtmode, tcg_regno);
|
|
tcg_temp_free_i32(tcg_tgtmode);
|
|
tcg_temp_free_i32(tcg_regno);
|
|
store_reg(s, rn, tcg_reg);
|
|
s->base.is_jmp = DISAS_UPDATE;
|
|
}
|
|
|
|
/* Store value to PC as for an exception return (ie don't
|
|
* mask bits). The subsequent call to gen_helper_cpsr_write_eret()
|
|
* will do the masking based on the new value of the Thumb bit.
|
|
*/
|
|
static void store_pc_exc_ret(DisasContext *s, TCGv_i32 pc)
|
|
{
|
|
tcg_gen_mov_i32(cpu_R[15], pc);
|
|
tcg_temp_free_i32(pc);
|
|
}
|
|
|
|
/* Generate a v6 exception return. Marks both values as dead. */
|
|
static void gen_rfe(DisasContext *s, TCGv_i32 pc, TCGv_i32 cpsr)
|
|
{
|
|
store_pc_exc_ret(s, pc);
|
|
/* The cpsr_write_eret helper will mask the low bits of PC
|
|
* appropriately depending on the new Thumb bit, so it must
|
|
* be called after storing the new PC.
|
|
*/
|
|
if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
|
|
gen_io_start();
|
|
}
|
|
gen_helper_cpsr_write_eret(cpu_env, cpsr);
|
|
tcg_temp_free_i32(cpsr);
|
|
/* Must exit loop to check un-masked IRQs */
|
|
s->base.is_jmp = DISAS_EXIT;
|
|
}
|
|
|
|
/* Generate an old-style exception return. Marks pc as dead. */
|
|
static void gen_exception_return(DisasContext *s, TCGv_i32 pc)
|
|
{
|
|
gen_rfe(s, pc, load_cpu_field(spsr));
|
|
}
|
|
|
|
#define CPU_V001 cpu_V0, cpu_V0, cpu_V1
|
|
|
|
static inline void gen_neon_add(int size, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
switch (size) {
|
|
case 0: gen_helper_neon_add_u8(t0, t0, t1); break;
|
|
case 1: gen_helper_neon_add_u16(t0, t0, t1); break;
|
|
case 2: tcg_gen_add_i32(t0, t0, t1); break;
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static inline void gen_neon_rsb(int size, TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
switch (size) {
|
|
case 0: gen_helper_neon_sub_u8(t0, t1, t0); break;
|
|
case 1: gen_helper_neon_sub_u16(t0, t1, t0); break;
|
|
case 2: tcg_gen_sub_i32(t0, t1, t0); break;
|
|
default: return;
|
|
}
|
|
}
|
|
|
|
/* 32-bit pairwise ops end up the same as the elementwise versions. */
|
|
#define gen_helper_neon_pmax_s32 tcg_gen_smax_i32
|
|
#define gen_helper_neon_pmax_u32 tcg_gen_umax_i32
|
|
#define gen_helper_neon_pmin_s32 tcg_gen_smin_i32
|
|
#define gen_helper_neon_pmin_u32 tcg_gen_umin_i32
|
|
|
|
#define GEN_NEON_INTEGER_OP_ENV(name) do { \
|
|
switch ((size << 1) | u) { \
|
|
case 0: \
|
|
gen_helper_neon_##name##_s8(tmp, cpu_env, tmp, tmp2); \
|
|
break; \
|
|
case 1: \
|
|
gen_helper_neon_##name##_u8(tmp, cpu_env, tmp, tmp2); \
|
|
break; \
|
|
case 2: \
|
|
gen_helper_neon_##name##_s16(tmp, cpu_env, tmp, tmp2); \
|
|
break; \
|
|
case 3: \
|
|
gen_helper_neon_##name##_u16(tmp, cpu_env, tmp, tmp2); \
|
|
break; \
|
|
case 4: \
|
|
gen_helper_neon_##name##_s32(tmp, cpu_env, tmp, tmp2); \
|
|
break; \
|
|
case 5: \
|
|
gen_helper_neon_##name##_u32(tmp, cpu_env, tmp, tmp2); \
|
|
break; \
|
|
default: return 1; \
|
|
}} while (0)
|
|
|
|
#define GEN_NEON_INTEGER_OP(name) do { \
|
|
switch ((size << 1) | u) { \
|
|
case 0: \
|
|
gen_helper_neon_##name##_s8(tmp, tmp, tmp2); \
|
|
break; \
|
|
case 1: \
|
|
gen_helper_neon_##name##_u8(tmp, tmp, tmp2); \
|
|
break; \
|
|
case 2: \
|
|
gen_helper_neon_##name##_s16(tmp, tmp, tmp2); \
|
|
break; \
|
|
case 3: \
|
|
gen_helper_neon_##name##_u16(tmp, tmp, tmp2); \
|
|
break; \
|
|
case 4: \
|
|
gen_helper_neon_##name##_s32(tmp, tmp, tmp2); \
|
|
break; \
|
|
case 5: \
|
|
gen_helper_neon_##name##_u32(tmp, tmp, tmp2); \
|
|
break; \
|
|
default: return 1; \
|
|
}} while (0)
|
|
|
|
static TCGv_i32 neon_load_scratch(int scratch)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_ld_i32(tmp, cpu_env, offsetof(CPUARMState, vfp.scratch[scratch]));
|
|
return tmp;
|
|
}
|
|
|
|
static void neon_store_scratch(int scratch, TCGv_i32 var)
|
|
{
|
|
tcg_gen_st_i32(var, cpu_env, offsetof(CPUARMState, vfp.scratch[scratch]));
|
|
tcg_temp_free_i32(var);
|
|
}
|
|
|
|
static inline TCGv_i32 neon_get_scalar(int size, int reg)
|
|
{
|
|
TCGv_i32 tmp;
|
|
if (size == 1) {
|
|
tmp = neon_load_reg(reg & 7, reg >> 4);
|
|
if (reg & 8) {
|
|
gen_neon_dup_high16(tmp);
|
|
} else {
|
|
gen_neon_dup_low16(tmp);
|
|
}
|
|
} else {
|
|
tmp = neon_load_reg(reg & 15, reg >> 4);
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
static int gen_neon_unzip(int rd, int rm, int size, int q)
|
|
{
|
|
TCGv_ptr pd, pm;
|
|
|
|
if (!q && size == 2) {
|
|
return 1;
|
|
}
|
|
pd = vfp_reg_ptr(true, rd);
|
|
pm = vfp_reg_ptr(true, rm);
|
|
if (q) {
|
|
switch (size) {
|
|
case 0:
|
|
gen_helper_neon_qunzip8(pd, pm);
|
|
break;
|
|
case 1:
|
|
gen_helper_neon_qunzip16(pd, pm);
|
|
break;
|
|
case 2:
|
|
gen_helper_neon_qunzip32(pd, pm);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
} else {
|
|
switch (size) {
|
|
case 0:
|
|
gen_helper_neon_unzip8(pd, pm);
|
|
break;
|
|
case 1:
|
|
gen_helper_neon_unzip16(pd, pm);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
tcg_temp_free_ptr(pd);
|
|
tcg_temp_free_ptr(pm);
|
|
return 0;
|
|
}
|
|
|
|
static int gen_neon_zip(int rd, int rm, int size, int q)
|
|
{
|
|
TCGv_ptr pd, pm;
|
|
|
|
if (!q && size == 2) {
|
|
return 1;
|
|
}
|
|
pd = vfp_reg_ptr(true, rd);
|
|
pm = vfp_reg_ptr(true, rm);
|
|
if (q) {
|
|
switch (size) {
|
|
case 0:
|
|
gen_helper_neon_qzip8(pd, pm);
|
|
break;
|
|
case 1:
|
|
gen_helper_neon_qzip16(pd, pm);
|
|
break;
|
|
case 2:
|
|
gen_helper_neon_qzip32(pd, pm);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
} else {
|
|
switch (size) {
|
|
case 0:
|
|
gen_helper_neon_zip8(pd, pm);
|
|
break;
|
|
case 1:
|
|
gen_helper_neon_zip16(pd, pm);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
tcg_temp_free_ptr(pd);
|
|
tcg_temp_free_ptr(pm);
|
|
return 0;
|
|
}
|
|
|
|
static void gen_neon_trn_u8(TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
TCGv_i32 rd, tmp;
|
|
|
|
rd = tcg_temp_new_i32();
|
|
tmp = tcg_temp_new_i32();
|
|
|
|
tcg_gen_shli_i32(rd, t0, 8);
|
|
tcg_gen_andi_i32(rd, rd, 0xff00ff00);
|
|
tcg_gen_andi_i32(tmp, t1, 0x00ff00ff);
|
|
tcg_gen_or_i32(rd, rd, tmp);
|
|
|
|
tcg_gen_shri_i32(t1, t1, 8);
|
|
tcg_gen_andi_i32(t1, t1, 0x00ff00ff);
|
|
tcg_gen_andi_i32(tmp, t0, 0xff00ff00);
|
|
tcg_gen_or_i32(t1, t1, tmp);
|
|
tcg_gen_mov_i32(t0, rd);
|
|
|
|
tcg_temp_free_i32(tmp);
|
|
tcg_temp_free_i32(rd);
|
|
}
|
|
|
|
static void gen_neon_trn_u16(TCGv_i32 t0, TCGv_i32 t1)
|
|
{
|
|
TCGv_i32 rd, tmp;
|
|
|
|
rd = tcg_temp_new_i32();
|
|
tmp = tcg_temp_new_i32();
|
|
|
|
tcg_gen_shli_i32(rd, t0, 16);
|
|
tcg_gen_andi_i32(tmp, t1, 0xffff);
|
|
tcg_gen_or_i32(rd, rd, tmp);
|
|
tcg_gen_shri_i32(t1, t1, 16);
|
|
tcg_gen_andi_i32(tmp, t0, 0xffff0000);
|
|
tcg_gen_or_i32(t1, t1, tmp);
|
|
tcg_gen_mov_i32(t0, rd);
|
|
|
|
tcg_temp_free_i32(tmp);
|
|
tcg_temp_free_i32(rd);
|
|
}
|
|
|
|
|
|
static struct {
|
|
int nregs;
|
|
int interleave;
|
|
int spacing;
|
|
} const neon_ls_element_type[11] = {
|
|
{1, 4, 1},
|
|
{1, 4, 2},
|
|
{4, 1, 1},
|
|
{2, 2, 2},
|
|
{1, 3, 1},
|
|
{1, 3, 2},
|
|
{3, 1, 1},
|
|
{1, 1, 1},
|
|
{1, 2, 1},
|
|
{1, 2, 2},
|
|
{2, 1, 1}
|
|
};
|
|
|
|
/* Translate a NEON load/store element instruction. Return nonzero if the
|
|
instruction is invalid. */
|
|
static int disas_neon_ls_insn(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd, rn, rm;
|
|
int op;
|
|
int nregs;
|
|
int interleave;
|
|
int spacing;
|
|
int stride;
|
|
int size;
|
|
int reg;
|
|
int load;
|
|
int n;
|
|
int vec_size;
|
|
int mmu_idx;
|
|
MemOp endian;
|
|
TCGv_i32 addr;
|
|
TCGv_i32 tmp;
|
|
TCGv_i32 tmp2;
|
|
TCGv_i64 tmp64;
|
|
|
|
/* FIXME: this access check should not take precedence over UNDEF
|
|
* for invalid encodings; we will generate incorrect syndrome information
|
|
* for attempts to execute invalid vfp/neon encodings with FP disabled.
|
|
*/
|
|
if (s->fp_excp_el) {
|
|
gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
|
|
syn_simd_access_trap(1, 0xe, false), s->fp_excp_el);
|
|
return 0;
|
|
}
|
|
|
|
if (!s->vfp_enabled)
|
|
return 1;
|
|
VFP_DREG_D(rd, insn);
|
|
rn = (insn >> 16) & 0xf;
|
|
rm = insn & 0xf;
|
|
load = (insn & (1 << 21)) != 0;
|
|
endian = s->be_data;
|
|
mmu_idx = get_mem_index(s);
|
|
if ((insn & (1 << 23)) == 0) {
|
|
/* Load store all elements. */
|
|
op = (insn >> 8) & 0xf;
|
|
size = (insn >> 6) & 3;
|
|
if (op > 10)
|
|
return 1;
|
|
/* Catch UNDEF cases for bad values of align field */
|
|
switch (op & 0xc) {
|
|
case 4:
|
|
if (((insn >> 5) & 1) == 1) {
|
|
return 1;
|
|
}
|
|
break;
|
|
case 8:
|
|
if (((insn >> 4) & 3) == 3) {
|
|
return 1;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
nregs = neon_ls_element_type[op].nregs;
|
|
interleave = neon_ls_element_type[op].interleave;
|
|
spacing = neon_ls_element_type[op].spacing;
|
|
if (size == 3 && (interleave | spacing) != 1) {
|
|
return 1;
|
|
}
|
|
/* For our purposes, bytes are always little-endian. */
|
|
if (size == 0) {
|
|
endian = MO_LE;
|
|
}
|
|
/* Consecutive little-endian elements from a single register
|
|
* can be promoted to a larger little-endian operation.
|
|
*/
|
|
if (interleave == 1 && endian == MO_LE) {
|
|
size = 3;
|
|
}
|
|
tmp64 = tcg_temp_new_i64();
|
|
addr = tcg_temp_new_i32();
|
|
tmp2 = tcg_const_i32(1 << size);
|
|
load_reg_var(s, addr, rn);
|
|
for (reg = 0; reg < nregs; reg++) {
|
|
for (n = 0; n < 8 >> size; n++) {
|
|
int xs;
|
|
for (xs = 0; xs < interleave; xs++) {
|
|
int tt = rd + reg + spacing * xs;
|
|
|
|
if (load) {
|
|
gen_aa32_ld_i64(s, tmp64, addr, mmu_idx, endian | size);
|
|
neon_store_element64(tt, n, size, tmp64);
|
|
} else {
|
|
neon_load_element64(tmp64, tt, n, size);
|
|
gen_aa32_st_i64(s, tmp64, addr, mmu_idx, endian | size);
|
|
}
|
|
tcg_gen_add_i32(addr, addr, tmp2);
|
|
}
|
|
}
|
|
}
|
|
tcg_temp_free_i32(addr);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i64(tmp64);
|
|
stride = nregs * interleave * 8;
|
|
} else {
|
|
size = (insn >> 10) & 3;
|
|
if (size == 3) {
|
|
/* Load single element to all lanes. */
|
|
int a = (insn >> 4) & 1;
|
|
if (!load) {
|
|
return 1;
|
|
}
|
|
size = (insn >> 6) & 3;
|
|
nregs = ((insn >> 8) & 3) + 1;
|
|
|
|
if (size == 3) {
|
|
if (nregs != 4 || a == 0) {
|
|
return 1;
|
|
}
|
|
/* For VLD4 size==3 a == 1 means 32 bits at 16 byte alignment */
|
|
size = 2;
|
|
}
|
|
if (nregs == 1 && a == 1 && size == 0) {
|
|
return 1;
|
|
}
|
|
if (nregs == 3 && a == 1) {
|
|
return 1;
|
|
}
|
|
addr = tcg_temp_new_i32();
|
|
load_reg_var(s, addr, rn);
|
|
|
|
/* VLD1 to all lanes: bit 5 indicates how many Dregs to write.
|
|
* VLD2/3/4 to all lanes: bit 5 indicates register stride.
|
|
*/
|
|
stride = (insn & (1 << 5)) ? 2 : 1;
|
|
vec_size = nregs == 1 ? stride * 8 : 8;
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
for (reg = 0; reg < nregs; reg++) {
|
|
gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s),
|
|
s->be_data | size);
|
|
if ((rd & 1) && vec_size == 16) {
|
|
/* We cannot write 16 bytes at once because the
|
|
* destination is unaligned.
|
|
*/
|
|
tcg_gen_gvec_dup_i32(size, neon_reg_offset(rd, 0),
|
|
8, 8, tmp);
|
|
tcg_gen_gvec_mov(0, neon_reg_offset(rd + 1, 0),
|
|
neon_reg_offset(rd, 0), 8, 8);
|
|
} else {
|
|
tcg_gen_gvec_dup_i32(size, neon_reg_offset(rd, 0),
|
|
vec_size, vec_size, tmp);
|
|
}
|
|
tcg_gen_addi_i32(addr, addr, 1 << size);
|
|
rd += stride;
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
tcg_temp_free_i32(addr);
|
|
stride = (1 << size) * nregs;
|
|
} else {
|
|
/* Single element. */
|
|
int idx = (insn >> 4) & 0xf;
|
|
int reg_idx;
|
|
switch (size) {
|
|
case 0:
|
|
reg_idx = (insn >> 5) & 7;
|
|
stride = 1;
|
|
break;
|
|
case 1:
|
|
reg_idx = (insn >> 6) & 3;
|
|
stride = (insn & (1 << 5)) ? 2 : 1;
|
|
break;
|
|
case 2:
|
|
reg_idx = (insn >> 7) & 1;
|
|
stride = (insn & (1 << 6)) ? 2 : 1;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
nregs = ((insn >> 8) & 3) + 1;
|
|
/* Catch the UNDEF cases. This is unavoidably a bit messy. */
|
|
switch (nregs) {
|
|
case 1:
|
|
if (((idx & (1 << size)) != 0) ||
|
|
(size == 2 && ((idx & 3) == 1 || (idx & 3) == 2))) {
|
|
return 1;
|
|
}
|
|
break;
|
|
case 3:
|
|
if ((idx & 1) != 0) {
|
|
return 1;
|
|
}
|
|
/* fall through */
|
|
case 2:
|
|
if (size == 2 && (idx & 2) != 0) {
|
|
return 1;
|
|
}
|
|
break;
|
|
case 4:
|
|
if ((size == 2) && ((idx & 3) == 3)) {
|
|
return 1;
|
|
}
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
if ((rd + stride * (nregs - 1)) > 31) {
|
|
/* Attempts to write off the end of the register file
|
|
* are UNPREDICTABLE; we choose to UNDEF because otherwise
|
|
* the neon_load_reg() would write off the end of the array.
|
|
*/
|
|
return 1;
|
|
}
|
|
tmp = tcg_temp_new_i32();
|
|
addr = tcg_temp_new_i32();
|
|
load_reg_var(s, addr, rn);
|
|
for (reg = 0; reg < nregs; reg++) {
|
|
if (load) {
|
|
gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s),
|
|
s->be_data | size);
|
|
neon_store_element(rd, reg_idx, size, tmp);
|
|
} else { /* Store */
|
|
neon_load_element(tmp, rd, reg_idx, size);
|
|
gen_aa32_st_i32(s, tmp, addr, get_mem_index(s),
|
|
s->be_data | size);
|
|
}
|
|
rd += stride;
|
|
tcg_gen_addi_i32(addr, addr, 1 << size);
|
|
}
|
|
tcg_temp_free_i32(addr);
|
|
tcg_temp_free_i32(tmp);
|
|
stride = nregs * (1 << size);
|
|
}
|
|
}
|
|
if (rm != 15) {
|
|
TCGv_i32 base;
|
|
|
|
base = load_reg(s, rn);
|
|
if (rm == 13) {
|
|
tcg_gen_addi_i32(base, base, stride);
|
|
} else {
|
|
TCGv_i32 index;
|
|
index = load_reg(s, rm);
|
|
tcg_gen_add_i32(base, base, index);
|
|
tcg_temp_free_i32(index);
|
|
}
|
|
store_reg(s, rn, base);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void gen_neon_narrow(int size, TCGv_i32 dest, TCGv_i64 src)
|
|
{
|
|
switch (size) {
|
|
case 0: gen_helper_neon_narrow_u8(dest, src); break;
|
|
case 1: gen_helper_neon_narrow_u16(dest, src); break;
|
|
case 2: tcg_gen_extrl_i64_i32(dest, src); break;
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static inline void gen_neon_narrow_sats(int size, TCGv_i32 dest, TCGv_i64 src)
|
|
{
|
|
switch (size) {
|
|
case 0: gen_helper_neon_narrow_sat_s8(dest, cpu_env, src); break;
|
|
case 1: gen_helper_neon_narrow_sat_s16(dest, cpu_env, src); break;
|
|
case 2: gen_helper_neon_narrow_sat_s32(dest, cpu_env, src); break;
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static inline void gen_neon_narrow_satu(int size, TCGv_i32 dest, TCGv_i64 src)
|
|
{
|
|
switch (size) {
|
|
case 0: gen_helper_neon_narrow_sat_u8(dest, cpu_env, src); break;
|
|
case 1: gen_helper_neon_narrow_sat_u16(dest, cpu_env, src); break;
|
|
case 2: gen_helper_neon_narrow_sat_u32(dest, cpu_env, src); break;
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static inline void gen_neon_unarrow_sats(int size, TCGv_i32 dest, TCGv_i64 src)
|
|
{
|
|
switch (size) {
|
|
case 0: gen_helper_neon_unarrow_sat8(dest, cpu_env, src); break;
|
|
case 1: gen_helper_neon_unarrow_sat16(dest, cpu_env, src); break;
|
|
case 2: gen_helper_neon_unarrow_sat32(dest, cpu_env, src); break;
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static inline void gen_neon_shift_narrow(int size, TCGv_i32 var, TCGv_i32 shift,
|
|
int q, int u)
|
|
{
|
|
if (q) {
|
|
if (u) {
|
|
switch (size) {
|
|
case 1: gen_helper_neon_rshl_u16(var, var, shift); break;
|
|
case 2: gen_helper_neon_rshl_u32(var, var, shift); break;
|
|
default: abort();
|
|
}
|
|
} else {
|
|
switch (size) {
|
|
case 1: gen_helper_neon_rshl_s16(var, var, shift); break;
|
|
case 2: gen_helper_neon_rshl_s32(var, var, shift); break;
|
|
default: abort();
|
|
}
|
|
}
|
|
} else {
|
|
if (u) {
|
|
switch (size) {
|
|
case 1: gen_helper_neon_shl_u16(var, var, shift); break;
|
|
case 2: gen_helper_neon_shl_u32(var, var, shift); break;
|
|
default: abort();
|
|
}
|
|
} else {
|
|
switch (size) {
|
|
case 1: gen_helper_neon_shl_s16(var, var, shift); break;
|
|
case 2: gen_helper_neon_shl_s32(var, var, shift); break;
|
|
default: abort();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void gen_neon_widen(TCGv_i64 dest, TCGv_i32 src, int size, int u)
|
|
{
|
|
if (u) {
|
|
switch (size) {
|
|
case 0: gen_helper_neon_widen_u8(dest, src); break;
|
|
case 1: gen_helper_neon_widen_u16(dest, src); break;
|
|
case 2: tcg_gen_extu_i32_i64(dest, src); break;
|
|
default: abort();
|
|
}
|
|
} else {
|
|
switch (size) {
|
|
case 0: gen_helper_neon_widen_s8(dest, src); break;
|
|
case 1: gen_helper_neon_widen_s16(dest, src); break;
|
|
case 2: tcg_gen_ext_i32_i64(dest, src); break;
|
|
default: abort();
|
|
}
|
|
}
|
|
tcg_temp_free_i32(src);
|
|
}
|
|
|
|
static inline void gen_neon_addl(int size)
|
|
{
|
|
switch (size) {
|
|
case 0: gen_helper_neon_addl_u16(CPU_V001); break;
|
|
case 1: gen_helper_neon_addl_u32(CPU_V001); break;
|
|
case 2: tcg_gen_add_i64(CPU_V001); break;
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static inline void gen_neon_subl(int size)
|
|
{
|
|
switch (size) {
|
|
case 0: gen_helper_neon_subl_u16(CPU_V001); break;
|
|
case 1: gen_helper_neon_subl_u32(CPU_V001); break;
|
|
case 2: tcg_gen_sub_i64(CPU_V001); break;
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static inline void gen_neon_negl(TCGv_i64 var, int size)
|
|
{
|
|
switch (size) {
|
|
case 0: gen_helper_neon_negl_u16(var, var); break;
|
|
case 1: gen_helper_neon_negl_u32(var, var); break;
|
|
case 2:
|
|
tcg_gen_neg_i64(var, var);
|
|
break;
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static inline void gen_neon_addl_saturate(TCGv_i64 op0, TCGv_i64 op1, int size)
|
|
{
|
|
switch (size) {
|
|
case 1: gen_helper_neon_addl_saturate_s32(op0, cpu_env, op0, op1); break;
|
|
case 2: gen_helper_neon_addl_saturate_s64(op0, cpu_env, op0, op1); break;
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static inline void gen_neon_mull(TCGv_i64 dest, TCGv_i32 a, TCGv_i32 b,
|
|
int size, int u)
|
|
{
|
|
TCGv_i64 tmp;
|
|
|
|
switch ((size << 1) | u) {
|
|
case 0: gen_helper_neon_mull_s8(dest, a, b); break;
|
|
case 1: gen_helper_neon_mull_u8(dest, a, b); break;
|
|
case 2: gen_helper_neon_mull_s16(dest, a, b); break;
|
|
case 3: gen_helper_neon_mull_u16(dest, a, b); break;
|
|
case 4:
|
|
tmp = gen_muls_i64_i32(a, b);
|
|
tcg_gen_mov_i64(dest, tmp);
|
|
tcg_temp_free_i64(tmp);
|
|
break;
|
|
case 5:
|
|
tmp = gen_mulu_i64_i32(a, b);
|
|
tcg_gen_mov_i64(dest, tmp);
|
|
tcg_temp_free_i64(tmp);
|
|
break;
|
|
default: abort();
|
|
}
|
|
|
|
/* gen_helper_neon_mull_[su]{8|16} do not free their parameters.
|
|
Don't forget to clean them now. */
|
|
if (size < 2) {
|
|
tcg_temp_free_i32(a);
|
|
tcg_temp_free_i32(b);
|
|
}
|
|
}
|
|
|
|
static void gen_neon_narrow_op(int op, int u, int size,
|
|
TCGv_i32 dest, TCGv_i64 src)
|
|
{
|
|
if (op) {
|
|
if (u) {
|
|
gen_neon_unarrow_sats(size, dest, src);
|
|
} else {
|
|
gen_neon_narrow(size, dest, src);
|
|
}
|
|
} else {
|
|
if (u) {
|
|
gen_neon_narrow_satu(size, dest, src);
|
|
} else {
|
|
gen_neon_narrow_sats(size, dest, src);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Symbolic constants for op fields for Neon 3-register same-length.
|
|
* The values correspond to bits [11:8,4]; see the ARM ARM DDI0406B
|
|
* table A7-9.
|
|
*/
|
|
#define NEON_3R_VHADD 0
|
|
#define NEON_3R_VQADD 1
|
|
#define NEON_3R_VRHADD 2
|
|
#define NEON_3R_LOGIC 3 /* VAND,VBIC,VORR,VMOV,VORN,VEOR,VBIF,VBIT,VBSL */
|
|
#define NEON_3R_VHSUB 4
|
|
#define NEON_3R_VQSUB 5
|
|
#define NEON_3R_VCGT 6
|
|
#define NEON_3R_VCGE 7
|
|
#define NEON_3R_VSHL 8
|
|
#define NEON_3R_VQSHL 9
|
|
#define NEON_3R_VRSHL 10
|
|
#define NEON_3R_VQRSHL 11
|
|
#define NEON_3R_VMAX 12
|
|
#define NEON_3R_VMIN 13
|
|
#define NEON_3R_VABD 14
|
|
#define NEON_3R_VABA 15
|
|
#define NEON_3R_VADD_VSUB 16
|
|
#define NEON_3R_VTST_VCEQ 17
|
|
#define NEON_3R_VML 18 /* VMLA, VMLS */
|
|
#define NEON_3R_VMUL 19
|
|
#define NEON_3R_VPMAX 20
|
|
#define NEON_3R_VPMIN 21
|
|
#define NEON_3R_VQDMULH_VQRDMULH 22
|
|
#define NEON_3R_VPADD_VQRDMLAH 23
|
|
#define NEON_3R_SHA 24 /* SHA1C,SHA1P,SHA1M,SHA1SU0,SHA256H{2},SHA256SU1 */
|
|
#define NEON_3R_VFM_VQRDMLSH 25 /* VFMA, VFMS, VQRDMLSH */
|
|
#define NEON_3R_FLOAT_ARITH 26 /* float VADD, VSUB, VPADD, VABD */
|
|
#define NEON_3R_FLOAT_MULTIPLY 27 /* float VMLA, VMLS, VMUL */
|
|
#define NEON_3R_FLOAT_CMP 28 /* float VCEQ, VCGE, VCGT */
|
|
#define NEON_3R_FLOAT_ACMP 29 /* float VACGE, VACGT, VACLE, VACLT */
|
|
#define NEON_3R_FLOAT_MINMAX 30 /* float VMIN, VMAX */
|
|
#define NEON_3R_FLOAT_MISC 31 /* float VRECPS, VRSQRTS, VMAXNM/MINNM */
|
|
|
|
static const uint8_t neon_3r_sizes[] = {
|
|
[NEON_3R_VHADD] = 0x7,
|
|
[NEON_3R_VQADD] = 0xf,
|
|
[NEON_3R_VRHADD] = 0x7,
|
|
[NEON_3R_LOGIC] = 0xf, /* size field encodes op type */
|
|
[NEON_3R_VHSUB] = 0x7,
|
|
[NEON_3R_VQSUB] = 0xf,
|
|
[NEON_3R_VCGT] = 0x7,
|
|
[NEON_3R_VCGE] = 0x7,
|
|
[NEON_3R_VSHL] = 0xf,
|
|
[NEON_3R_VQSHL] = 0xf,
|
|
[NEON_3R_VRSHL] = 0xf,
|
|
[NEON_3R_VQRSHL] = 0xf,
|
|
[NEON_3R_VMAX] = 0x7,
|
|
[NEON_3R_VMIN] = 0x7,
|
|
[NEON_3R_VABD] = 0x7,
|
|
[NEON_3R_VABA] = 0x7,
|
|
[NEON_3R_VADD_VSUB] = 0xf,
|
|
[NEON_3R_VTST_VCEQ] = 0x7,
|
|
[NEON_3R_VML] = 0x7,
|
|
[NEON_3R_VMUL] = 0x7,
|
|
[NEON_3R_VPMAX] = 0x7,
|
|
[NEON_3R_VPMIN] = 0x7,
|
|
[NEON_3R_VQDMULH_VQRDMULH] = 0x6,
|
|
[NEON_3R_VPADD_VQRDMLAH] = 0x7,
|
|
[NEON_3R_SHA] = 0xf, /* size field encodes op type */
|
|
[NEON_3R_VFM_VQRDMLSH] = 0x7, /* For VFM, size bit 1 encodes op */
|
|
[NEON_3R_FLOAT_ARITH] = 0x5, /* size bit 1 encodes op */
|
|
[NEON_3R_FLOAT_MULTIPLY] = 0x5, /* size bit 1 encodes op */
|
|
[NEON_3R_FLOAT_CMP] = 0x5, /* size bit 1 encodes op */
|
|
[NEON_3R_FLOAT_ACMP] = 0x5, /* size bit 1 encodes op */
|
|
[NEON_3R_FLOAT_MINMAX] = 0x5, /* size bit 1 encodes op */
|
|
[NEON_3R_FLOAT_MISC] = 0x5, /* size bit 1 encodes op */
|
|
};
|
|
|
|
/* Symbolic constants for op fields for Neon 2-register miscellaneous.
|
|
* The values correspond to bits [17:16,10:7]; see the ARM ARM DDI0406B
|
|
* table A7-13.
|
|
*/
|
|
#define NEON_2RM_VREV64 0
|
|
#define NEON_2RM_VREV32 1
|
|
#define NEON_2RM_VREV16 2
|
|
#define NEON_2RM_VPADDL 4
|
|
#define NEON_2RM_VPADDL_U 5
|
|
#define NEON_2RM_AESE 6 /* Includes AESD */
|
|
#define NEON_2RM_AESMC 7 /* Includes AESIMC */
|
|
#define NEON_2RM_VCLS 8
|
|
#define NEON_2RM_VCLZ 9
|
|
#define NEON_2RM_VCNT 10
|
|
#define NEON_2RM_VMVN 11
|
|
#define NEON_2RM_VPADAL 12
|
|
#define NEON_2RM_VPADAL_U 13
|
|
#define NEON_2RM_VQABS 14
|
|
#define NEON_2RM_VQNEG 15
|
|
#define NEON_2RM_VCGT0 16
|
|
#define NEON_2RM_VCGE0 17
|
|
#define NEON_2RM_VCEQ0 18
|
|
#define NEON_2RM_VCLE0 19
|
|
#define NEON_2RM_VCLT0 20
|
|
#define NEON_2RM_SHA1H 21
|
|
#define NEON_2RM_VABS 22
|
|
#define NEON_2RM_VNEG 23
|
|
#define NEON_2RM_VCGT0_F 24
|
|
#define NEON_2RM_VCGE0_F 25
|
|
#define NEON_2RM_VCEQ0_F 26
|
|
#define NEON_2RM_VCLE0_F 27
|
|
#define NEON_2RM_VCLT0_F 28
|
|
#define NEON_2RM_VABS_F 30
|
|
#define NEON_2RM_VNEG_F 31
|
|
#define NEON_2RM_VSWP 32
|
|
#define NEON_2RM_VTRN 33
|
|
#define NEON_2RM_VUZP 34
|
|
#define NEON_2RM_VZIP 35
|
|
#define NEON_2RM_VMOVN 36 /* Includes VQMOVN, VQMOVUN */
|
|
#define NEON_2RM_VQMOVN 37 /* Includes VQMOVUN */
|
|
#define NEON_2RM_VSHLL 38
|
|
#define NEON_2RM_SHA1SU1 39 /* Includes SHA256SU0 */
|
|
#define NEON_2RM_VRINTN 40
|
|
#define NEON_2RM_VRINTX 41
|
|
#define NEON_2RM_VRINTA 42
|
|
#define NEON_2RM_VRINTZ 43
|
|
#define NEON_2RM_VCVT_F16_F32 44
|
|
#define NEON_2RM_VRINTM 45
|
|
#define NEON_2RM_VCVT_F32_F16 46
|
|
#define NEON_2RM_VRINTP 47
|
|
#define NEON_2RM_VCVTAU 48
|
|
#define NEON_2RM_VCVTAS 49
|
|
#define NEON_2RM_VCVTNU 50
|
|
#define NEON_2RM_VCVTNS 51
|
|
#define NEON_2RM_VCVTPU 52
|
|
#define NEON_2RM_VCVTPS 53
|
|
#define NEON_2RM_VCVTMU 54
|
|
#define NEON_2RM_VCVTMS 55
|
|
#define NEON_2RM_VRECPE 56
|
|
#define NEON_2RM_VRSQRTE 57
|
|
#define NEON_2RM_VRECPE_F 58
|
|
#define NEON_2RM_VRSQRTE_F 59
|
|
#define NEON_2RM_VCVT_FS 60
|
|
#define NEON_2RM_VCVT_FU 61
|
|
#define NEON_2RM_VCVT_SF 62
|
|
#define NEON_2RM_VCVT_UF 63
|
|
|
|
static bool neon_2rm_is_v8_op(int op)
|
|
{
|
|
/* Return true if this neon 2reg-misc op is ARMv8 and up */
|
|
switch (op) {
|
|
case NEON_2RM_VRINTN:
|
|
case NEON_2RM_VRINTA:
|
|
case NEON_2RM_VRINTM:
|
|
case NEON_2RM_VRINTP:
|
|
case NEON_2RM_VRINTZ:
|
|
case NEON_2RM_VRINTX:
|
|
case NEON_2RM_VCVTAU:
|
|
case NEON_2RM_VCVTAS:
|
|
case NEON_2RM_VCVTNU:
|
|
case NEON_2RM_VCVTNS:
|
|
case NEON_2RM_VCVTPU:
|
|
case NEON_2RM_VCVTPS:
|
|
case NEON_2RM_VCVTMU:
|
|
case NEON_2RM_VCVTMS:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Each entry in this array has bit n set if the insn allows
|
|
* size value n (otherwise it will UNDEF). Since unallocated
|
|
* op values will have no bits set they always UNDEF.
|
|
*/
|
|
static const uint8_t neon_2rm_sizes[] = {
|
|
[NEON_2RM_VREV64] = 0x7,
|
|
[NEON_2RM_VREV32] = 0x3,
|
|
[NEON_2RM_VREV16] = 0x1,
|
|
[NEON_2RM_VPADDL] = 0x7,
|
|
[NEON_2RM_VPADDL_U] = 0x7,
|
|
[NEON_2RM_AESE] = 0x1,
|
|
[NEON_2RM_AESMC] = 0x1,
|
|
[NEON_2RM_VCLS] = 0x7,
|
|
[NEON_2RM_VCLZ] = 0x7,
|
|
[NEON_2RM_VCNT] = 0x1,
|
|
[NEON_2RM_VMVN] = 0x1,
|
|
[NEON_2RM_VPADAL] = 0x7,
|
|
[NEON_2RM_VPADAL_U] = 0x7,
|
|
[NEON_2RM_VQABS] = 0x7,
|
|
[NEON_2RM_VQNEG] = 0x7,
|
|
[NEON_2RM_VCGT0] = 0x7,
|
|
[NEON_2RM_VCGE0] = 0x7,
|
|
[NEON_2RM_VCEQ0] = 0x7,
|
|
[NEON_2RM_VCLE0] = 0x7,
|
|
[NEON_2RM_VCLT0] = 0x7,
|
|
[NEON_2RM_SHA1H] = 0x4,
|
|
[NEON_2RM_VABS] = 0x7,
|
|
[NEON_2RM_VNEG] = 0x7,
|
|
[NEON_2RM_VCGT0_F] = 0x4,
|
|
[NEON_2RM_VCGE0_F] = 0x4,
|
|
[NEON_2RM_VCEQ0_F] = 0x4,
|
|
[NEON_2RM_VCLE0_F] = 0x4,
|
|
[NEON_2RM_VCLT0_F] = 0x4,
|
|
[NEON_2RM_VABS_F] = 0x4,
|
|
[NEON_2RM_VNEG_F] = 0x4,
|
|
[NEON_2RM_VSWP] = 0x1,
|
|
[NEON_2RM_VTRN] = 0x7,
|
|
[NEON_2RM_VUZP] = 0x7,
|
|
[NEON_2RM_VZIP] = 0x7,
|
|
[NEON_2RM_VMOVN] = 0x7,
|
|
[NEON_2RM_VQMOVN] = 0x7,
|
|
[NEON_2RM_VSHLL] = 0x7,
|
|
[NEON_2RM_SHA1SU1] = 0x4,
|
|
[NEON_2RM_VRINTN] = 0x4,
|
|
[NEON_2RM_VRINTX] = 0x4,
|
|
[NEON_2RM_VRINTA] = 0x4,
|
|
[NEON_2RM_VRINTZ] = 0x4,
|
|
[NEON_2RM_VCVT_F16_F32] = 0x2,
|
|
[NEON_2RM_VRINTM] = 0x4,
|
|
[NEON_2RM_VCVT_F32_F16] = 0x2,
|
|
[NEON_2RM_VRINTP] = 0x4,
|
|
[NEON_2RM_VCVTAU] = 0x4,
|
|
[NEON_2RM_VCVTAS] = 0x4,
|
|
[NEON_2RM_VCVTNU] = 0x4,
|
|
[NEON_2RM_VCVTNS] = 0x4,
|
|
[NEON_2RM_VCVTPU] = 0x4,
|
|
[NEON_2RM_VCVTPS] = 0x4,
|
|
[NEON_2RM_VCVTMU] = 0x4,
|
|
[NEON_2RM_VCVTMS] = 0x4,
|
|
[NEON_2RM_VRECPE] = 0x4,
|
|
[NEON_2RM_VRSQRTE] = 0x4,
|
|
[NEON_2RM_VRECPE_F] = 0x4,
|
|
[NEON_2RM_VRSQRTE_F] = 0x4,
|
|
[NEON_2RM_VCVT_FS] = 0x4,
|
|
[NEON_2RM_VCVT_FU] = 0x4,
|
|
[NEON_2RM_VCVT_SF] = 0x4,
|
|
[NEON_2RM_VCVT_UF] = 0x4,
|
|
};
|
|
|
|
|
|
/* Expand v8.1 simd helper. */
|
|
static int do_v81_helper(DisasContext *s, gen_helper_gvec_3_ptr *fn,
|
|
int q, int rd, int rn, int rm)
|
|
{
|
|
if (dc_isar_feature(aa32_rdm, s)) {
|
|
int opr_sz = (1 + q) * 8;
|
|
tcg_gen_gvec_3_ptr(vfp_reg_offset(1, rd),
|
|
vfp_reg_offset(1, rn),
|
|
vfp_reg_offset(1, rm), cpu_env,
|
|
opr_sz, opr_sz, 0, fn);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_vec_sar8i_i64(a, a, shift);
|
|
tcg_gen_vec_add8_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_vec_sar16i_i64(a, a, shift);
|
|
tcg_gen_vec_add16_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
|
|
{
|
|
tcg_gen_sari_i32(a, a, shift);
|
|
tcg_gen_add_i32(d, d, a);
|
|
}
|
|
|
|
static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_sari_i64(a, a, shift);
|
|
tcg_gen_add_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
|
|
{
|
|
tcg_gen_sari_vec(vece, a, a, sh);
|
|
tcg_gen_add_vec(vece, d, d, a);
|
|
}
|
|
|
|
static const TCGOpcode vecop_list_ssra[] = {
|
|
INDEX_op_sari_vec, INDEX_op_add_vec, 0
|
|
};
|
|
|
|
const GVecGen2i ssra_op[4] = {
|
|
{ .fni8 = gen_ssra8_i64,
|
|
.fniv = gen_ssra_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_ssra,
|
|
.vece = MO_8 },
|
|
{ .fni8 = gen_ssra16_i64,
|
|
.fniv = gen_ssra_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_ssra,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_ssra32_i32,
|
|
.fniv = gen_ssra_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_ssra,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_ssra64_i64,
|
|
.fniv = gen_ssra_vec,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.opt_opc = vecop_list_ssra,
|
|
.load_dest = true,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_vec_shr8i_i64(a, a, shift);
|
|
tcg_gen_vec_add8_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_vec_shr16i_i64(a, a, shift);
|
|
tcg_gen_vec_add16_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
|
|
{
|
|
tcg_gen_shri_i32(a, a, shift);
|
|
tcg_gen_add_i32(d, d, a);
|
|
}
|
|
|
|
static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_shri_i64(a, a, shift);
|
|
tcg_gen_add_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
|
|
{
|
|
tcg_gen_shri_vec(vece, a, a, sh);
|
|
tcg_gen_add_vec(vece, d, d, a);
|
|
}
|
|
|
|
static const TCGOpcode vecop_list_usra[] = {
|
|
INDEX_op_shri_vec, INDEX_op_add_vec, 0
|
|
};
|
|
|
|
const GVecGen2i usra_op[4] = {
|
|
{ .fni8 = gen_usra8_i64,
|
|
.fniv = gen_usra_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_usra,
|
|
.vece = MO_8, },
|
|
{ .fni8 = gen_usra16_i64,
|
|
.fniv = gen_usra_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_usra,
|
|
.vece = MO_16, },
|
|
{ .fni4 = gen_usra32_i32,
|
|
.fniv = gen_usra_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_usra,
|
|
.vece = MO_32, },
|
|
{ .fni8 = gen_usra64_i64,
|
|
.fniv = gen_usra_vec,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_usra,
|
|
.vece = MO_64, },
|
|
};
|
|
|
|
static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
uint64_t mask = dup_const(MO_8, 0xff >> shift);
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_shri_i64(t, a, shift);
|
|
tcg_gen_andi_i64(t, t, mask);
|
|
tcg_gen_andi_i64(d, d, ~mask);
|
|
tcg_gen_or_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
uint64_t mask = dup_const(MO_16, 0xffff >> shift);
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_shri_i64(t, a, shift);
|
|
tcg_gen_andi_i64(t, t, mask);
|
|
tcg_gen_andi_i64(d, d, ~mask);
|
|
tcg_gen_or_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
|
|
{
|
|
tcg_gen_shri_i32(a, a, shift);
|
|
tcg_gen_deposit_i32(d, d, a, 0, 32 - shift);
|
|
}
|
|
|
|
static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_shri_i64(a, a, shift);
|
|
tcg_gen_deposit_i64(d, d, a, 0, 64 - shift);
|
|
}
|
|
|
|
static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
|
|
{
|
|
if (sh == 0) {
|
|
tcg_gen_mov_vec(d, a);
|
|
} else {
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
TCGv_vec m = tcg_temp_new_vec_matching(d);
|
|
|
|
tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK((8 << vece) - sh, sh));
|
|
tcg_gen_shri_vec(vece, t, a, sh);
|
|
tcg_gen_and_vec(vece, d, d, m);
|
|
tcg_gen_or_vec(vece, d, d, t);
|
|
|
|
tcg_temp_free_vec(t);
|
|
tcg_temp_free_vec(m);
|
|
}
|
|
}
|
|
|
|
static const TCGOpcode vecop_list_sri[] = { INDEX_op_shri_vec, 0 };
|
|
|
|
const GVecGen2i sri_op[4] = {
|
|
{ .fni8 = gen_shr8_ins_i64,
|
|
.fniv = gen_shr_ins_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_sri,
|
|
.vece = MO_8 },
|
|
{ .fni8 = gen_shr16_ins_i64,
|
|
.fniv = gen_shr_ins_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_sri,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_shr32_ins_i32,
|
|
.fniv = gen_shr_ins_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_sri,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_shr64_ins_i64,
|
|
.fniv = gen_shr_ins_vec,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_sri,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
uint64_t mask = dup_const(MO_8, 0xff << shift);
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_shli_i64(t, a, shift);
|
|
tcg_gen_andi_i64(t, t, mask);
|
|
tcg_gen_andi_i64(d, d, ~mask);
|
|
tcg_gen_or_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
uint64_t mask = dup_const(MO_16, 0xffff << shift);
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_shli_i64(t, a, shift);
|
|
tcg_gen_andi_i64(t, t, mask);
|
|
tcg_gen_andi_i64(d, d, ~mask);
|
|
tcg_gen_or_i64(d, d, t);
|
|
tcg_temp_free_i64(t);
|
|
}
|
|
|
|
static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift)
|
|
{
|
|
tcg_gen_deposit_i32(d, d, a, shift, 32 - shift);
|
|
}
|
|
|
|
static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
|
|
{
|
|
tcg_gen_deposit_i64(d, d, a, shift, 64 - shift);
|
|
}
|
|
|
|
static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh)
|
|
{
|
|
if (sh == 0) {
|
|
tcg_gen_mov_vec(d, a);
|
|
} else {
|
|
TCGv_vec t = tcg_temp_new_vec_matching(d);
|
|
TCGv_vec m = tcg_temp_new_vec_matching(d);
|
|
|
|
tcg_gen_dupi_vec(vece, m, MAKE_64BIT_MASK(0, sh));
|
|
tcg_gen_shli_vec(vece, t, a, sh);
|
|
tcg_gen_and_vec(vece, d, d, m);
|
|
tcg_gen_or_vec(vece, d, d, t);
|
|
|
|
tcg_temp_free_vec(t);
|
|
tcg_temp_free_vec(m);
|
|
}
|
|
}
|
|
|
|
static const TCGOpcode vecop_list_sli[] = { INDEX_op_shli_vec, 0 };
|
|
|
|
const GVecGen2i sli_op[4] = {
|
|
{ .fni8 = gen_shl8_ins_i64,
|
|
.fniv = gen_shl_ins_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_sli,
|
|
.vece = MO_8 },
|
|
{ .fni8 = gen_shl16_ins_i64,
|
|
.fniv = gen_shl_ins_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_sli,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_shl32_ins_i32,
|
|
.fniv = gen_shl_ins_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_sli,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_shl64_ins_i64,
|
|
.fniv = gen_shl_ins_vec,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_sli,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
gen_helper_neon_mul_u8(a, a, b);
|
|
gen_helper_neon_add_u8(d, d, a);
|
|
}
|
|
|
|
static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
gen_helper_neon_mul_u8(a, a, b);
|
|
gen_helper_neon_sub_u8(d, d, a);
|
|
}
|
|
|
|
static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
gen_helper_neon_mul_u16(a, a, b);
|
|
gen_helper_neon_add_u16(d, d, a);
|
|
}
|
|
|
|
static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
gen_helper_neon_mul_u16(a, a, b);
|
|
gen_helper_neon_sub_u16(d, d, a);
|
|
}
|
|
|
|
static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
tcg_gen_mul_i32(a, a, b);
|
|
tcg_gen_add_i32(d, d, a);
|
|
}
|
|
|
|
static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
tcg_gen_mul_i32(a, a, b);
|
|
tcg_gen_sub_i32(d, d, a);
|
|
}
|
|
|
|
static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
tcg_gen_mul_i64(a, a, b);
|
|
tcg_gen_add_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
tcg_gen_mul_i64(a, a, b);
|
|
tcg_gen_sub_i64(d, d, a);
|
|
}
|
|
|
|
static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
|
|
{
|
|
tcg_gen_mul_vec(vece, a, a, b);
|
|
tcg_gen_add_vec(vece, d, d, a);
|
|
}
|
|
|
|
static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
|
|
{
|
|
tcg_gen_mul_vec(vece, a, a, b);
|
|
tcg_gen_sub_vec(vece, d, d, a);
|
|
}
|
|
|
|
/* Note that while NEON does not support VMLA and VMLS as 64-bit ops,
|
|
* these tables are shared with AArch64 which does support them.
|
|
*/
|
|
|
|
static const TCGOpcode vecop_list_mla[] = {
|
|
INDEX_op_mul_vec, INDEX_op_add_vec, 0
|
|
};
|
|
|
|
static const TCGOpcode vecop_list_mls[] = {
|
|
INDEX_op_mul_vec, INDEX_op_sub_vec, 0
|
|
};
|
|
|
|
const GVecGen3 mla_op[4] = {
|
|
{ .fni4 = gen_mla8_i32,
|
|
.fniv = gen_mla_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_mla,
|
|
.vece = MO_8 },
|
|
{ .fni4 = gen_mla16_i32,
|
|
.fniv = gen_mla_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_mla,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_mla32_i32,
|
|
.fniv = gen_mla_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_mla,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_mla64_i64,
|
|
.fniv = gen_mla_vec,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_mla,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
const GVecGen3 mls_op[4] = {
|
|
{ .fni4 = gen_mls8_i32,
|
|
.fniv = gen_mls_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_mls,
|
|
.vece = MO_8 },
|
|
{ .fni4 = gen_mls16_i32,
|
|
.fniv = gen_mls_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_mls,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_mls32_i32,
|
|
.fniv = gen_mls_vec,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_mls,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_mls64_i64,
|
|
.fniv = gen_mls_vec,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.load_dest = true,
|
|
.opt_opc = vecop_list_mls,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
/* CMTST : test is "if (X & Y != 0)". */
|
|
static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
tcg_gen_and_i32(d, a, b);
|
|
tcg_gen_setcondi_i32(TCG_COND_NE, d, d, 0);
|
|
tcg_gen_neg_i32(d, d);
|
|
}
|
|
|
|
void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
|
|
{
|
|
tcg_gen_and_i64(d, a, b);
|
|
tcg_gen_setcondi_i64(TCG_COND_NE, d, d, 0);
|
|
tcg_gen_neg_i64(d, d);
|
|
}
|
|
|
|
static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b)
|
|
{
|
|
tcg_gen_and_vec(vece, d, a, b);
|
|
tcg_gen_dupi_vec(vece, a, 0);
|
|
tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a);
|
|
}
|
|
|
|
static const TCGOpcode vecop_list_cmtst[] = { INDEX_op_cmp_vec, 0 };
|
|
|
|
const GVecGen3 cmtst_op[4] = {
|
|
{ .fni4 = gen_helper_neon_tst_u8,
|
|
.fniv = gen_cmtst_vec,
|
|
.opt_opc = vecop_list_cmtst,
|
|
.vece = MO_8 },
|
|
{ .fni4 = gen_helper_neon_tst_u16,
|
|
.fniv = gen_cmtst_vec,
|
|
.opt_opc = vecop_list_cmtst,
|
|
.vece = MO_16 },
|
|
{ .fni4 = gen_cmtst_i32,
|
|
.fniv = gen_cmtst_vec,
|
|
.opt_opc = vecop_list_cmtst,
|
|
.vece = MO_32 },
|
|
{ .fni8 = gen_cmtst_i64,
|
|
.fniv = gen_cmtst_vec,
|
|
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
|
|
.opt_opc = vecop_list_cmtst,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
static void gen_uqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec sat,
|
|
TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec x = tcg_temp_new_vec_matching(t);
|
|
tcg_gen_add_vec(vece, x, a, b);
|
|
tcg_gen_usadd_vec(vece, t, a, b);
|
|
tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t);
|
|
tcg_gen_or_vec(vece, sat, sat, x);
|
|
tcg_temp_free_vec(x);
|
|
}
|
|
|
|
static const TCGOpcode vecop_list_uqadd[] = {
|
|
INDEX_op_usadd_vec, INDEX_op_cmp_vec, INDEX_op_add_vec, 0
|
|
};
|
|
|
|
const GVecGen4 uqadd_op[4] = {
|
|
{ .fniv = gen_uqadd_vec,
|
|
.fno = gen_helper_gvec_uqadd_b,
|
|
.write_aofs = true,
|
|
.opt_opc = vecop_list_uqadd,
|
|
.vece = MO_8 },
|
|
{ .fniv = gen_uqadd_vec,
|
|
.fno = gen_helper_gvec_uqadd_h,
|
|
.write_aofs = true,
|
|
.opt_opc = vecop_list_uqadd,
|
|
.vece = MO_16 },
|
|
{ .fniv = gen_uqadd_vec,
|
|
.fno = gen_helper_gvec_uqadd_s,
|
|
.write_aofs = true,
|
|
.opt_opc = vecop_list_uqadd,
|
|
.vece = MO_32 },
|
|
{ .fniv = gen_uqadd_vec,
|
|
.fno = gen_helper_gvec_uqadd_d,
|
|
.write_aofs = true,
|
|
.opt_opc = vecop_list_uqadd,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
static void gen_sqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec sat,
|
|
TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec x = tcg_temp_new_vec_matching(t);
|
|
tcg_gen_add_vec(vece, x, a, b);
|
|
tcg_gen_ssadd_vec(vece, t, a, b);
|
|
tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t);
|
|
tcg_gen_or_vec(vece, sat, sat, x);
|
|
tcg_temp_free_vec(x);
|
|
}
|
|
|
|
static const TCGOpcode vecop_list_sqadd[] = {
|
|
INDEX_op_ssadd_vec, INDEX_op_cmp_vec, INDEX_op_add_vec, 0
|
|
};
|
|
|
|
const GVecGen4 sqadd_op[4] = {
|
|
{ .fniv = gen_sqadd_vec,
|
|
.fno = gen_helper_gvec_sqadd_b,
|
|
.opt_opc = vecop_list_sqadd,
|
|
.write_aofs = true,
|
|
.vece = MO_8 },
|
|
{ .fniv = gen_sqadd_vec,
|
|
.fno = gen_helper_gvec_sqadd_h,
|
|
.opt_opc = vecop_list_sqadd,
|
|
.write_aofs = true,
|
|
.vece = MO_16 },
|
|
{ .fniv = gen_sqadd_vec,
|
|
.fno = gen_helper_gvec_sqadd_s,
|
|
.opt_opc = vecop_list_sqadd,
|
|
.write_aofs = true,
|
|
.vece = MO_32 },
|
|
{ .fniv = gen_sqadd_vec,
|
|
.fno = gen_helper_gvec_sqadd_d,
|
|
.opt_opc = vecop_list_sqadd,
|
|
.write_aofs = true,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
static void gen_uqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec sat,
|
|
TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec x = tcg_temp_new_vec_matching(t);
|
|
tcg_gen_sub_vec(vece, x, a, b);
|
|
tcg_gen_ussub_vec(vece, t, a, b);
|
|
tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t);
|
|
tcg_gen_or_vec(vece, sat, sat, x);
|
|
tcg_temp_free_vec(x);
|
|
}
|
|
|
|
static const TCGOpcode vecop_list_uqsub[] = {
|
|
INDEX_op_ussub_vec, INDEX_op_cmp_vec, INDEX_op_sub_vec, 0
|
|
};
|
|
|
|
const GVecGen4 uqsub_op[4] = {
|
|
{ .fniv = gen_uqsub_vec,
|
|
.fno = gen_helper_gvec_uqsub_b,
|
|
.opt_opc = vecop_list_uqsub,
|
|
.write_aofs = true,
|
|
.vece = MO_8 },
|
|
{ .fniv = gen_uqsub_vec,
|
|
.fno = gen_helper_gvec_uqsub_h,
|
|
.opt_opc = vecop_list_uqsub,
|
|
.write_aofs = true,
|
|
.vece = MO_16 },
|
|
{ .fniv = gen_uqsub_vec,
|
|
.fno = gen_helper_gvec_uqsub_s,
|
|
.opt_opc = vecop_list_uqsub,
|
|
.write_aofs = true,
|
|
.vece = MO_32 },
|
|
{ .fniv = gen_uqsub_vec,
|
|
.fno = gen_helper_gvec_uqsub_d,
|
|
.opt_opc = vecop_list_uqsub,
|
|
.write_aofs = true,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
static void gen_sqsub_vec(unsigned vece, TCGv_vec t, TCGv_vec sat,
|
|
TCGv_vec a, TCGv_vec b)
|
|
{
|
|
TCGv_vec x = tcg_temp_new_vec_matching(t);
|
|
tcg_gen_sub_vec(vece, x, a, b);
|
|
tcg_gen_sssub_vec(vece, t, a, b);
|
|
tcg_gen_cmp_vec(TCG_COND_NE, vece, x, x, t);
|
|
tcg_gen_or_vec(vece, sat, sat, x);
|
|
tcg_temp_free_vec(x);
|
|
}
|
|
|
|
static const TCGOpcode vecop_list_sqsub[] = {
|
|
INDEX_op_sssub_vec, INDEX_op_cmp_vec, INDEX_op_sub_vec, 0
|
|
};
|
|
|
|
const GVecGen4 sqsub_op[4] = {
|
|
{ .fniv = gen_sqsub_vec,
|
|
.fno = gen_helper_gvec_sqsub_b,
|
|
.opt_opc = vecop_list_sqsub,
|
|
.write_aofs = true,
|
|
.vece = MO_8 },
|
|
{ .fniv = gen_sqsub_vec,
|
|
.fno = gen_helper_gvec_sqsub_h,
|
|
.opt_opc = vecop_list_sqsub,
|
|
.write_aofs = true,
|
|
.vece = MO_16 },
|
|
{ .fniv = gen_sqsub_vec,
|
|
.fno = gen_helper_gvec_sqsub_s,
|
|
.opt_opc = vecop_list_sqsub,
|
|
.write_aofs = true,
|
|
.vece = MO_32 },
|
|
{ .fniv = gen_sqsub_vec,
|
|
.fno = gen_helper_gvec_sqsub_d,
|
|
.opt_opc = vecop_list_sqsub,
|
|
.write_aofs = true,
|
|
.vece = MO_64 },
|
|
};
|
|
|
|
/* Translate a NEON data processing instruction. Return nonzero if the
|
|
instruction is invalid.
|
|
We process data in a mixture of 32-bit and 64-bit chunks.
|
|
Mostly we use 32-bit chunks so we can use normal scalar instructions. */
|
|
|
|
static int disas_neon_data_insn(DisasContext *s, uint32_t insn)
|
|
{
|
|
int op;
|
|
int q;
|
|
int rd, rn, rm, rd_ofs, rn_ofs, rm_ofs;
|
|
int size;
|
|
int shift;
|
|
int pass;
|
|
int count;
|
|
int pairwise;
|
|
int u;
|
|
int vec_size;
|
|
uint32_t imm;
|
|
TCGv_i32 tmp, tmp2, tmp3, tmp4, tmp5;
|
|
TCGv_ptr ptr1, ptr2, ptr3;
|
|
TCGv_i64 tmp64;
|
|
|
|
/* FIXME: this access check should not take precedence over UNDEF
|
|
* for invalid encodings; we will generate incorrect syndrome information
|
|
* for attempts to execute invalid vfp/neon encodings with FP disabled.
|
|
*/
|
|
if (s->fp_excp_el) {
|
|
gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
|
|
syn_simd_access_trap(1, 0xe, false), s->fp_excp_el);
|
|
return 0;
|
|
}
|
|
|
|
if (!s->vfp_enabled)
|
|
return 1;
|
|
q = (insn & (1 << 6)) != 0;
|
|
u = (insn >> 24) & 1;
|
|
VFP_DREG_D(rd, insn);
|
|
VFP_DREG_N(rn, insn);
|
|
VFP_DREG_M(rm, insn);
|
|
size = (insn >> 20) & 3;
|
|
vec_size = q ? 16 : 8;
|
|
rd_ofs = neon_reg_offset(rd, 0);
|
|
rn_ofs = neon_reg_offset(rn, 0);
|
|
rm_ofs = neon_reg_offset(rm, 0);
|
|
|
|
if ((insn & (1 << 23)) == 0) {
|
|
/* Three register same length. */
|
|
op = ((insn >> 7) & 0x1e) | ((insn >> 4) & 1);
|
|
/* Catch invalid op and bad size combinations: UNDEF */
|
|
if ((neon_3r_sizes[op] & (1 << size)) == 0) {
|
|
return 1;
|
|
}
|
|
/* All insns of this form UNDEF for either this condition or the
|
|
* superset of cases "Q==1"; we catch the latter later.
|
|
*/
|
|
if (q && ((rd | rn | rm) & 1)) {
|
|
return 1;
|
|
}
|
|
switch (op) {
|
|
case NEON_3R_SHA:
|
|
/* The SHA-1/SHA-256 3-register instructions require special
|
|
* treatment here, as their size field is overloaded as an
|
|
* op type selector, and they all consume their input in a
|
|
* single pass.
|
|
*/
|
|
if (!q) {
|
|
return 1;
|
|
}
|
|
if (!u) { /* SHA-1 */
|
|
if (!dc_isar_feature(aa32_sha1, s)) {
|
|
return 1;
|
|
}
|
|
ptr1 = vfp_reg_ptr(true, rd);
|
|
ptr2 = vfp_reg_ptr(true, rn);
|
|
ptr3 = vfp_reg_ptr(true, rm);
|
|
tmp4 = tcg_const_i32(size);
|
|
gen_helper_crypto_sha1_3reg(ptr1, ptr2, ptr3, tmp4);
|
|
tcg_temp_free_i32(tmp4);
|
|
} else { /* SHA-256 */
|
|
if (!dc_isar_feature(aa32_sha2, s) || size == 3) {
|
|
return 1;
|
|
}
|
|
ptr1 = vfp_reg_ptr(true, rd);
|
|
ptr2 = vfp_reg_ptr(true, rn);
|
|
ptr3 = vfp_reg_ptr(true, rm);
|
|
switch (size) {
|
|
case 0:
|
|
gen_helper_crypto_sha256h(ptr1, ptr2, ptr3);
|
|
break;
|
|
case 1:
|
|
gen_helper_crypto_sha256h2(ptr1, ptr2, ptr3);
|
|
break;
|
|
case 2:
|
|
gen_helper_crypto_sha256su1(ptr1, ptr2, ptr3);
|
|
break;
|
|
}
|
|
}
|
|
tcg_temp_free_ptr(ptr1);
|
|
tcg_temp_free_ptr(ptr2);
|
|
tcg_temp_free_ptr(ptr3);
|
|
return 0;
|
|
|
|
case NEON_3R_VPADD_VQRDMLAH:
|
|
if (!u) {
|
|
break; /* VPADD */
|
|
}
|
|
/* VQRDMLAH */
|
|
switch (size) {
|
|
case 1:
|
|
return do_v81_helper(s, gen_helper_gvec_qrdmlah_s16,
|
|
q, rd, rn, rm);
|
|
case 2:
|
|
return do_v81_helper(s, gen_helper_gvec_qrdmlah_s32,
|
|
q, rd, rn, rm);
|
|
}
|
|
return 1;
|
|
|
|
case NEON_3R_VFM_VQRDMLSH:
|
|
if (!u) {
|
|
/* VFM, VFMS */
|
|
if (size == 1) {
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
/* VQRDMLSH */
|
|
switch (size) {
|
|
case 1:
|
|
return do_v81_helper(s, gen_helper_gvec_qrdmlsh_s16,
|
|
q, rd, rn, rm);
|
|
case 2:
|
|
return do_v81_helper(s, gen_helper_gvec_qrdmlsh_s32,
|
|
q, rd, rn, rm);
|
|
}
|
|
return 1;
|
|
|
|
case NEON_3R_LOGIC: /* Logic ops. */
|
|
switch ((u << 2) | size) {
|
|
case 0: /* VAND */
|
|
tcg_gen_gvec_and(0, rd_ofs, rn_ofs, rm_ofs,
|
|
vec_size, vec_size);
|
|
break;
|
|
case 1: /* VBIC */
|
|
tcg_gen_gvec_andc(0, rd_ofs, rn_ofs, rm_ofs,
|
|
vec_size, vec_size);
|
|
break;
|
|
case 2: /* VORR */
|
|
tcg_gen_gvec_or(0, rd_ofs, rn_ofs, rm_ofs,
|
|
vec_size, vec_size);
|
|
break;
|
|
case 3: /* VORN */
|
|
tcg_gen_gvec_orc(0, rd_ofs, rn_ofs, rm_ofs,
|
|
vec_size, vec_size);
|
|
break;
|
|
case 4: /* VEOR */
|
|
tcg_gen_gvec_xor(0, rd_ofs, rn_ofs, rm_ofs,
|
|
vec_size, vec_size);
|
|
break;
|
|
case 5: /* VBSL */
|
|
tcg_gen_gvec_bitsel(MO_8, rd_ofs, rd_ofs, rn_ofs, rm_ofs,
|
|
vec_size, vec_size);
|
|
break;
|
|
case 6: /* VBIT */
|
|
tcg_gen_gvec_bitsel(MO_8, rd_ofs, rm_ofs, rn_ofs, rd_ofs,
|
|
vec_size, vec_size);
|
|
break;
|
|
case 7: /* VBIF */
|
|
tcg_gen_gvec_bitsel(MO_8, rd_ofs, rm_ofs, rd_ofs, rn_ofs,
|
|
vec_size, vec_size);
|
|
break;
|
|
}
|
|
return 0;
|
|
|
|
case NEON_3R_VADD_VSUB:
|
|
if (u) {
|
|
tcg_gen_gvec_sub(size, rd_ofs, rn_ofs, rm_ofs,
|
|
vec_size, vec_size);
|
|
} else {
|
|
tcg_gen_gvec_add(size, rd_ofs, rn_ofs, rm_ofs,
|
|
vec_size, vec_size);
|
|
}
|
|
return 0;
|
|
|
|
case NEON_3R_VQADD:
|
|
tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc),
|
|
rn_ofs, rm_ofs, vec_size, vec_size,
|
|
(u ? uqadd_op : sqadd_op) + size);
|
|
return 0;
|
|
|
|
case NEON_3R_VQSUB:
|
|
tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc),
|
|
rn_ofs, rm_ofs, vec_size, vec_size,
|
|
(u ? uqsub_op : sqsub_op) + size);
|
|
return 0;
|
|
|
|
case NEON_3R_VMUL: /* VMUL */
|
|
if (u) {
|
|
/* Polynomial case allows only P8 and is handled below. */
|
|
if (size != 0) {
|
|
return 1;
|
|
}
|
|
} else {
|
|
tcg_gen_gvec_mul(size, rd_ofs, rn_ofs, rm_ofs,
|
|
vec_size, vec_size);
|
|
return 0;
|
|
}
|
|
break;
|
|
|
|
case NEON_3R_VML: /* VMLA, VMLS */
|
|
tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, vec_size, vec_size,
|
|
u ? &mls_op[size] : &mla_op[size]);
|
|
return 0;
|
|
|
|
case NEON_3R_VTST_VCEQ:
|
|
if (u) { /* VCEQ */
|
|
tcg_gen_gvec_cmp(TCG_COND_EQ, size, rd_ofs, rn_ofs, rm_ofs,
|
|
vec_size, vec_size);
|
|
} else { /* VTST */
|
|
tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs,
|
|
vec_size, vec_size, &cmtst_op[size]);
|
|
}
|
|
return 0;
|
|
|
|
case NEON_3R_VCGT:
|
|
tcg_gen_gvec_cmp(u ? TCG_COND_GTU : TCG_COND_GT, size,
|
|
rd_ofs, rn_ofs, rm_ofs, vec_size, vec_size);
|
|
return 0;
|
|
|
|
case NEON_3R_VCGE:
|
|
tcg_gen_gvec_cmp(u ? TCG_COND_GEU : TCG_COND_GE, size,
|
|
rd_ofs, rn_ofs, rm_ofs, vec_size, vec_size);
|
|
return 0;
|
|
|
|
case NEON_3R_VMAX:
|
|
if (u) {
|
|
tcg_gen_gvec_umax(size, rd_ofs, rn_ofs, rm_ofs,
|
|
vec_size, vec_size);
|
|
} else {
|
|
tcg_gen_gvec_smax(size, rd_ofs, rn_ofs, rm_ofs,
|
|
vec_size, vec_size);
|
|
}
|
|
return 0;
|
|
case NEON_3R_VMIN:
|
|
if (u) {
|
|
tcg_gen_gvec_umin(size, rd_ofs, rn_ofs, rm_ofs,
|
|
vec_size, vec_size);
|
|
} else {
|
|
tcg_gen_gvec_smin(size, rd_ofs, rn_ofs, rm_ofs,
|
|
vec_size, vec_size);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (size == 3) {
|
|
/* 64-bit element instructions. */
|
|
for (pass = 0; pass < (q ? 2 : 1); pass++) {
|
|
neon_load_reg64(cpu_V0, rn + pass);
|
|
neon_load_reg64(cpu_V1, rm + pass);
|
|
switch (op) {
|
|
case NEON_3R_VSHL:
|
|
if (u) {
|
|
gen_helper_neon_shl_u64(cpu_V0, cpu_V1, cpu_V0);
|
|
} else {
|
|
gen_helper_neon_shl_s64(cpu_V0, cpu_V1, cpu_V0);
|
|
}
|
|
break;
|
|
case NEON_3R_VQSHL:
|
|
if (u) {
|
|
gen_helper_neon_qshl_u64(cpu_V0, cpu_env,
|
|
cpu_V1, cpu_V0);
|
|
} else {
|
|
gen_helper_neon_qshl_s64(cpu_V0, cpu_env,
|
|
cpu_V1, cpu_V0);
|
|
}
|
|
break;
|
|
case NEON_3R_VRSHL:
|
|
if (u) {
|
|
gen_helper_neon_rshl_u64(cpu_V0, cpu_V1, cpu_V0);
|
|
} else {
|
|
gen_helper_neon_rshl_s64(cpu_V0, cpu_V1, cpu_V0);
|
|
}
|
|
break;
|
|
case NEON_3R_VQRSHL:
|
|
if (u) {
|
|
gen_helper_neon_qrshl_u64(cpu_V0, cpu_env,
|
|
cpu_V1, cpu_V0);
|
|
} else {
|
|
gen_helper_neon_qrshl_s64(cpu_V0, cpu_env,
|
|
cpu_V1, cpu_V0);
|
|
}
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
neon_store_reg64(cpu_V0, rd + pass);
|
|
}
|
|
return 0;
|
|
}
|
|
pairwise = 0;
|
|
switch (op) {
|
|
case NEON_3R_VSHL:
|
|
case NEON_3R_VQSHL:
|
|
case NEON_3R_VRSHL:
|
|
case NEON_3R_VQRSHL:
|
|
{
|
|
int rtmp;
|
|
/* Shift instruction operands are reversed. */
|
|
rtmp = rn;
|
|
rn = rm;
|
|
rm = rtmp;
|
|
}
|
|
break;
|
|
case NEON_3R_VPADD_VQRDMLAH:
|
|
case NEON_3R_VPMAX:
|
|
case NEON_3R_VPMIN:
|
|
pairwise = 1;
|
|
break;
|
|
case NEON_3R_FLOAT_ARITH:
|
|
pairwise = (u && size < 2); /* if VPADD (float) */
|
|
break;
|
|
case NEON_3R_FLOAT_MINMAX:
|
|
pairwise = u; /* if VPMIN/VPMAX (float) */
|
|
break;
|
|
case NEON_3R_FLOAT_CMP:
|
|
if (!u && size) {
|
|
/* no encoding for U=0 C=1x */
|
|
return 1;
|
|
}
|
|
break;
|
|
case NEON_3R_FLOAT_ACMP:
|
|
if (!u) {
|
|
return 1;
|
|
}
|
|
break;
|
|
case NEON_3R_FLOAT_MISC:
|
|
/* VMAXNM/VMINNM in ARMv8 */
|
|
if (u && !arm_dc_feature(s, ARM_FEATURE_V8)) {
|
|
return 1;
|
|
}
|
|
break;
|
|
case NEON_3R_VFM_VQRDMLSH:
|
|
if (!arm_dc_feature(s, ARM_FEATURE_VFP4)) {
|
|
return 1;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (pairwise && q) {
|
|
/* All the pairwise insns UNDEF if Q is set */
|
|
return 1;
|
|
}
|
|
|
|
for (pass = 0; pass < (q ? 4 : 2); pass++) {
|
|
|
|
if (pairwise) {
|
|
/* Pairwise. */
|
|
if (pass < 1) {
|
|
tmp = neon_load_reg(rn, 0);
|
|
tmp2 = neon_load_reg(rn, 1);
|
|
} else {
|
|
tmp = neon_load_reg(rm, 0);
|
|
tmp2 = neon_load_reg(rm, 1);
|
|
}
|
|
} else {
|
|
/* Elementwise. */
|
|
tmp = neon_load_reg(rn, pass);
|
|
tmp2 = neon_load_reg(rm, pass);
|
|
}
|
|
switch (op) {
|
|
case NEON_3R_VHADD:
|
|
GEN_NEON_INTEGER_OP(hadd);
|
|
break;
|
|
case NEON_3R_VRHADD:
|
|
GEN_NEON_INTEGER_OP(rhadd);
|
|
break;
|
|
case NEON_3R_VHSUB:
|
|
GEN_NEON_INTEGER_OP(hsub);
|
|
break;
|
|
case NEON_3R_VSHL:
|
|
GEN_NEON_INTEGER_OP(shl);
|
|
break;
|
|
case NEON_3R_VQSHL:
|
|
GEN_NEON_INTEGER_OP_ENV(qshl);
|
|
break;
|
|
case NEON_3R_VRSHL:
|
|
GEN_NEON_INTEGER_OP(rshl);
|
|
break;
|
|
case NEON_3R_VQRSHL:
|
|
GEN_NEON_INTEGER_OP_ENV(qrshl);
|
|
break;
|
|
case NEON_3R_VABD:
|
|
GEN_NEON_INTEGER_OP(abd);
|
|
break;
|
|
case NEON_3R_VABA:
|
|
GEN_NEON_INTEGER_OP(abd);
|
|
tcg_temp_free_i32(tmp2);
|
|
tmp2 = neon_load_reg(rd, pass);
|
|
gen_neon_add(size, tmp, tmp2);
|
|
break;
|
|
case NEON_3R_VMUL:
|
|
/* VMUL.P8; other cases already eliminated. */
|
|
gen_helper_neon_mul_p8(tmp, tmp, tmp2);
|
|
break;
|
|
case NEON_3R_VPMAX:
|
|
GEN_NEON_INTEGER_OP(pmax);
|
|
break;
|
|
case NEON_3R_VPMIN:
|
|
GEN_NEON_INTEGER_OP(pmin);
|
|
break;
|
|
case NEON_3R_VQDMULH_VQRDMULH: /* Multiply high. */
|
|
if (!u) { /* VQDMULH */
|
|
switch (size) {
|
|
case 1:
|
|
gen_helper_neon_qdmulh_s16(tmp, cpu_env, tmp, tmp2);
|
|
break;
|
|
case 2:
|
|
gen_helper_neon_qdmulh_s32(tmp, cpu_env, tmp, tmp2);
|
|
break;
|
|
default: abort();
|
|
}
|
|
} else { /* VQRDMULH */
|
|
switch (size) {
|
|
case 1:
|
|
gen_helper_neon_qrdmulh_s16(tmp, cpu_env, tmp, tmp2);
|
|
break;
|
|
case 2:
|
|
gen_helper_neon_qrdmulh_s32(tmp, cpu_env, tmp, tmp2);
|
|
break;
|
|
default: abort();
|
|
}
|
|
}
|
|
break;
|
|
case NEON_3R_VPADD_VQRDMLAH:
|
|
switch (size) {
|
|
case 0: gen_helper_neon_padd_u8(tmp, tmp, tmp2); break;
|
|
case 1: gen_helper_neon_padd_u16(tmp, tmp, tmp2); break;
|
|
case 2: tcg_gen_add_i32(tmp, tmp, tmp2); break;
|
|
default: abort();
|
|
}
|
|
break;
|
|
case NEON_3R_FLOAT_ARITH: /* Floating point arithmetic. */
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
switch ((u << 2) | size) {
|
|
case 0: /* VADD */
|
|
case 4: /* VPADD */
|
|
gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus);
|
|
break;
|
|
case 2: /* VSUB */
|
|
gen_helper_vfp_subs(tmp, tmp, tmp2, fpstatus);
|
|
break;
|
|
case 6: /* VABD */
|
|
gen_helper_neon_abd_f32(tmp, tmp, tmp2, fpstatus);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_3R_FLOAT_MULTIPLY:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
gen_helper_vfp_muls(tmp, tmp, tmp2, fpstatus);
|
|
if (!u) {
|
|
tcg_temp_free_i32(tmp2);
|
|
tmp2 = neon_load_reg(rd, pass);
|
|
if (size == 0) {
|
|
gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus);
|
|
} else {
|
|
gen_helper_vfp_subs(tmp, tmp2, tmp, fpstatus);
|
|
}
|
|
}
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_3R_FLOAT_CMP:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
if (!u) {
|
|
gen_helper_neon_ceq_f32(tmp, tmp, tmp2, fpstatus);
|
|
} else {
|
|
if (size == 0) {
|
|
gen_helper_neon_cge_f32(tmp, tmp, tmp2, fpstatus);
|
|
} else {
|
|
gen_helper_neon_cgt_f32(tmp, tmp, tmp2, fpstatus);
|
|
}
|
|
}
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_3R_FLOAT_ACMP:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
if (size == 0) {
|
|
gen_helper_neon_acge_f32(tmp, tmp, tmp2, fpstatus);
|
|
} else {
|
|
gen_helper_neon_acgt_f32(tmp, tmp, tmp2, fpstatus);
|
|
}
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_3R_FLOAT_MINMAX:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
if (size == 0) {
|
|
gen_helper_vfp_maxs(tmp, tmp, tmp2, fpstatus);
|
|
} else {
|
|
gen_helper_vfp_mins(tmp, tmp, tmp2, fpstatus);
|
|
}
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_3R_FLOAT_MISC:
|
|
if (u) {
|
|
/* VMAXNM/VMINNM */
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
if (size == 0) {
|
|
gen_helper_vfp_maxnums(tmp, tmp, tmp2, fpstatus);
|
|
} else {
|
|
gen_helper_vfp_minnums(tmp, tmp, tmp2, fpstatus);
|
|
}
|
|
tcg_temp_free_ptr(fpstatus);
|
|
} else {
|
|
if (size == 0) {
|
|
gen_helper_recps_f32(tmp, tmp, tmp2, cpu_env);
|
|
} else {
|
|
gen_helper_rsqrts_f32(tmp, tmp, tmp2, cpu_env);
|
|
}
|
|
}
|
|
break;
|
|
case NEON_3R_VFM_VQRDMLSH:
|
|
{
|
|
/* VFMA, VFMS: fused multiply-add */
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
TCGv_i32 tmp3 = neon_load_reg(rd, pass);
|
|
if (size) {
|
|
/* VFMS */
|
|
gen_helper_vfp_negs(tmp, tmp);
|
|
}
|
|
gen_helper_vfp_muladds(tmp, tmp, tmp2, tmp3, fpstatus);
|
|
tcg_temp_free_i32(tmp3);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
default:
|
|
abort();
|
|
}
|
|
tcg_temp_free_i32(tmp2);
|
|
|
|
/* Save the result. For elementwise operations we can put it
|
|
straight into the destination register. For pairwise operations
|
|
we have to be careful to avoid clobbering the source operands. */
|
|
if (pairwise && rd == rm) {
|
|
neon_store_scratch(pass, tmp);
|
|
} else {
|
|
neon_store_reg(rd, pass, tmp);
|
|
}
|
|
|
|
} /* for pass */
|
|
if (pairwise && rd == rm) {
|
|
for (pass = 0; pass < (q ? 4 : 2); pass++) {
|
|
tmp = neon_load_scratch(pass);
|
|
neon_store_reg(rd, pass, tmp);
|
|
}
|
|
}
|
|
/* End of 3 register same size operations. */
|
|
} else if (insn & (1 << 4)) {
|
|
if ((insn & 0x00380080) != 0) {
|
|
/* Two registers and shift. */
|
|
op = (insn >> 8) & 0xf;
|
|
if (insn & (1 << 7)) {
|
|
/* 64-bit shift. */
|
|
if (op > 7) {
|
|
return 1;
|
|
}
|
|
size = 3;
|
|
} else {
|
|
size = 2;
|
|
while ((insn & (1 << (size + 19))) == 0)
|
|
size--;
|
|
}
|
|
shift = (insn >> 16) & ((1 << (3 + size)) - 1);
|
|
if (op < 8) {
|
|
/* Shift by immediate:
|
|
VSHR, VSRA, VRSHR, VRSRA, VSRI, VSHL, VQSHL, VQSHLU. */
|
|
if (q && ((rd | rm) & 1)) {
|
|
return 1;
|
|
}
|
|
if (!u && (op == 4 || op == 6)) {
|
|
return 1;
|
|
}
|
|
/* Right shifts are encoded as N - shift, where N is the
|
|
element size in bits. */
|
|
if (op <= 4) {
|
|
shift = shift - (1 << (size + 3));
|
|
}
|
|
|
|
switch (op) {
|
|
case 0: /* VSHR */
|
|
/* Right shift comes here negative. */
|
|
shift = -shift;
|
|
/* Shifts larger than the element size are architecturally
|
|
* valid. Unsigned results in all zeros; signed results
|
|
* in all sign bits.
|
|
*/
|
|
if (!u) {
|
|
tcg_gen_gvec_sari(size, rd_ofs, rm_ofs,
|
|
MIN(shift, (8 << size) - 1),
|
|
vec_size, vec_size);
|
|
} else if (shift >= 8 << size) {
|
|
tcg_gen_gvec_dup8i(rd_ofs, vec_size, vec_size, 0);
|
|
} else {
|
|
tcg_gen_gvec_shri(size, rd_ofs, rm_ofs, shift,
|
|
vec_size, vec_size);
|
|
}
|
|
return 0;
|
|
|
|
case 1: /* VSRA */
|
|
/* Right shift comes here negative. */
|
|
shift = -shift;
|
|
/* Shifts larger than the element size are architecturally
|
|
* valid. Unsigned results in all zeros; signed results
|
|
* in all sign bits.
|
|
*/
|
|
if (!u) {
|
|
tcg_gen_gvec_2i(rd_ofs, rm_ofs, vec_size, vec_size,
|
|
MIN(shift, (8 << size) - 1),
|
|
&ssra_op[size]);
|
|
} else if (shift >= 8 << size) {
|
|
/* rd += 0 */
|
|
} else {
|
|
tcg_gen_gvec_2i(rd_ofs, rm_ofs, vec_size, vec_size,
|
|
shift, &usra_op[size]);
|
|
}
|
|
return 0;
|
|
|
|
case 4: /* VSRI */
|
|
if (!u) {
|
|
return 1;
|
|
}
|
|
/* Right shift comes here negative. */
|
|
shift = -shift;
|
|
/* Shift out of range leaves destination unchanged. */
|
|
if (shift < 8 << size) {
|
|
tcg_gen_gvec_2i(rd_ofs, rm_ofs, vec_size, vec_size,
|
|
shift, &sri_op[size]);
|
|
}
|
|
return 0;
|
|
|
|
case 5: /* VSHL, VSLI */
|
|
if (u) { /* VSLI */
|
|
/* Shift out of range leaves destination unchanged. */
|
|
if (shift < 8 << size) {
|
|
tcg_gen_gvec_2i(rd_ofs, rm_ofs, vec_size,
|
|
vec_size, shift, &sli_op[size]);
|
|
}
|
|
} else { /* VSHL */
|
|
/* Shifts larger than the element size are
|
|
* architecturally valid and results in zero.
|
|
*/
|
|
if (shift >= 8 << size) {
|
|
tcg_gen_gvec_dup8i(rd_ofs, vec_size, vec_size, 0);
|
|
} else {
|
|
tcg_gen_gvec_shli(size, rd_ofs, rm_ofs, shift,
|
|
vec_size, vec_size);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (size == 3) {
|
|
count = q + 1;
|
|
} else {
|
|
count = q ? 4: 2;
|
|
}
|
|
|
|
/* To avoid excessive duplication of ops we implement shift
|
|
* by immediate using the variable shift operations.
|
|
*/
|
|
imm = dup_const(size, shift);
|
|
|
|
for (pass = 0; pass < count; pass++) {
|
|
if (size == 3) {
|
|
neon_load_reg64(cpu_V0, rm + pass);
|
|
tcg_gen_movi_i64(cpu_V1, imm);
|
|
switch (op) {
|
|
case 2: /* VRSHR */
|
|
case 3: /* VRSRA */
|
|
if (u)
|
|
gen_helper_neon_rshl_u64(cpu_V0, cpu_V0, cpu_V1);
|
|
else
|
|
gen_helper_neon_rshl_s64(cpu_V0, cpu_V0, cpu_V1);
|
|
break;
|
|
case 6: /* VQSHLU */
|
|
gen_helper_neon_qshlu_s64(cpu_V0, cpu_env,
|
|
cpu_V0, cpu_V1);
|
|
break;
|
|
case 7: /* VQSHL */
|
|
if (u) {
|
|
gen_helper_neon_qshl_u64(cpu_V0, cpu_env,
|
|
cpu_V0, cpu_V1);
|
|
} else {
|
|
gen_helper_neon_qshl_s64(cpu_V0, cpu_env,
|
|
cpu_V0, cpu_V1);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
if (op == 3) {
|
|
/* Accumulate. */
|
|
neon_load_reg64(cpu_V1, rd + pass);
|
|
tcg_gen_add_i64(cpu_V0, cpu_V0, cpu_V1);
|
|
}
|
|
neon_store_reg64(cpu_V0, rd + pass);
|
|
} else { /* size < 3 */
|
|
/* Operands in T0 and T1. */
|
|
tmp = neon_load_reg(rm, pass);
|
|
tmp2 = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(tmp2, imm);
|
|
switch (op) {
|
|
case 2: /* VRSHR */
|
|
case 3: /* VRSRA */
|
|
GEN_NEON_INTEGER_OP(rshl);
|
|
break;
|
|
case 6: /* VQSHLU */
|
|
switch (size) {
|
|
case 0:
|
|
gen_helper_neon_qshlu_s8(tmp, cpu_env,
|
|
tmp, tmp2);
|
|
break;
|
|
case 1:
|
|
gen_helper_neon_qshlu_s16(tmp, cpu_env,
|
|
tmp, tmp2);
|
|
break;
|
|
case 2:
|
|
gen_helper_neon_qshlu_s32(tmp, cpu_env,
|
|
tmp, tmp2);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
break;
|
|
case 7: /* VQSHL */
|
|
GEN_NEON_INTEGER_OP_ENV(qshl);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
tcg_temp_free_i32(tmp2);
|
|
|
|
if (op == 3) {
|
|
/* Accumulate. */
|
|
tmp2 = neon_load_reg(rd, pass);
|
|
gen_neon_add(size, tmp, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
}
|
|
neon_store_reg(rd, pass, tmp);
|
|
}
|
|
} /* for pass */
|
|
} else if (op < 10) {
|
|
/* Shift by immediate and narrow:
|
|
VSHRN, VRSHRN, VQSHRN, VQRSHRN. */
|
|
int input_unsigned = (op == 8) ? !u : u;
|
|
if (rm & 1) {
|
|
return 1;
|
|
}
|
|
shift = shift - (1 << (size + 3));
|
|
size++;
|
|
if (size == 3) {
|
|
tmp64 = tcg_const_i64(shift);
|
|
neon_load_reg64(cpu_V0, rm);
|
|
neon_load_reg64(cpu_V1, rm + 1);
|
|
for (pass = 0; pass < 2; pass++) {
|
|
TCGv_i64 in;
|
|
if (pass == 0) {
|
|
in = cpu_V0;
|
|
} else {
|
|
in = cpu_V1;
|
|
}
|
|
if (q) {
|
|
if (input_unsigned) {
|
|
gen_helper_neon_rshl_u64(cpu_V0, in, tmp64);
|
|
} else {
|
|
gen_helper_neon_rshl_s64(cpu_V0, in, tmp64);
|
|
}
|
|
} else {
|
|
if (input_unsigned) {
|
|
gen_helper_neon_shl_u64(cpu_V0, in, tmp64);
|
|
} else {
|
|
gen_helper_neon_shl_s64(cpu_V0, in, tmp64);
|
|
}
|
|
}
|
|
tmp = tcg_temp_new_i32();
|
|
gen_neon_narrow_op(op == 8, u, size - 1, tmp, cpu_V0);
|
|
neon_store_reg(rd, pass, tmp);
|
|
} /* for pass */
|
|
tcg_temp_free_i64(tmp64);
|
|
} else {
|
|
if (size == 1) {
|
|
imm = (uint16_t)shift;
|
|
imm |= imm << 16;
|
|
} else {
|
|
/* size == 2 */
|
|
imm = (uint32_t)shift;
|
|
}
|
|
tmp2 = tcg_const_i32(imm);
|
|
tmp4 = neon_load_reg(rm + 1, 0);
|
|
tmp5 = neon_load_reg(rm + 1, 1);
|
|
for (pass = 0; pass < 2; pass++) {
|
|
if (pass == 0) {
|
|
tmp = neon_load_reg(rm, 0);
|
|
} else {
|
|
tmp = tmp4;
|
|
}
|
|
gen_neon_shift_narrow(size, tmp, tmp2, q,
|
|
input_unsigned);
|
|
if (pass == 0) {
|
|
tmp3 = neon_load_reg(rm, 1);
|
|
} else {
|
|
tmp3 = tmp5;
|
|
}
|
|
gen_neon_shift_narrow(size, tmp3, tmp2, q,
|
|
input_unsigned);
|
|
tcg_gen_concat_i32_i64(cpu_V0, tmp, tmp3);
|
|
tcg_temp_free_i32(tmp);
|
|
tcg_temp_free_i32(tmp3);
|
|
tmp = tcg_temp_new_i32();
|
|
gen_neon_narrow_op(op == 8, u, size - 1, tmp, cpu_V0);
|
|
neon_store_reg(rd, pass, tmp);
|
|
} /* for pass */
|
|
tcg_temp_free_i32(tmp2);
|
|
}
|
|
} else if (op == 10) {
|
|
/* VSHLL, VMOVL */
|
|
if (q || (rd & 1)) {
|
|
return 1;
|
|
}
|
|
tmp = neon_load_reg(rm, 0);
|
|
tmp2 = neon_load_reg(rm, 1);
|
|
for (pass = 0; pass < 2; pass++) {
|
|
if (pass == 1)
|
|
tmp = tmp2;
|
|
|
|
gen_neon_widen(cpu_V0, tmp, size, u);
|
|
|
|
if (shift != 0) {
|
|
/* The shift is less than the width of the source
|
|
type, so we can just shift the whole register. */
|
|
tcg_gen_shli_i64(cpu_V0, cpu_V0, shift);
|
|
/* Widen the result of shift: we need to clear
|
|
* the potential overflow bits resulting from
|
|
* left bits of the narrow input appearing as
|
|
* right bits of left the neighbour narrow
|
|
* input. */
|
|
if (size < 2 || !u) {
|
|
uint64_t imm64;
|
|
if (size == 0) {
|
|
imm = (0xffu >> (8 - shift));
|
|
imm |= imm << 16;
|
|
} else if (size == 1) {
|
|
imm = 0xffff >> (16 - shift);
|
|
} else {
|
|
/* size == 2 */
|
|
imm = 0xffffffff >> (32 - shift);
|
|
}
|
|
if (size < 2) {
|
|
imm64 = imm | (((uint64_t)imm) << 32);
|
|
} else {
|
|
imm64 = imm;
|
|
}
|
|
tcg_gen_andi_i64(cpu_V0, cpu_V0, ~imm64);
|
|
}
|
|
}
|
|
neon_store_reg64(cpu_V0, rd + pass);
|
|
}
|
|
} else if (op >= 14) {
|
|
/* VCVT fixed-point. */
|
|
TCGv_ptr fpst;
|
|
TCGv_i32 shiftv;
|
|
VFPGenFixPointFn *fn;
|
|
|
|
if (!(insn & (1 << 21)) || (q && ((rd | rm) & 1))) {
|
|
return 1;
|
|
}
|
|
|
|
if (!(op & 1)) {
|
|
if (u) {
|
|
fn = gen_helper_vfp_ultos;
|
|
} else {
|
|
fn = gen_helper_vfp_sltos;
|
|
}
|
|
} else {
|
|
if (u) {
|
|
fn = gen_helper_vfp_touls_round_to_zero;
|
|
} else {
|
|
fn = gen_helper_vfp_tosls_round_to_zero;
|
|
}
|
|
}
|
|
|
|
/* We have already masked out the must-be-1 top bit of imm6,
|
|
* hence this 32-shift where the ARM ARM has 64-imm6.
|
|
*/
|
|
shift = 32 - shift;
|
|
fpst = get_fpstatus_ptr(1);
|
|
shiftv = tcg_const_i32(shift);
|
|
for (pass = 0; pass < (q ? 4 : 2); pass++) {
|
|
TCGv_i32 tmpf = neon_load_reg(rm, pass);
|
|
fn(tmpf, tmpf, shiftv, fpst);
|
|
neon_store_reg(rd, pass, tmpf);
|
|
}
|
|
tcg_temp_free_ptr(fpst);
|
|
tcg_temp_free_i32(shiftv);
|
|
} else {
|
|
return 1;
|
|
}
|
|
} else { /* (insn & 0x00380080) == 0 */
|
|
int invert, reg_ofs, vec_size;
|
|
|
|
if (q && (rd & 1)) {
|
|
return 1;
|
|
}
|
|
|
|
op = (insn >> 8) & 0xf;
|
|
/* One register and immediate. */
|
|
imm = (u << 7) | ((insn >> 12) & 0x70) | (insn & 0xf);
|
|
invert = (insn & (1 << 5)) != 0;
|
|
/* Note that op = 2,3,4,5,6,7,10,11,12,13 imm=0 is UNPREDICTABLE.
|
|
* We choose to not special-case this and will behave as if a
|
|
* valid constant encoding of 0 had been given.
|
|
*/
|
|
switch (op) {
|
|
case 0: case 1:
|
|
/* no-op */
|
|
break;
|
|
case 2: case 3:
|
|
imm <<= 8;
|
|
break;
|
|
case 4: case 5:
|
|
imm <<= 16;
|
|
break;
|
|
case 6: case 7:
|
|
imm <<= 24;
|
|
break;
|
|
case 8: case 9:
|
|
imm |= imm << 16;
|
|
break;
|
|
case 10: case 11:
|
|
imm = (imm << 8) | (imm << 24);
|
|
break;
|
|
case 12:
|
|
imm = (imm << 8) | 0xff;
|
|
break;
|
|
case 13:
|
|
imm = (imm << 16) | 0xffff;
|
|
break;
|
|
case 14:
|
|
imm |= (imm << 8) | (imm << 16) | (imm << 24);
|
|
if (invert) {
|
|
imm = ~imm;
|
|
}
|
|
break;
|
|
case 15:
|
|
if (invert) {
|
|
return 1;
|
|
}
|
|
imm = ((imm & 0x80) << 24) | ((imm & 0x3f) << 19)
|
|
| ((imm & 0x40) ? (0x1f << 25) : (1 << 30));
|
|
break;
|
|
}
|
|
if (invert) {
|
|
imm = ~imm;
|
|
}
|
|
|
|
reg_ofs = neon_reg_offset(rd, 0);
|
|
vec_size = q ? 16 : 8;
|
|
|
|
if (op & 1 && op < 12) {
|
|
if (invert) {
|
|
/* The immediate value has already been inverted,
|
|
* so BIC becomes AND.
|
|
*/
|
|
tcg_gen_gvec_andi(MO_32, reg_ofs, reg_ofs, imm,
|
|
vec_size, vec_size);
|
|
} else {
|
|
tcg_gen_gvec_ori(MO_32, reg_ofs, reg_ofs, imm,
|
|
vec_size, vec_size);
|
|
}
|
|
} else {
|
|
/* VMOV, VMVN. */
|
|
if (op == 14 && invert) {
|
|
TCGv_i64 t64 = tcg_temp_new_i64();
|
|
|
|
for (pass = 0; pass <= q; ++pass) {
|
|
uint64_t val = 0;
|
|
int n;
|
|
|
|
for (n = 0; n < 8; n++) {
|
|
if (imm & (1 << (n + pass * 8))) {
|
|
val |= 0xffull << (n * 8);
|
|
}
|
|
}
|
|
tcg_gen_movi_i64(t64, val);
|
|
neon_store_reg64(t64, rd + pass);
|
|
}
|
|
tcg_temp_free_i64(t64);
|
|
} else {
|
|
tcg_gen_gvec_dup32i(reg_ofs, vec_size, vec_size, imm);
|
|
}
|
|
}
|
|
}
|
|
} else { /* (insn & 0x00800010 == 0x00800000) */
|
|
if (size != 3) {
|
|
op = (insn >> 8) & 0xf;
|
|
if ((insn & (1 << 6)) == 0) {
|
|
/* Three registers of different lengths. */
|
|
int src1_wide;
|
|
int src2_wide;
|
|
int prewiden;
|
|
/* undefreq: bit 0 : UNDEF if size == 0
|
|
* bit 1 : UNDEF if size == 1
|
|
* bit 2 : UNDEF if size == 2
|
|
* bit 3 : UNDEF if U == 1
|
|
* Note that [2:0] set implies 'always UNDEF'
|
|
*/
|
|
int undefreq;
|
|
/* prewiden, src1_wide, src2_wide, undefreq */
|
|
static const int neon_3reg_wide[16][4] = {
|
|
{1, 0, 0, 0}, /* VADDL */
|
|
{1, 1, 0, 0}, /* VADDW */
|
|
{1, 0, 0, 0}, /* VSUBL */
|
|
{1, 1, 0, 0}, /* VSUBW */
|
|
{0, 1, 1, 0}, /* VADDHN */
|
|
{0, 0, 0, 0}, /* VABAL */
|
|
{0, 1, 1, 0}, /* VSUBHN */
|
|
{0, 0, 0, 0}, /* VABDL */
|
|
{0, 0, 0, 0}, /* VMLAL */
|
|
{0, 0, 0, 9}, /* VQDMLAL */
|
|
{0, 0, 0, 0}, /* VMLSL */
|
|
{0, 0, 0, 9}, /* VQDMLSL */
|
|
{0, 0, 0, 0}, /* Integer VMULL */
|
|
{0, 0, 0, 1}, /* VQDMULL */
|
|
{0, 0, 0, 0xa}, /* Polynomial VMULL */
|
|
{0, 0, 0, 7}, /* Reserved: always UNDEF */
|
|
};
|
|
|
|
prewiden = neon_3reg_wide[op][0];
|
|
src1_wide = neon_3reg_wide[op][1];
|
|
src2_wide = neon_3reg_wide[op][2];
|
|
undefreq = neon_3reg_wide[op][3];
|
|
|
|
if ((undefreq & (1 << size)) ||
|
|
((undefreq & 8) && u)) {
|
|
return 1;
|
|
}
|
|
if ((src1_wide && (rn & 1)) ||
|
|
(src2_wide && (rm & 1)) ||
|
|
(!src2_wide && (rd & 1))) {
|
|
return 1;
|
|
}
|
|
|
|
/* Handle VMULL.P64 (Polynomial 64x64 to 128 bit multiply)
|
|
* outside the loop below as it only performs a single pass.
|
|
*/
|
|
if (op == 14 && size == 2) {
|
|
TCGv_i64 tcg_rn, tcg_rm, tcg_rd;
|
|
|
|
if (!dc_isar_feature(aa32_pmull, s)) {
|
|
return 1;
|
|
}
|
|
tcg_rn = tcg_temp_new_i64();
|
|
tcg_rm = tcg_temp_new_i64();
|
|
tcg_rd = tcg_temp_new_i64();
|
|
neon_load_reg64(tcg_rn, rn);
|
|
neon_load_reg64(tcg_rm, rm);
|
|
gen_helper_neon_pmull_64_lo(tcg_rd, tcg_rn, tcg_rm);
|
|
neon_store_reg64(tcg_rd, rd);
|
|
gen_helper_neon_pmull_64_hi(tcg_rd, tcg_rn, tcg_rm);
|
|
neon_store_reg64(tcg_rd, rd + 1);
|
|
tcg_temp_free_i64(tcg_rn);
|
|
tcg_temp_free_i64(tcg_rm);
|
|
tcg_temp_free_i64(tcg_rd);
|
|
return 0;
|
|
}
|
|
|
|
/* Avoid overlapping operands. Wide source operands are
|
|
always aligned so will never overlap with wide
|
|
destinations in problematic ways. */
|
|
if (rd == rm && !src2_wide) {
|
|
tmp = neon_load_reg(rm, 1);
|
|
neon_store_scratch(2, tmp);
|
|
} else if (rd == rn && !src1_wide) {
|
|
tmp = neon_load_reg(rn, 1);
|
|
neon_store_scratch(2, tmp);
|
|
}
|
|
tmp3 = NULL;
|
|
for (pass = 0; pass < 2; pass++) {
|
|
if (src1_wide) {
|
|
neon_load_reg64(cpu_V0, rn + pass);
|
|
tmp = NULL;
|
|
} else {
|
|
if (pass == 1 && rd == rn) {
|
|
tmp = neon_load_scratch(2);
|
|
} else {
|
|
tmp = neon_load_reg(rn, pass);
|
|
}
|
|
if (prewiden) {
|
|
gen_neon_widen(cpu_V0, tmp, size, u);
|
|
}
|
|
}
|
|
if (src2_wide) {
|
|
neon_load_reg64(cpu_V1, rm + pass);
|
|
tmp2 = NULL;
|
|
} else {
|
|
if (pass == 1 && rd == rm) {
|
|
tmp2 = neon_load_scratch(2);
|
|
} else {
|
|
tmp2 = neon_load_reg(rm, pass);
|
|
}
|
|
if (prewiden) {
|
|
gen_neon_widen(cpu_V1, tmp2, size, u);
|
|
}
|
|
}
|
|
switch (op) {
|
|
case 0: case 1: case 4: /* VADDL, VADDW, VADDHN, VRADDHN */
|
|
gen_neon_addl(size);
|
|
break;
|
|
case 2: case 3: case 6: /* VSUBL, VSUBW, VSUBHN, VRSUBHN */
|
|
gen_neon_subl(size);
|
|
break;
|
|
case 5: case 7: /* VABAL, VABDL */
|
|
switch ((size << 1) | u) {
|
|
case 0:
|
|
gen_helper_neon_abdl_s16(cpu_V0, tmp, tmp2);
|
|
break;
|
|
case 1:
|
|
gen_helper_neon_abdl_u16(cpu_V0, tmp, tmp2);
|
|
break;
|
|
case 2:
|
|
gen_helper_neon_abdl_s32(cpu_V0, tmp, tmp2);
|
|
break;
|
|
case 3:
|
|
gen_helper_neon_abdl_u32(cpu_V0, tmp, tmp2);
|
|
break;
|
|
case 4:
|
|
gen_helper_neon_abdl_s64(cpu_V0, tmp, tmp2);
|
|
break;
|
|
case 5:
|
|
gen_helper_neon_abdl_u64(cpu_V0, tmp, tmp2);
|
|
break;
|
|
default: abort();
|
|
}
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
break;
|
|
case 8: case 9: case 10: case 11: case 12: case 13:
|
|
/* VMLAL, VQDMLAL, VMLSL, VQDMLSL, VMULL, VQDMULL */
|
|
gen_neon_mull(cpu_V0, tmp, tmp2, size, u);
|
|
break;
|
|
case 14: /* Polynomial VMULL */
|
|
gen_helper_neon_mull_p8(cpu_V0, tmp, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
break;
|
|
default: /* 15 is RESERVED: caught earlier */
|
|
abort();
|
|
}
|
|
if (op == 13) {
|
|
/* VQDMULL */
|
|
gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
|
|
neon_store_reg64(cpu_V0, rd + pass);
|
|
} else if (op == 5 || (op >= 8 && op <= 11)) {
|
|
/* Accumulate. */
|
|
neon_load_reg64(cpu_V1, rd + pass);
|
|
switch (op) {
|
|
case 10: /* VMLSL */
|
|
gen_neon_negl(cpu_V0, size);
|
|
/* Fall through */
|
|
case 5: case 8: /* VABAL, VMLAL */
|
|
gen_neon_addl(size);
|
|
break;
|
|
case 9: case 11: /* VQDMLAL, VQDMLSL */
|
|
gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
|
|
if (op == 11) {
|
|
gen_neon_negl(cpu_V0, size);
|
|
}
|
|
gen_neon_addl_saturate(cpu_V0, cpu_V1, size);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
neon_store_reg64(cpu_V0, rd + pass);
|
|
} else if (op == 4 || op == 6) {
|
|
/* Narrowing operation. */
|
|
tmp = tcg_temp_new_i32();
|
|
if (!u) {
|
|
switch (size) {
|
|
case 0:
|
|
gen_helper_neon_narrow_high_u8(tmp, cpu_V0);
|
|
break;
|
|
case 1:
|
|
gen_helper_neon_narrow_high_u16(tmp, cpu_V0);
|
|
break;
|
|
case 2:
|
|
tcg_gen_extrh_i64_i32(tmp, cpu_V0);
|
|
break;
|
|
default: abort();
|
|
}
|
|
} else {
|
|
switch (size) {
|
|
case 0:
|
|
gen_helper_neon_narrow_round_high_u8(tmp, cpu_V0);
|
|
break;
|
|
case 1:
|
|
gen_helper_neon_narrow_round_high_u16(tmp, cpu_V0);
|
|
break;
|
|
case 2:
|
|
tcg_gen_addi_i64(cpu_V0, cpu_V0, 1u << 31);
|
|
tcg_gen_extrh_i64_i32(tmp, cpu_V0);
|
|
break;
|
|
default: abort();
|
|
}
|
|
}
|
|
if (pass == 0) {
|
|
tmp3 = tmp;
|
|
} else {
|
|
neon_store_reg(rd, 0, tmp3);
|
|
neon_store_reg(rd, 1, tmp);
|
|
}
|
|
} else {
|
|
/* Write back the result. */
|
|
neon_store_reg64(cpu_V0, rd + pass);
|
|
}
|
|
}
|
|
} else {
|
|
/* Two registers and a scalar. NB that for ops of this form
|
|
* the ARM ARM labels bit 24 as Q, but it is in our variable
|
|
* 'u', not 'q'.
|
|
*/
|
|
if (size == 0) {
|
|
return 1;
|
|
}
|
|
switch (op) {
|
|
case 1: /* Float VMLA scalar */
|
|
case 5: /* Floating point VMLS scalar */
|
|
case 9: /* Floating point VMUL scalar */
|
|
if (size == 1) {
|
|
return 1;
|
|
}
|
|
/* fall through */
|
|
case 0: /* Integer VMLA scalar */
|
|
case 4: /* Integer VMLS scalar */
|
|
case 8: /* Integer VMUL scalar */
|
|
case 12: /* VQDMULH scalar */
|
|
case 13: /* VQRDMULH scalar */
|
|
if (u && ((rd | rn) & 1)) {
|
|
return 1;
|
|
}
|
|
tmp = neon_get_scalar(size, rm);
|
|
neon_store_scratch(0, tmp);
|
|
for (pass = 0; pass < (u ? 4 : 2); pass++) {
|
|
tmp = neon_load_scratch(0);
|
|
tmp2 = neon_load_reg(rn, pass);
|
|
if (op == 12) {
|
|
if (size == 1) {
|
|
gen_helper_neon_qdmulh_s16(tmp, cpu_env, tmp, tmp2);
|
|
} else {
|
|
gen_helper_neon_qdmulh_s32(tmp, cpu_env, tmp, tmp2);
|
|
}
|
|
} else if (op == 13) {
|
|
if (size == 1) {
|
|
gen_helper_neon_qrdmulh_s16(tmp, cpu_env, tmp, tmp2);
|
|
} else {
|
|
gen_helper_neon_qrdmulh_s32(tmp, cpu_env, tmp, tmp2);
|
|
}
|
|
} else if (op & 1) {
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
gen_helper_vfp_muls(tmp, tmp, tmp2, fpstatus);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
} else {
|
|
switch (size) {
|
|
case 0: gen_helper_neon_mul_u8(tmp, tmp, tmp2); break;
|
|
case 1: gen_helper_neon_mul_u16(tmp, tmp, tmp2); break;
|
|
case 2: tcg_gen_mul_i32(tmp, tmp, tmp2); break;
|
|
default: abort();
|
|
}
|
|
}
|
|
tcg_temp_free_i32(tmp2);
|
|
if (op < 8) {
|
|
/* Accumulate. */
|
|
tmp2 = neon_load_reg(rd, pass);
|
|
switch (op) {
|
|
case 0:
|
|
gen_neon_add(size, tmp, tmp2);
|
|
break;
|
|
case 1:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
gen_helper_vfp_adds(tmp, tmp, tmp2, fpstatus);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case 4:
|
|
gen_neon_rsb(size, tmp, tmp2);
|
|
break;
|
|
case 5:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
gen_helper_vfp_subs(tmp, tmp2, tmp, fpstatus);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
default:
|
|
abort();
|
|
}
|
|
tcg_temp_free_i32(tmp2);
|
|
}
|
|
neon_store_reg(rd, pass, tmp);
|
|
}
|
|
break;
|
|
case 3: /* VQDMLAL scalar */
|
|
case 7: /* VQDMLSL scalar */
|
|
case 11: /* VQDMULL scalar */
|
|
if (u == 1) {
|
|
return 1;
|
|
}
|
|
/* fall through */
|
|
case 2: /* VMLAL sclar */
|
|
case 6: /* VMLSL scalar */
|
|
case 10: /* VMULL scalar */
|
|
if (rd & 1) {
|
|
return 1;
|
|
}
|
|
tmp2 = neon_get_scalar(size, rm);
|
|
/* We need a copy of tmp2 because gen_neon_mull
|
|
* deletes it during pass 0. */
|
|
tmp4 = tcg_temp_new_i32();
|
|
tcg_gen_mov_i32(tmp4, tmp2);
|
|
tmp3 = neon_load_reg(rn, 1);
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
if (pass == 0) {
|
|
tmp = neon_load_reg(rn, 0);
|
|
} else {
|
|
tmp = tmp3;
|
|
tmp2 = tmp4;
|
|
}
|
|
gen_neon_mull(cpu_V0, tmp, tmp2, size, u);
|
|
if (op != 11) {
|
|
neon_load_reg64(cpu_V1, rd + pass);
|
|
}
|
|
switch (op) {
|
|
case 6:
|
|
gen_neon_negl(cpu_V0, size);
|
|
/* Fall through */
|
|
case 2:
|
|
gen_neon_addl(size);
|
|
break;
|
|
case 3: case 7:
|
|
gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
|
|
if (op == 7) {
|
|
gen_neon_negl(cpu_V0, size);
|
|
}
|
|
gen_neon_addl_saturate(cpu_V0, cpu_V1, size);
|
|
break;
|
|
case 10:
|
|
/* no-op */
|
|
break;
|
|
case 11:
|
|
gen_neon_addl_saturate(cpu_V0, cpu_V0, size);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
neon_store_reg64(cpu_V0, rd + pass);
|
|
}
|
|
break;
|
|
case 14: /* VQRDMLAH scalar */
|
|
case 15: /* VQRDMLSH scalar */
|
|
{
|
|
NeonGenThreeOpEnvFn *fn;
|
|
|
|
if (!dc_isar_feature(aa32_rdm, s)) {
|
|
return 1;
|
|
}
|
|
if (u && ((rd | rn) & 1)) {
|
|
return 1;
|
|
}
|
|
if (op == 14) {
|
|
if (size == 1) {
|
|
fn = gen_helper_neon_qrdmlah_s16;
|
|
} else {
|
|
fn = gen_helper_neon_qrdmlah_s32;
|
|
}
|
|
} else {
|
|
if (size == 1) {
|
|
fn = gen_helper_neon_qrdmlsh_s16;
|
|
} else {
|
|
fn = gen_helper_neon_qrdmlsh_s32;
|
|
}
|
|
}
|
|
|
|
tmp2 = neon_get_scalar(size, rm);
|
|
for (pass = 0; pass < (u ? 4 : 2); pass++) {
|
|
tmp = neon_load_reg(rn, pass);
|
|
tmp3 = neon_load_reg(rd, pass);
|
|
fn(tmp, cpu_env, tmp, tmp2, tmp3);
|
|
tcg_temp_free_i32(tmp3);
|
|
neon_store_reg(rd, pass, tmp);
|
|
}
|
|
tcg_temp_free_i32(tmp2);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
} else { /* size == 3 */
|
|
if (!u) {
|
|
/* Extract. */
|
|
imm = (insn >> 8) & 0xf;
|
|
|
|
if (imm > 7 && !q)
|
|
return 1;
|
|
|
|
if (q && ((rd | rn | rm) & 1)) {
|
|
return 1;
|
|
}
|
|
|
|
if (imm == 0) {
|
|
neon_load_reg64(cpu_V0, rn);
|
|
if (q) {
|
|
neon_load_reg64(cpu_V1, rn + 1);
|
|
}
|
|
} else if (imm == 8) {
|
|
neon_load_reg64(cpu_V0, rn + 1);
|
|
if (q) {
|
|
neon_load_reg64(cpu_V1, rm);
|
|
}
|
|
} else if (q) {
|
|
tmp64 = tcg_temp_new_i64();
|
|
if (imm < 8) {
|
|
neon_load_reg64(cpu_V0, rn);
|
|
neon_load_reg64(tmp64, rn + 1);
|
|
} else {
|
|
neon_load_reg64(cpu_V0, rn + 1);
|
|
neon_load_reg64(tmp64, rm);
|
|
}
|
|
tcg_gen_shri_i64(cpu_V0, cpu_V0, (imm & 7) * 8);
|
|
tcg_gen_shli_i64(cpu_V1, tmp64, 64 - ((imm & 7) * 8));
|
|
tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1);
|
|
if (imm < 8) {
|
|
neon_load_reg64(cpu_V1, rm);
|
|
} else {
|
|
neon_load_reg64(cpu_V1, rm + 1);
|
|
imm -= 8;
|
|
}
|
|
tcg_gen_shli_i64(cpu_V1, cpu_V1, 64 - (imm * 8));
|
|
tcg_gen_shri_i64(tmp64, tmp64, imm * 8);
|
|
tcg_gen_or_i64(cpu_V1, cpu_V1, tmp64);
|
|
tcg_temp_free_i64(tmp64);
|
|
} else {
|
|
/* BUGFIX */
|
|
neon_load_reg64(cpu_V0, rn);
|
|
tcg_gen_shri_i64(cpu_V0, cpu_V0, imm * 8);
|
|
neon_load_reg64(cpu_V1, rm);
|
|
tcg_gen_shli_i64(cpu_V1, cpu_V1, 64 - (imm * 8));
|
|
tcg_gen_or_i64(cpu_V0, cpu_V0, cpu_V1);
|
|
}
|
|
neon_store_reg64(cpu_V0, rd);
|
|
if (q) {
|
|
neon_store_reg64(cpu_V1, rd + 1);
|
|
}
|
|
} else if ((insn & (1 << 11)) == 0) {
|
|
/* Two register misc. */
|
|
op = ((insn >> 12) & 0x30) | ((insn >> 7) & 0xf);
|
|
size = (insn >> 18) & 3;
|
|
/* UNDEF for unknown op values and bad op-size combinations */
|
|
if ((neon_2rm_sizes[op] & (1 << size)) == 0) {
|
|
return 1;
|
|
}
|
|
if (neon_2rm_is_v8_op(op) &&
|
|
!arm_dc_feature(s, ARM_FEATURE_V8)) {
|
|
return 1;
|
|
}
|
|
if ((op != NEON_2RM_VMOVN && op != NEON_2RM_VQMOVN) &&
|
|
q && ((rm | rd) & 1)) {
|
|
return 1;
|
|
}
|
|
switch (op) {
|
|
case NEON_2RM_VREV64:
|
|
for (pass = 0; pass < (q ? 2 : 1); pass++) {
|
|
tmp = neon_load_reg(rm, pass * 2);
|
|
tmp2 = neon_load_reg(rm, pass * 2 + 1);
|
|
switch (size) {
|
|
case 0: tcg_gen_bswap32_i32(tmp, tmp); break;
|
|
case 1: gen_swap_half(tmp); break;
|
|
case 2: /* no-op */ break;
|
|
default: abort();
|
|
}
|
|
neon_store_reg(rd, pass * 2 + 1, tmp);
|
|
if (size == 2) {
|
|
neon_store_reg(rd, pass * 2, tmp2);
|
|
} else {
|
|
switch (size) {
|
|
case 0: tcg_gen_bswap32_i32(tmp2, tmp2); break;
|
|
case 1: gen_swap_half(tmp2); break;
|
|
default: abort();
|
|
}
|
|
neon_store_reg(rd, pass * 2, tmp2);
|
|
}
|
|
}
|
|
break;
|
|
case NEON_2RM_VPADDL: case NEON_2RM_VPADDL_U:
|
|
case NEON_2RM_VPADAL: case NEON_2RM_VPADAL_U:
|
|
for (pass = 0; pass < q + 1; pass++) {
|
|
tmp = neon_load_reg(rm, pass * 2);
|
|
gen_neon_widen(cpu_V0, tmp, size, op & 1);
|
|
tmp = neon_load_reg(rm, pass * 2 + 1);
|
|
gen_neon_widen(cpu_V1, tmp, size, op & 1);
|
|
switch (size) {
|
|
case 0: gen_helper_neon_paddl_u16(CPU_V001); break;
|
|
case 1: gen_helper_neon_paddl_u32(CPU_V001); break;
|
|
case 2: tcg_gen_add_i64(CPU_V001); break;
|
|
default: abort();
|
|
}
|
|
if (op >= NEON_2RM_VPADAL) {
|
|
/* Accumulate. */
|
|
neon_load_reg64(cpu_V1, rd + pass);
|
|
gen_neon_addl(size);
|
|
}
|
|
neon_store_reg64(cpu_V0, rd + pass);
|
|
}
|
|
break;
|
|
case NEON_2RM_VTRN:
|
|
if (size == 2) {
|
|
int n;
|
|
for (n = 0; n < (q ? 4 : 2); n += 2) {
|
|
tmp = neon_load_reg(rm, n);
|
|
tmp2 = neon_load_reg(rd, n + 1);
|
|
neon_store_reg(rm, n, tmp2);
|
|
neon_store_reg(rd, n + 1, tmp);
|
|
}
|
|
} else {
|
|
goto elementwise;
|
|
}
|
|
break;
|
|
case NEON_2RM_VUZP:
|
|
if (gen_neon_unzip(rd, rm, size, q)) {
|
|
return 1;
|
|
}
|
|
break;
|
|
case NEON_2RM_VZIP:
|
|
if (gen_neon_zip(rd, rm, size, q)) {
|
|
return 1;
|
|
}
|
|
break;
|
|
case NEON_2RM_VMOVN: case NEON_2RM_VQMOVN:
|
|
/* also VQMOVUN; op field and mnemonics don't line up */
|
|
if (rm & 1) {
|
|
return 1;
|
|
}
|
|
tmp2 = NULL;
|
|
for (pass = 0; pass < 2; pass++) {
|
|
neon_load_reg64(cpu_V0, rm + pass);
|
|
tmp = tcg_temp_new_i32();
|
|
gen_neon_narrow_op(op == NEON_2RM_VMOVN, q, size,
|
|
tmp, cpu_V0);
|
|
if (pass == 0) {
|
|
tmp2 = tmp;
|
|
} else {
|
|
neon_store_reg(rd, 0, tmp2);
|
|
neon_store_reg(rd, 1, tmp);
|
|
}
|
|
}
|
|
break;
|
|
case NEON_2RM_VSHLL:
|
|
if (q || (rd & 1)) {
|
|
return 1;
|
|
}
|
|
tmp = neon_load_reg(rm, 0);
|
|
tmp2 = neon_load_reg(rm, 1);
|
|
for (pass = 0; pass < 2; pass++) {
|
|
if (pass == 1)
|
|
tmp = tmp2;
|
|
gen_neon_widen(cpu_V0, tmp, size, 1);
|
|
tcg_gen_shli_i64(cpu_V0, cpu_V0, 8 << size);
|
|
neon_store_reg64(cpu_V0, rd + pass);
|
|
}
|
|
break;
|
|
case NEON_2RM_VCVT_F16_F32:
|
|
{
|
|
TCGv_ptr fpst;
|
|
TCGv_i32 ahp;
|
|
|
|
if (!dc_isar_feature(aa32_fp16_spconv, s) ||
|
|
q || (rm & 1)) {
|
|
return 1;
|
|
}
|
|
fpst = get_fpstatus_ptr(true);
|
|
ahp = get_ahp_flag();
|
|
tmp = neon_load_reg(rm, 0);
|
|
gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp);
|
|
tmp2 = neon_load_reg(rm, 1);
|
|
gen_helper_vfp_fcvt_f32_to_f16(tmp2, tmp2, fpst, ahp);
|
|
tcg_gen_shli_i32(tmp2, tmp2, 16);
|
|
tcg_gen_or_i32(tmp2, tmp2, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
tmp = neon_load_reg(rm, 2);
|
|
gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp);
|
|
tmp3 = neon_load_reg(rm, 3);
|
|
neon_store_reg(rd, 0, tmp2);
|
|
gen_helper_vfp_fcvt_f32_to_f16(tmp3, tmp3, fpst, ahp);
|
|
tcg_gen_shli_i32(tmp3, tmp3, 16);
|
|
tcg_gen_or_i32(tmp3, tmp3, tmp);
|
|
neon_store_reg(rd, 1, tmp3);
|
|
tcg_temp_free_i32(tmp);
|
|
tcg_temp_free_i32(ahp);
|
|
tcg_temp_free_ptr(fpst);
|
|
break;
|
|
}
|
|
case NEON_2RM_VCVT_F32_F16:
|
|
{
|
|
TCGv_ptr fpst;
|
|
TCGv_i32 ahp;
|
|
if (!dc_isar_feature(aa32_fp16_spconv, s) ||
|
|
q || (rd & 1)) {
|
|
return 1;
|
|
}
|
|
fpst = get_fpstatus_ptr(true);
|
|
ahp = get_ahp_flag();
|
|
tmp3 = tcg_temp_new_i32();
|
|
tmp = neon_load_reg(rm, 0);
|
|
tmp2 = neon_load_reg(rm, 1);
|
|
tcg_gen_ext16u_i32(tmp3, tmp);
|
|
gen_helper_vfp_fcvt_f16_to_f32(tmp3, tmp3, fpst, ahp);
|
|
neon_store_reg(rd, 0, tmp3);
|
|
tcg_gen_shri_i32(tmp, tmp, 16);
|
|
gen_helper_vfp_fcvt_f16_to_f32(tmp, tmp, fpst, ahp);
|
|
neon_store_reg(rd, 1, tmp);
|
|
tmp3 = tcg_temp_new_i32();
|
|
tcg_gen_ext16u_i32(tmp3, tmp2);
|
|
gen_helper_vfp_fcvt_f16_to_f32(tmp3, tmp3, fpst, ahp);
|
|
neon_store_reg(rd, 2, tmp3);
|
|
tcg_gen_shri_i32(tmp2, tmp2, 16);
|
|
gen_helper_vfp_fcvt_f16_to_f32(tmp2, tmp2, fpst, ahp);
|
|
neon_store_reg(rd, 3, tmp2);
|
|
tcg_temp_free_i32(ahp);
|
|
tcg_temp_free_ptr(fpst);
|
|
break;
|
|
}
|
|
case NEON_2RM_AESE: case NEON_2RM_AESMC:
|
|
if (!dc_isar_feature(aa32_aes, s) || ((rm | rd) & 1)) {
|
|
return 1;
|
|
}
|
|
ptr1 = vfp_reg_ptr(true, rd);
|
|
ptr2 = vfp_reg_ptr(true, rm);
|
|
|
|
/* Bit 6 is the lowest opcode bit; it distinguishes between
|
|
* encryption (AESE/AESMC) and decryption (AESD/AESIMC)
|
|
*/
|
|
tmp3 = tcg_const_i32(extract32(insn, 6, 1));
|
|
|
|
if (op == NEON_2RM_AESE) {
|
|
gen_helper_crypto_aese(ptr1, ptr2, tmp3);
|
|
} else {
|
|
gen_helper_crypto_aesmc(ptr1, ptr2, tmp3);
|
|
}
|
|
tcg_temp_free_ptr(ptr1);
|
|
tcg_temp_free_ptr(ptr2);
|
|
tcg_temp_free_i32(tmp3);
|
|
break;
|
|
case NEON_2RM_SHA1H:
|
|
if (!dc_isar_feature(aa32_sha1, s) || ((rm | rd) & 1)) {
|
|
return 1;
|
|
}
|
|
ptr1 = vfp_reg_ptr(true, rd);
|
|
ptr2 = vfp_reg_ptr(true, rm);
|
|
|
|
gen_helper_crypto_sha1h(ptr1, ptr2);
|
|
|
|
tcg_temp_free_ptr(ptr1);
|
|
tcg_temp_free_ptr(ptr2);
|
|
break;
|
|
case NEON_2RM_SHA1SU1:
|
|
if ((rm | rd) & 1) {
|
|
return 1;
|
|
}
|
|
/* bit 6 (q): set -> SHA256SU0, cleared -> SHA1SU1 */
|
|
if (q) {
|
|
if (!dc_isar_feature(aa32_sha2, s)) {
|
|
return 1;
|
|
}
|
|
} else if (!dc_isar_feature(aa32_sha1, s)) {
|
|
return 1;
|
|
}
|
|
ptr1 = vfp_reg_ptr(true, rd);
|
|
ptr2 = vfp_reg_ptr(true, rm);
|
|
if (q) {
|
|
gen_helper_crypto_sha256su0(ptr1, ptr2);
|
|
} else {
|
|
gen_helper_crypto_sha1su1(ptr1, ptr2);
|
|
}
|
|
tcg_temp_free_ptr(ptr1);
|
|
tcg_temp_free_ptr(ptr2);
|
|
break;
|
|
|
|
case NEON_2RM_VMVN:
|
|
tcg_gen_gvec_not(0, rd_ofs, rm_ofs, vec_size, vec_size);
|
|
break;
|
|
case NEON_2RM_VNEG:
|
|
tcg_gen_gvec_neg(size, rd_ofs, rm_ofs, vec_size, vec_size);
|
|
break;
|
|
case NEON_2RM_VABS:
|
|
tcg_gen_gvec_abs(size, rd_ofs, rm_ofs, vec_size, vec_size);
|
|
break;
|
|
|
|
default:
|
|
elementwise:
|
|
for (pass = 0; pass < (q ? 4 : 2); pass++) {
|
|
tmp = neon_load_reg(rm, pass);
|
|
switch (op) {
|
|
case NEON_2RM_VREV32:
|
|
switch (size) {
|
|
case 0: tcg_gen_bswap32_i32(tmp, tmp); break;
|
|
case 1: gen_swap_half(tmp); break;
|
|
default: abort();
|
|
}
|
|
break;
|
|
case NEON_2RM_VREV16:
|
|
gen_rev16(tmp, tmp);
|
|
break;
|
|
case NEON_2RM_VCLS:
|
|
switch (size) {
|
|
case 0: gen_helper_neon_cls_s8(tmp, tmp); break;
|
|
case 1: gen_helper_neon_cls_s16(tmp, tmp); break;
|
|
case 2: gen_helper_neon_cls_s32(tmp, tmp); break;
|
|
default: abort();
|
|
}
|
|
break;
|
|
case NEON_2RM_VCLZ:
|
|
switch (size) {
|
|
case 0: gen_helper_neon_clz_u8(tmp, tmp); break;
|
|
case 1: gen_helper_neon_clz_u16(tmp, tmp); break;
|
|
case 2: tcg_gen_clzi_i32(tmp, tmp, 32); break;
|
|
default: abort();
|
|
}
|
|
break;
|
|
case NEON_2RM_VCNT:
|
|
gen_helper_neon_cnt_u8(tmp, tmp);
|
|
break;
|
|
case NEON_2RM_VQABS:
|
|
switch (size) {
|
|
case 0:
|
|
gen_helper_neon_qabs_s8(tmp, cpu_env, tmp);
|
|
break;
|
|
case 1:
|
|
gen_helper_neon_qabs_s16(tmp, cpu_env, tmp);
|
|
break;
|
|
case 2:
|
|
gen_helper_neon_qabs_s32(tmp, cpu_env, tmp);
|
|
break;
|
|
default: abort();
|
|
}
|
|
break;
|
|
case NEON_2RM_VQNEG:
|
|
switch (size) {
|
|
case 0:
|
|
gen_helper_neon_qneg_s8(tmp, cpu_env, tmp);
|
|
break;
|
|
case 1:
|
|
gen_helper_neon_qneg_s16(tmp, cpu_env, tmp);
|
|
break;
|
|
case 2:
|
|
gen_helper_neon_qneg_s32(tmp, cpu_env, tmp);
|
|
break;
|
|
default: abort();
|
|
}
|
|
break;
|
|
case NEON_2RM_VCGT0: case NEON_2RM_VCLE0:
|
|
tmp2 = tcg_const_i32(0);
|
|
switch(size) {
|
|
case 0: gen_helper_neon_cgt_s8(tmp, tmp, tmp2); break;
|
|
case 1: gen_helper_neon_cgt_s16(tmp, tmp, tmp2); break;
|
|
case 2: gen_helper_neon_cgt_s32(tmp, tmp, tmp2); break;
|
|
default: abort();
|
|
}
|
|
tcg_temp_free_i32(tmp2);
|
|
if (op == NEON_2RM_VCLE0) {
|
|
tcg_gen_not_i32(tmp, tmp);
|
|
}
|
|
break;
|
|
case NEON_2RM_VCGE0: case NEON_2RM_VCLT0:
|
|
tmp2 = tcg_const_i32(0);
|
|
switch(size) {
|
|
case 0: gen_helper_neon_cge_s8(tmp, tmp, tmp2); break;
|
|
case 1: gen_helper_neon_cge_s16(tmp, tmp, tmp2); break;
|
|
case 2: gen_helper_neon_cge_s32(tmp, tmp, tmp2); break;
|
|
default: abort();
|
|
}
|
|
tcg_temp_free_i32(tmp2);
|
|
if (op == NEON_2RM_VCLT0) {
|
|
tcg_gen_not_i32(tmp, tmp);
|
|
}
|
|
break;
|
|
case NEON_2RM_VCEQ0:
|
|
tmp2 = tcg_const_i32(0);
|
|
switch(size) {
|
|
case 0: gen_helper_neon_ceq_u8(tmp, tmp, tmp2); break;
|
|
case 1: gen_helper_neon_ceq_u16(tmp, tmp, tmp2); break;
|
|
case 2: gen_helper_neon_ceq_u32(tmp, tmp, tmp2); break;
|
|
default: abort();
|
|
}
|
|
tcg_temp_free_i32(tmp2);
|
|
break;
|
|
case NEON_2RM_VCGT0_F:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
tmp2 = tcg_const_i32(0);
|
|
gen_helper_neon_cgt_f32(tmp, tmp, tmp2, fpstatus);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_2RM_VCGE0_F:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
tmp2 = tcg_const_i32(0);
|
|
gen_helper_neon_cge_f32(tmp, tmp, tmp2, fpstatus);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_2RM_VCEQ0_F:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
tmp2 = tcg_const_i32(0);
|
|
gen_helper_neon_ceq_f32(tmp, tmp, tmp2, fpstatus);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_2RM_VCLE0_F:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
tmp2 = tcg_const_i32(0);
|
|
gen_helper_neon_cge_f32(tmp, tmp2, tmp, fpstatus);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_2RM_VCLT0_F:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
tmp2 = tcg_const_i32(0);
|
|
gen_helper_neon_cgt_f32(tmp, tmp2, tmp, fpstatus);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_2RM_VABS_F:
|
|
gen_helper_vfp_abss(tmp, tmp);
|
|
break;
|
|
case NEON_2RM_VNEG_F:
|
|
gen_helper_vfp_negs(tmp, tmp);
|
|
break;
|
|
case NEON_2RM_VSWP:
|
|
tmp2 = neon_load_reg(rd, pass);
|
|
neon_store_reg(rm, pass, tmp2);
|
|
break;
|
|
case NEON_2RM_VTRN:
|
|
tmp2 = neon_load_reg(rd, pass);
|
|
switch (size) {
|
|
case 0: gen_neon_trn_u8(tmp, tmp2); break;
|
|
case 1: gen_neon_trn_u16(tmp, tmp2); break;
|
|
default: abort();
|
|
}
|
|
neon_store_reg(rm, pass, tmp2);
|
|
break;
|
|
case NEON_2RM_VRINTN:
|
|
case NEON_2RM_VRINTA:
|
|
case NEON_2RM_VRINTM:
|
|
case NEON_2RM_VRINTP:
|
|
case NEON_2RM_VRINTZ:
|
|
{
|
|
TCGv_i32 tcg_rmode;
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
int rmode;
|
|
|
|
if (op == NEON_2RM_VRINTZ) {
|
|
rmode = FPROUNDING_ZERO;
|
|
} else {
|
|
rmode = fp_decode_rm[((op & 0x6) >> 1) ^ 1];
|
|
}
|
|
|
|
tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
|
|
gen_helper_set_neon_rmode(tcg_rmode, tcg_rmode,
|
|
cpu_env);
|
|
gen_helper_rints(tmp, tmp, fpstatus);
|
|
gen_helper_set_neon_rmode(tcg_rmode, tcg_rmode,
|
|
cpu_env);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
tcg_temp_free_i32(tcg_rmode);
|
|
break;
|
|
}
|
|
case NEON_2RM_VRINTX:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
gen_helper_rints_exact(tmp, tmp, fpstatus);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_2RM_VCVTAU:
|
|
case NEON_2RM_VCVTAS:
|
|
case NEON_2RM_VCVTNU:
|
|
case NEON_2RM_VCVTNS:
|
|
case NEON_2RM_VCVTPU:
|
|
case NEON_2RM_VCVTPS:
|
|
case NEON_2RM_VCVTMU:
|
|
case NEON_2RM_VCVTMS:
|
|
{
|
|
bool is_signed = !extract32(insn, 7, 1);
|
|
TCGv_ptr fpst = get_fpstatus_ptr(1);
|
|
TCGv_i32 tcg_rmode, tcg_shift;
|
|
int rmode = fp_decode_rm[extract32(insn, 8, 2)];
|
|
|
|
tcg_shift = tcg_const_i32(0);
|
|
tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
|
|
gen_helper_set_neon_rmode(tcg_rmode, tcg_rmode,
|
|
cpu_env);
|
|
|
|
if (is_signed) {
|
|
gen_helper_vfp_tosls(tmp, tmp,
|
|
tcg_shift, fpst);
|
|
} else {
|
|
gen_helper_vfp_touls(tmp, tmp,
|
|
tcg_shift, fpst);
|
|
}
|
|
|
|
gen_helper_set_neon_rmode(tcg_rmode, tcg_rmode,
|
|
cpu_env);
|
|
tcg_temp_free_i32(tcg_rmode);
|
|
tcg_temp_free_i32(tcg_shift);
|
|
tcg_temp_free_ptr(fpst);
|
|
break;
|
|
}
|
|
case NEON_2RM_VRECPE:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
gen_helper_recpe_u32(tmp, tmp, fpstatus);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_2RM_VRSQRTE:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
gen_helper_rsqrte_u32(tmp, tmp, fpstatus);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_2RM_VRECPE_F:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
gen_helper_recpe_f32(tmp, tmp, fpstatus);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_2RM_VRSQRTE_F:
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
gen_helper_rsqrte_f32(tmp, tmp, fpstatus);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_2RM_VCVT_FS: /* VCVT.F32.S32 */
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
gen_helper_vfp_sitos(tmp, tmp, fpstatus);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_2RM_VCVT_FU: /* VCVT.F32.U32 */
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
gen_helper_vfp_uitos(tmp, tmp, fpstatus);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_2RM_VCVT_SF: /* VCVT.S32.F32 */
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
gen_helper_vfp_tosizs(tmp, tmp, fpstatus);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
case NEON_2RM_VCVT_UF: /* VCVT.U32.F32 */
|
|
{
|
|
TCGv_ptr fpstatus = get_fpstatus_ptr(1);
|
|
gen_helper_vfp_touizs(tmp, tmp, fpstatus);
|
|
tcg_temp_free_ptr(fpstatus);
|
|
break;
|
|
}
|
|
default:
|
|
/* Reserved op values were caught by the
|
|
* neon_2rm_sizes[] check earlier.
|
|
*/
|
|
abort();
|
|
}
|
|
neon_store_reg(rd, pass, tmp);
|
|
}
|
|
break;
|
|
}
|
|
} else if ((insn & (1 << 10)) == 0) {
|
|
/* VTBL, VTBX. */
|
|
int n = ((insn >> 8) & 3) + 1;
|
|
if ((rn + n) > 32) {
|
|
/* This is UNPREDICTABLE; we choose to UNDEF to avoid the
|
|
* helper function running off the end of the register file.
|
|
*/
|
|
return 1;
|
|
}
|
|
n <<= 3;
|
|
if (insn & (1 << 6)) {
|
|
tmp = neon_load_reg(rd, 0);
|
|
} else {
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(tmp, 0);
|
|
}
|
|
tmp2 = neon_load_reg(rm, 0);
|
|
ptr1 = vfp_reg_ptr(true, rn);
|
|
tmp5 = tcg_const_i32(n);
|
|
gen_helper_neon_tbl(tmp2, tmp2, tmp, ptr1, tmp5);
|
|
tcg_temp_free_i32(tmp);
|
|
if (insn & (1 << 6)) {
|
|
tmp = neon_load_reg(rd, 1);
|
|
} else {
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(tmp, 0);
|
|
}
|
|
tmp3 = neon_load_reg(rm, 1);
|
|
gen_helper_neon_tbl(tmp3, tmp3, tmp, ptr1, tmp5);
|
|
tcg_temp_free_i32(tmp5);
|
|
tcg_temp_free_ptr(ptr1);
|
|
neon_store_reg(rd, 0, tmp2);
|
|
neon_store_reg(rd, 1, tmp3);
|
|
tcg_temp_free_i32(tmp);
|
|
} else if ((insn & 0x380) == 0) {
|
|
/* VDUP */
|
|
int element;
|
|
MemOp size;
|
|
|
|
if ((insn & (7 << 16)) == 0 || (q && (rd & 1))) {
|
|
return 1;
|
|
}
|
|
if (insn & (1 << 16)) {
|
|
size = MO_8;
|
|
element = (insn >> 17) & 7;
|
|
} else if (insn & (1 << 17)) {
|
|
size = MO_16;
|
|
element = (insn >> 18) & 3;
|
|
} else {
|
|
size = MO_32;
|
|
element = (insn >> 19) & 1;
|
|
}
|
|
tcg_gen_gvec_dup_mem(size, neon_reg_offset(rd, 0),
|
|
neon_element_offset(rm, element, size),
|
|
q ? 16 : 8, q ? 16 : 8);
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Advanced SIMD three registers of the same length extension.
|
|
* 31 25 23 22 20 16 12 11 10 9 8 3 0
|
|
* +---------------+-----+---+-----+----+----+---+----+---+----+---------+----+
|
|
* | 1 1 1 1 1 1 0 | op1 | D | op2 | Vn | Vd | 1 | o3 | 0 | o4 | N Q M U | Vm |
|
|
* +---------------+-----+---+-----+----+----+---+----+---+----+---------+----+
|
|
*/
|
|
static int disas_neon_insn_3same_ext(DisasContext *s, uint32_t insn)
|
|
{
|
|
gen_helper_gvec_3 *fn_gvec = NULL;
|
|
gen_helper_gvec_3_ptr *fn_gvec_ptr = NULL;
|
|
int rd, rn, rm, opr_sz;
|
|
int data = 0;
|
|
int off_rn, off_rm;
|
|
bool is_long = false, q = extract32(insn, 6, 1);
|
|
bool ptr_is_env = false;
|
|
|
|
if ((insn & 0xfe200f10) == 0xfc200800) {
|
|
/* VCMLA -- 1111 110R R.1S .... .... 1000 ...0 .... */
|
|
int size = extract32(insn, 20, 1);
|
|
data = extract32(insn, 23, 2); /* rot */
|
|
if (!dc_isar_feature(aa32_vcma, s)
|
|
|| (!size && !dc_isar_feature(aa32_fp16_arith, s))) {
|
|
return 1;
|
|
}
|
|
fn_gvec_ptr = size ? gen_helper_gvec_fcmlas : gen_helper_gvec_fcmlah;
|
|
} else if ((insn & 0xfea00f10) == 0xfc800800) {
|
|
/* VCADD -- 1111 110R 1.0S .... .... 1000 ...0 .... */
|
|
int size = extract32(insn, 20, 1);
|
|
data = extract32(insn, 24, 1); /* rot */
|
|
if (!dc_isar_feature(aa32_vcma, s)
|
|
|| (!size && !dc_isar_feature(aa32_fp16_arith, s))) {
|
|
return 1;
|
|
}
|
|
fn_gvec_ptr = size ? gen_helper_gvec_fcadds : gen_helper_gvec_fcaddh;
|
|
} else if ((insn & 0xfeb00f00) == 0xfc200d00) {
|
|
/* V[US]DOT -- 1111 1100 0.10 .... .... 1101 .Q.U .... */
|
|
bool u = extract32(insn, 4, 1);
|
|
if (!dc_isar_feature(aa32_dp, s)) {
|
|
return 1;
|
|
}
|
|
fn_gvec = u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b;
|
|
} else if ((insn & 0xff300f10) == 0xfc200810) {
|
|
/* VFM[AS]L -- 1111 1100 S.10 .... .... 1000 .Q.1 .... */
|
|
int is_s = extract32(insn, 23, 1);
|
|
if (!dc_isar_feature(aa32_fhm, s)) {
|
|
return 1;
|
|
}
|
|
is_long = true;
|
|
data = is_s; /* is_2 == 0 */
|
|
fn_gvec_ptr = gen_helper_gvec_fmlal_a32;
|
|
ptr_is_env = true;
|
|
} else {
|
|
return 1;
|
|
}
|
|
|
|
VFP_DREG_D(rd, insn);
|
|
if (rd & q) {
|
|
return 1;
|
|
}
|
|
if (q || !is_long) {
|
|
VFP_DREG_N(rn, insn);
|
|
VFP_DREG_M(rm, insn);
|
|
if ((rn | rm) & q & !is_long) {
|
|
return 1;
|
|
}
|
|
off_rn = vfp_reg_offset(1, rn);
|
|
off_rm = vfp_reg_offset(1, rm);
|
|
} else {
|
|
rn = VFP_SREG_N(insn);
|
|
rm = VFP_SREG_M(insn);
|
|
off_rn = vfp_reg_offset(0, rn);
|
|
off_rm = vfp_reg_offset(0, rm);
|
|
}
|
|
|
|
if (s->fp_excp_el) {
|
|
gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
|
|
syn_simd_access_trap(1, 0xe, false), s->fp_excp_el);
|
|
return 0;
|
|
}
|
|
if (!s->vfp_enabled) {
|
|
return 1;
|
|
}
|
|
|
|
opr_sz = (1 + q) * 8;
|
|
if (fn_gvec_ptr) {
|
|
TCGv_ptr ptr;
|
|
if (ptr_is_env) {
|
|
ptr = cpu_env;
|
|
} else {
|
|
ptr = get_fpstatus_ptr(1);
|
|
}
|
|
tcg_gen_gvec_3_ptr(vfp_reg_offset(1, rd), off_rn, off_rm, ptr,
|
|
opr_sz, opr_sz, data, fn_gvec_ptr);
|
|
if (!ptr_is_env) {
|
|
tcg_temp_free_ptr(ptr);
|
|
}
|
|
} else {
|
|
tcg_gen_gvec_3_ool(vfp_reg_offset(1, rd), off_rn, off_rm,
|
|
opr_sz, opr_sz, data, fn_gvec);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Advanced SIMD two registers and a scalar extension.
|
|
* 31 24 23 22 20 16 12 11 10 9 8 3 0
|
|
* +-----------------+----+---+----+----+----+---+----+---+----+---------+----+
|
|
* | 1 1 1 1 1 1 1 0 | o1 | D | o2 | Vn | Vd | 1 | o3 | 0 | o4 | N Q M U | Vm |
|
|
* +-----------------+----+---+----+----+----+---+----+---+----+---------+----+
|
|
*
|
|
*/
|
|
|
|
static int disas_neon_insn_2reg_scalar_ext(DisasContext *s, uint32_t insn)
|
|
{
|
|
gen_helper_gvec_3 *fn_gvec = NULL;
|
|
gen_helper_gvec_3_ptr *fn_gvec_ptr = NULL;
|
|
int rd, rn, rm, opr_sz, data;
|
|
int off_rn, off_rm;
|
|
bool is_long = false, q = extract32(insn, 6, 1);
|
|
bool ptr_is_env = false;
|
|
|
|
if ((insn & 0xff000f10) == 0xfe000800) {
|
|
/* VCMLA (indexed) -- 1111 1110 S.RR .... .... 1000 ...0 .... */
|
|
int rot = extract32(insn, 20, 2);
|
|
int size = extract32(insn, 23, 1);
|
|
int index;
|
|
|
|
if (!dc_isar_feature(aa32_vcma, s)) {
|
|
return 1;
|
|
}
|
|
if (size == 0) {
|
|
if (!dc_isar_feature(aa32_fp16_arith, s)) {
|
|
return 1;
|
|
}
|
|
/* For fp16, rm is just Vm, and index is M. */
|
|
rm = extract32(insn, 0, 4);
|
|
index = extract32(insn, 5, 1);
|
|
} else {
|
|
/* For fp32, rm is the usual M:Vm, and index is 0. */
|
|
VFP_DREG_M(rm, insn);
|
|
index = 0;
|
|
}
|
|
data = (index << 2) | rot;
|
|
fn_gvec_ptr = (size ? gen_helper_gvec_fcmlas_idx
|
|
: gen_helper_gvec_fcmlah_idx);
|
|
} else if ((insn & 0xffb00f00) == 0xfe200d00) {
|
|
/* V[US]DOT -- 1111 1110 0.10 .... .... 1101 .Q.U .... */
|
|
int u = extract32(insn, 4, 1);
|
|
|
|
if (!dc_isar_feature(aa32_dp, s)) {
|
|
return 1;
|
|
}
|
|
fn_gvec = u ? gen_helper_gvec_udot_idx_b : gen_helper_gvec_sdot_idx_b;
|
|
/* rm is just Vm, and index is M. */
|
|
data = extract32(insn, 5, 1); /* index */
|
|
rm = extract32(insn, 0, 4);
|
|
} else if ((insn & 0xffa00f10) == 0xfe000810) {
|
|
/* VFM[AS]L -- 1111 1110 0.0S .... .... 1000 .Q.1 .... */
|
|
int is_s = extract32(insn, 20, 1);
|
|
int vm20 = extract32(insn, 0, 3);
|
|
int vm3 = extract32(insn, 3, 1);
|
|
int m = extract32(insn, 5, 1);
|
|
int index;
|
|
|
|
if (!dc_isar_feature(aa32_fhm, s)) {
|
|
return 1;
|
|
}
|
|
if (q) {
|
|
rm = vm20;
|
|
index = m * 2 + vm3;
|
|
} else {
|
|
rm = vm20 * 2 + m;
|
|
index = vm3;
|
|
}
|
|
is_long = true;
|
|
data = (index << 2) | is_s; /* is_2 == 0 */
|
|
fn_gvec_ptr = gen_helper_gvec_fmlal_idx_a32;
|
|
ptr_is_env = true;
|
|
} else {
|
|
return 1;
|
|
}
|
|
|
|
VFP_DREG_D(rd, insn);
|
|
if (rd & q) {
|
|
return 1;
|
|
}
|
|
if (q || !is_long) {
|
|
VFP_DREG_N(rn, insn);
|
|
if (rn & q & !is_long) {
|
|
return 1;
|
|
}
|
|
off_rn = vfp_reg_offset(1, rn);
|
|
off_rm = vfp_reg_offset(1, rm);
|
|
} else {
|
|
rn = VFP_SREG_N(insn);
|
|
off_rn = vfp_reg_offset(0, rn);
|
|
off_rm = vfp_reg_offset(0, rm);
|
|
}
|
|
if (s->fp_excp_el) {
|
|
gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
|
|
syn_simd_access_trap(1, 0xe, false), s->fp_excp_el);
|
|
return 0;
|
|
}
|
|
if (!s->vfp_enabled) {
|
|
return 1;
|
|
}
|
|
|
|
opr_sz = (1 + q) * 8;
|
|
if (fn_gvec_ptr) {
|
|
TCGv_ptr ptr;
|
|
if (ptr_is_env) {
|
|
ptr = cpu_env;
|
|
} else {
|
|
ptr = get_fpstatus_ptr(1);
|
|
}
|
|
tcg_gen_gvec_3_ptr(vfp_reg_offset(1, rd), off_rn, off_rm, ptr,
|
|
opr_sz, opr_sz, data, fn_gvec_ptr);
|
|
if (!ptr_is_env) {
|
|
tcg_temp_free_ptr(ptr);
|
|
}
|
|
} else {
|
|
tcg_gen_gvec_3_ool(vfp_reg_offset(1, rd), off_rn, off_rm,
|
|
opr_sz, opr_sz, data, fn_gvec);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int disas_coproc_insn(DisasContext *s, uint32_t insn)
|
|
{
|
|
int cpnum, is64, crn, crm, opc1, opc2, isread, rt, rt2;
|
|
const ARMCPRegInfo *ri;
|
|
|
|
cpnum = (insn >> 8) & 0xf;
|
|
|
|
/* First check for coprocessor space used for XScale/iwMMXt insns */
|
|
if (arm_dc_feature(s, ARM_FEATURE_XSCALE) && (cpnum < 2)) {
|
|
if (extract32(s->c15_cpar, cpnum, 1) == 0) {
|
|
return 1;
|
|
}
|
|
if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) {
|
|
return disas_iwmmxt_insn(s, insn);
|
|
} else if (arm_dc_feature(s, ARM_FEATURE_XSCALE)) {
|
|
return disas_dsp_insn(s, insn);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Otherwise treat as a generic register access */
|
|
is64 = (insn & (1 << 25)) == 0;
|
|
if (!is64 && ((insn & (1 << 4)) == 0)) {
|
|
/* cdp */
|
|
return 1;
|
|
}
|
|
|
|
crm = insn & 0xf;
|
|
if (is64) {
|
|
crn = 0;
|
|
opc1 = (insn >> 4) & 0xf;
|
|
opc2 = 0;
|
|
rt2 = (insn >> 16) & 0xf;
|
|
} else {
|
|
crn = (insn >> 16) & 0xf;
|
|
opc1 = (insn >> 21) & 7;
|
|
opc2 = (insn >> 5) & 7;
|
|
rt2 = 0;
|
|
}
|
|
isread = (insn >> 20) & 1;
|
|
rt = (insn >> 12) & 0xf;
|
|
|
|
ri = get_arm_cp_reginfo(s->cp_regs,
|
|
ENCODE_CP_REG(cpnum, is64, s->ns, crn, crm, opc1, opc2));
|
|
if (ri) {
|
|
bool need_exit_tb;
|
|
|
|
/* Check access permissions */
|
|
if (!cp_access_ok(s->current_el, ri, isread)) {
|
|
return 1;
|
|
}
|
|
|
|
if (s->hstr_active || ri->accessfn ||
|
|
(arm_dc_feature(s, ARM_FEATURE_XSCALE) && cpnum < 14)) {
|
|
/* Emit code to perform further access permissions checks at
|
|
* runtime; this may result in an exception.
|
|
* Note that on XScale all cp0..c13 registers do an access check
|
|
* call in order to handle c15_cpar.
|
|
*/
|
|
TCGv_ptr tmpptr;
|
|
TCGv_i32 tcg_syn, tcg_isread;
|
|
uint32_t syndrome;
|
|
|
|
/* Note that since we are an implementation which takes an
|
|
* exception on a trapped conditional instruction only if the
|
|
* instruction passes its condition code check, we can take
|
|
* advantage of the clause in the ARM ARM that allows us to set
|
|
* the COND field in the instruction to 0xE in all cases.
|
|
* We could fish the actual condition out of the insn (ARM)
|
|
* or the condexec bits (Thumb) but it isn't necessary.
|
|
*/
|
|
switch (cpnum) {
|
|
case 14:
|
|
if (is64) {
|
|
syndrome = syn_cp14_rrt_trap(1, 0xe, opc1, crm, rt, rt2,
|
|
isread, false);
|
|
} else {
|
|
syndrome = syn_cp14_rt_trap(1, 0xe, opc1, opc2, crn, crm,
|
|
rt, isread, false);
|
|
}
|
|
break;
|
|
case 15:
|
|
if (is64) {
|
|
syndrome = syn_cp15_rrt_trap(1, 0xe, opc1, crm, rt, rt2,
|
|
isread, false);
|
|
} else {
|
|
syndrome = syn_cp15_rt_trap(1, 0xe, opc1, opc2, crn, crm,
|
|
rt, isread, false);
|
|
}
|
|
break;
|
|
default:
|
|
/* ARMv8 defines that only coprocessors 14 and 15 exist,
|
|
* so this can only happen if this is an ARMv7 or earlier CPU,
|
|
* in which case the syndrome information won't actually be
|
|
* guest visible.
|
|
*/
|
|
assert(!arm_dc_feature(s, ARM_FEATURE_V8));
|
|
syndrome = syn_uncategorized();
|
|
break;
|
|
}
|
|
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
tmpptr = tcg_const_ptr(ri);
|
|
tcg_syn = tcg_const_i32(syndrome);
|
|
tcg_isread = tcg_const_i32(isread);
|
|
gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn,
|
|
tcg_isread);
|
|
tcg_temp_free_ptr(tmpptr);
|
|
tcg_temp_free_i32(tcg_syn);
|
|
tcg_temp_free_i32(tcg_isread);
|
|
} else if (ri->type & ARM_CP_RAISES_EXC) {
|
|
/*
|
|
* The readfn or writefn might raise an exception;
|
|
* synchronize the CPU state in case it does.
|
|
*/
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
}
|
|
|
|
/* Handle special cases first */
|
|
switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
|
|
case ARM_CP_NOP:
|
|
return 0;
|
|
case ARM_CP_WFI:
|
|
if (isread) {
|
|
return 1;
|
|
}
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
s->base.is_jmp = DISAS_WFI;
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
|
|
gen_io_start();
|
|
}
|
|
|
|
if (isread) {
|
|
/* Read */
|
|
if (is64) {
|
|
TCGv_i64 tmp64;
|
|
TCGv_i32 tmp;
|
|
if (ri->type & ARM_CP_CONST) {
|
|
tmp64 = tcg_const_i64(ri->resetvalue);
|
|
} else if (ri->readfn) {
|
|
TCGv_ptr tmpptr;
|
|
tmp64 = tcg_temp_new_i64();
|
|
tmpptr = tcg_const_ptr(ri);
|
|
gen_helper_get_cp_reg64(tmp64, cpu_env, tmpptr);
|
|
tcg_temp_free_ptr(tmpptr);
|
|
} else {
|
|
tmp64 = tcg_temp_new_i64();
|
|
tcg_gen_ld_i64(tmp64, cpu_env, ri->fieldoffset);
|
|
}
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(tmp, tmp64);
|
|
store_reg(s, rt, tmp);
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_extrh_i64_i32(tmp, tmp64);
|
|
tcg_temp_free_i64(tmp64);
|
|
store_reg(s, rt2, tmp);
|
|
} else {
|
|
TCGv_i32 tmp;
|
|
if (ri->type & ARM_CP_CONST) {
|
|
tmp = tcg_const_i32(ri->resetvalue);
|
|
} else if (ri->readfn) {
|
|
TCGv_ptr tmpptr;
|
|
tmp = tcg_temp_new_i32();
|
|
tmpptr = tcg_const_ptr(ri);
|
|
gen_helper_get_cp_reg(tmp, cpu_env, tmpptr);
|
|
tcg_temp_free_ptr(tmpptr);
|
|
} else {
|
|
tmp = load_cpu_offset(ri->fieldoffset);
|
|
}
|
|
if (rt == 15) {
|
|
/* Destination register of r15 for 32 bit loads sets
|
|
* the condition codes from the high 4 bits of the value
|
|
*/
|
|
gen_set_nzcv(tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
} else {
|
|
store_reg(s, rt, tmp);
|
|
}
|
|
}
|
|
} else {
|
|
/* Write */
|
|
if (ri->type & ARM_CP_CONST) {
|
|
/* If not forbidden by access permissions, treat as WI */
|
|
return 0;
|
|
}
|
|
|
|
if (is64) {
|
|
TCGv_i32 tmplo, tmphi;
|
|
TCGv_i64 tmp64 = tcg_temp_new_i64();
|
|
tmplo = load_reg(s, rt);
|
|
tmphi = load_reg(s, rt2);
|
|
tcg_gen_concat_i32_i64(tmp64, tmplo, tmphi);
|
|
tcg_temp_free_i32(tmplo);
|
|
tcg_temp_free_i32(tmphi);
|
|
if (ri->writefn) {
|
|
TCGv_ptr tmpptr = tcg_const_ptr(ri);
|
|
gen_helper_set_cp_reg64(cpu_env, tmpptr, tmp64);
|
|
tcg_temp_free_ptr(tmpptr);
|
|
} else {
|
|
tcg_gen_st_i64(tmp64, cpu_env, ri->fieldoffset);
|
|
}
|
|
tcg_temp_free_i64(tmp64);
|
|
} else {
|
|
if (ri->writefn) {
|
|
TCGv_i32 tmp;
|
|
TCGv_ptr tmpptr;
|
|
tmp = load_reg(s, rt);
|
|
tmpptr = tcg_const_ptr(ri);
|
|
gen_helper_set_cp_reg(cpu_env, tmpptr, tmp);
|
|
tcg_temp_free_ptr(tmpptr);
|
|
tcg_temp_free_i32(tmp);
|
|
} else {
|
|
TCGv_i32 tmp = load_reg(s, rt);
|
|
store_cpu_offset(tmp, ri->fieldoffset);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* I/O operations must end the TB here (whether read or write) */
|
|
need_exit_tb = ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) &&
|
|
(ri->type & ARM_CP_IO));
|
|
|
|
if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
|
|
/*
|
|
* A write to any coprocessor regiser that ends a TB
|
|
* must rebuild the hflags for the next TB.
|
|
*/
|
|
TCGv_i32 tcg_el = tcg_const_i32(s->current_el);
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
gen_helper_rebuild_hflags_m32(cpu_env, tcg_el);
|
|
} else {
|
|
if (ri->type & ARM_CP_NEWEL) {
|
|
gen_helper_rebuild_hflags_a32_newel(cpu_env);
|
|
} else {
|
|
gen_helper_rebuild_hflags_a32(cpu_env, tcg_el);
|
|
}
|
|
}
|
|
tcg_temp_free_i32(tcg_el);
|
|
/*
|
|
* We default to ending the TB on a coprocessor register write,
|
|
* but allow this to be suppressed by the register definition
|
|
* (usually only necessary to work around guest bugs).
|
|
*/
|
|
need_exit_tb = true;
|
|
}
|
|
if (need_exit_tb) {
|
|
gen_lookup_tb(s);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Unknown register; this might be a guest error or a QEMU
|
|
* unimplemented feature.
|
|
*/
|
|
if (is64) {
|
|
qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 "
|
|
"64 bit system register cp:%d opc1: %d crm:%d "
|
|
"(%s)\n",
|
|
isread ? "read" : "write", cpnum, opc1, crm,
|
|
s->ns ? "non-secure" : "secure");
|
|
} else {
|
|
qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch32 "
|
|
"system register cp:%d opc1:%d crn:%d crm:%d opc2:%d "
|
|
"(%s)\n",
|
|
isread ? "read" : "write", cpnum, opc1, crn, crm, opc2,
|
|
s->ns ? "non-secure" : "secure");
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Store a 64-bit value to a register pair. Clobbers val. */
|
|
static void gen_storeq_reg(DisasContext *s, int rlow, int rhigh, TCGv_i64 val)
|
|
{
|
|
TCGv_i32 tmp;
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(tmp, val);
|
|
store_reg(s, rlow, tmp);
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_extrh_i64_i32(tmp, val);
|
|
store_reg(s, rhigh, tmp);
|
|
}
|
|
|
|
/* load and add a 64-bit value from a register pair. */
|
|
static void gen_addq(DisasContext *s, TCGv_i64 val, int rlow, int rhigh)
|
|
{
|
|
TCGv_i64 tmp;
|
|
TCGv_i32 tmpl;
|
|
TCGv_i32 tmph;
|
|
|
|
/* Load 64-bit value rd:rn. */
|
|
tmpl = load_reg(s, rlow);
|
|
tmph = load_reg(s, rhigh);
|
|
tmp = tcg_temp_new_i64();
|
|
tcg_gen_concat_i32_i64(tmp, tmpl, tmph);
|
|
tcg_temp_free_i32(tmpl);
|
|
tcg_temp_free_i32(tmph);
|
|
tcg_gen_add_i64(val, val, tmp);
|
|
tcg_temp_free_i64(tmp);
|
|
}
|
|
|
|
/* Set N and Z flags from hi|lo. */
|
|
static void gen_logicq_cc(TCGv_i32 lo, TCGv_i32 hi)
|
|
{
|
|
tcg_gen_mov_i32(cpu_NF, hi);
|
|
tcg_gen_or_i32(cpu_ZF, lo, hi);
|
|
}
|
|
|
|
/* Load/Store exclusive instructions are implemented by remembering
|
|
the value/address loaded, and seeing if these are the same
|
|
when the store is performed. This should be sufficient to implement
|
|
the architecturally mandated semantics, and avoids having to monitor
|
|
regular stores. The compare vs the remembered value is done during
|
|
the cmpxchg operation, but we must compare the addresses manually. */
|
|
static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
|
|
TCGv_i32 addr, int size)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
MemOp opc = size | MO_ALIGN | s->be_data;
|
|
|
|
s->is_ldex = true;
|
|
|
|
if (size == 3) {
|
|
TCGv_i32 tmp2 = tcg_temp_new_i32();
|
|
TCGv_i64 t64 = tcg_temp_new_i64();
|
|
|
|
/* For AArch32, architecturally the 32-bit word at the lowest
|
|
* address is always Rt and the one at addr+4 is Rt2, even if
|
|
* the CPU is big-endian. That means we don't want to do a
|
|
* gen_aa32_ld_i64(), which invokes gen_aa32_frob64() as if
|
|
* for an architecturally 64-bit access, but instead do a
|
|
* 64-bit access using MO_BE if appropriate and then split
|
|
* the two halves.
|
|
* This only makes a difference for BE32 user-mode, where
|
|
* frob64() must not flip the two halves of the 64-bit data
|
|
* but this code must treat BE32 user-mode like BE32 system.
|
|
*/
|
|
TCGv taddr = gen_aa32_addr(s, addr, opc);
|
|
|
|
tcg_gen_qemu_ld_i64(t64, taddr, get_mem_index(s), opc);
|
|
tcg_temp_free(taddr);
|
|
tcg_gen_mov_i64(cpu_exclusive_val, t64);
|
|
if (s->be_data == MO_BE) {
|
|
tcg_gen_extr_i64_i32(tmp2, tmp, t64);
|
|
} else {
|
|
tcg_gen_extr_i64_i32(tmp, tmp2, t64);
|
|
}
|
|
tcg_temp_free_i64(t64);
|
|
|
|
store_reg(s, rt2, tmp2);
|
|
} else {
|
|
gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), opc);
|
|
tcg_gen_extu_i32_i64(cpu_exclusive_val, tmp);
|
|
}
|
|
|
|
store_reg(s, rt, tmp);
|
|
tcg_gen_extu_i32_i64(cpu_exclusive_addr, addr);
|
|
}
|
|
|
|
static void gen_clrex(DisasContext *s)
|
|
{
|
|
tcg_gen_movi_i64(cpu_exclusive_addr, -1);
|
|
}
|
|
|
|
static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
|
|
TCGv_i32 addr, int size)
|
|
{
|
|
TCGv_i32 t0, t1, t2;
|
|
TCGv_i64 extaddr;
|
|
TCGv taddr;
|
|
TCGLabel *done_label;
|
|
TCGLabel *fail_label;
|
|
MemOp opc = size | MO_ALIGN | s->be_data;
|
|
|
|
/* if (env->exclusive_addr == addr && env->exclusive_val == [addr]) {
|
|
[addr] = {Rt};
|
|
{Rd} = 0;
|
|
} else {
|
|
{Rd} = 1;
|
|
} */
|
|
fail_label = gen_new_label();
|
|
done_label = gen_new_label();
|
|
extaddr = tcg_temp_new_i64();
|
|
tcg_gen_extu_i32_i64(extaddr, addr);
|
|
tcg_gen_brcond_i64(TCG_COND_NE, extaddr, cpu_exclusive_addr, fail_label);
|
|
tcg_temp_free_i64(extaddr);
|
|
|
|
taddr = gen_aa32_addr(s, addr, opc);
|
|
t0 = tcg_temp_new_i32();
|
|
t1 = load_reg(s, rt);
|
|
if (size == 3) {
|
|
TCGv_i64 o64 = tcg_temp_new_i64();
|
|
TCGv_i64 n64 = tcg_temp_new_i64();
|
|
|
|
t2 = load_reg(s, rt2);
|
|
/* For AArch32, architecturally the 32-bit word at the lowest
|
|
* address is always Rt and the one at addr+4 is Rt2, even if
|
|
* the CPU is big-endian. Since we're going to treat this as a
|
|
* single 64-bit BE store, we need to put the two halves in the
|
|
* opposite order for BE to LE, so that they end up in the right
|
|
* places.
|
|
* We don't want gen_aa32_frob64() because that does the wrong
|
|
* thing for BE32 usermode.
|
|
*/
|
|
if (s->be_data == MO_BE) {
|
|
tcg_gen_concat_i32_i64(n64, t2, t1);
|
|
} else {
|
|
tcg_gen_concat_i32_i64(n64, t1, t2);
|
|
}
|
|
tcg_temp_free_i32(t2);
|
|
|
|
tcg_gen_atomic_cmpxchg_i64(o64, taddr, cpu_exclusive_val, n64,
|
|
get_mem_index(s), opc);
|
|
tcg_temp_free_i64(n64);
|
|
|
|
tcg_gen_setcond_i64(TCG_COND_NE, o64, o64, cpu_exclusive_val);
|
|
tcg_gen_extrl_i64_i32(t0, o64);
|
|
|
|
tcg_temp_free_i64(o64);
|
|
} else {
|
|
t2 = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(t2, cpu_exclusive_val);
|
|
tcg_gen_atomic_cmpxchg_i32(t0, taddr, t2, t1, get_mem_index(s), opc);
|
|
tcg_gen_setcond_i32(TCG_COND_NE, t0, t0, t2);
|
|
tcg_temp_free_i32(t2);
|
|
}
|
|
tcg_temp_free_i32(t1);
|
|
tcg_temp_free(taddr);
|
|
tcg_gen_mov_i32(cpu_R[rd], t0);
|
|
tcg_temp_free_i32(t0);
|
|
tcg_gen_br(done_label);
|
|
|
|
gen_set_label(fail_label);
|
|
tcg_gen_movi_i32(cpu_R[rd], 1);
|
|
gen_set_label(done_label);
|
|
tcg_gen_movi_i64(cpu_exclusive_addr, -1);
|
|
}
|
|
|
|
/* gen_srs:
|
|
* @env: CPUARMState
|
|
* @s: DisasContext
|
|
* @mode: mode field from insn (which stack to store to)
|
|
* @amode: addressing mode (DA/IA/DB/IB), encoded as per P,U bits in ARM insn
|
|
* @writeback: true if writeback bit set
|
|
*
|
|
* Generate code for the SRS (Store Return State) insn.
|
|
*/
|
|
static void gen_srs(DisasContext *s,
|
|
uint32_t mode, uint32_t amode, bool writeback)
|
|
{
|
|
int32_t offset;
|
|
TCGv_i32 addr, tmp;
|
|
bool undef = false;
|
|
|
|
/* SRS is:
|
|
* - trapped to EL3 if EL3 is AArch64 and we are at Secure EL1
|
|
* and specified mode is monitor mode
|
|
* - UNDEFINED in Hyp mode
|
|
* - UNPREDICTABLE in User or System mode
|
|
* - UNPREDICTABLE if the specified mode is:
|
|
* -- not implemented
|
|
* -- not a valid mode number
|
|
* -- a mode that's at a higher exception level
|
|
* -- Monitor, if we are Non-secure
|
|
* For the UNPREDICTABLE cases we choose to UNDEF.
|
|
*/
|
|
if (s->current_el == 1 && !s->ns && mode == ARM_CPU_MODE_MON) {
|
|
gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_uncategorized(), 3);
|
|
return;
|
|
}
|
|
|
|
if (s->current_el == 0 || s->current_el == 2) {
|
|
undef = true;
|
|
}
|
|
|
|
switch (mode) {
|
|
case ARM_CPU_MODE_USR:
|
|
case ARM_CPU_MODE_FIQ:
|
|
case ARM_CPU_MODE_IRQ:
|
|
case ARM_CPU_MODE_SVC:
|
|
case ARM_CPU_MODE_ABT:
|
|
case ARM_CPU_MODE_UND:
|
|
case ARM_CPU_MODE_SYS:
|
|
break;
|
|
case ARM_CPU_MODE_HYP:
|
|
if (s->current_el == 1 || !arm_dc_feature(s, ARM_FEATURE_EL2)) {
|
|
undef = true;
|
|
}
|
|
break;
|
|
case ARM_CPU_MODE_MON:
|
|
/* No need to check specifically for "are we non-secure" because
|
|
* we've already made EL0 UNDEF and handled the trap for S-EL1;
|
|
* so if this isn't EL3 then we must be non-secure.
|
|
*/
|
|
if (s->current_el != 3) {
|
|
undef = true;
|
|
}
|
|
break;
|
|
default:
|
|
undef = true;
|
|
}
|
|
|
|
if (undef) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
addr = tcg_temp_new_i32();
|
|
tmp = tcg_const_i32(mode);
|
|
/* get_r13_banked() will raise an exception if called from System mode */
|
|
gen_set_condexec(s);
|
|
gen_set_pc_im(s, s->pc_curr);
|
|
gen_helper_get_r13_banked(addr, cpu_env, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
switch (amode) {
|
|
case 0: /* DA */
|
|
offset = -4;
|
|
break;
|
|
case 1: /* IA */
|
|
offset = 0;
|
|
break;
|
|
case 2: /* DB */
|
|
offset = -8;
|
|
break;
|
|
case 3: /* IB */
|
|
offset = 4;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
tcg_gen_addi_i32(addr, addr, offset);
|
|
tmp = load_reg(s, 14);
|
|
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
|
|
tcg_temp_free_i32(tmp);
|
|
tmp = load_cpu_field(spsr);
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
|
|
tcg_temp_free_i32(tmp);
|
|
if (writeback) {
|
|
switch (amode) {
|
|
case 0:
|
|
offset = -8;
|
|
break;
|
|
case 1:
|
|
offset = 4;
|
|
break;
|
|
case 2:
|
|
offset = -4;
|
|
break;
|
|
case 3:
|
|
offset = 0;
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
tcg_gen_addi_i32(addr, addr, offset);
|
|
tmp = tcg_const_i32(mode);
|
|
gen_helper_set_r13_banked(cpu_env, tmp, addr);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
tcg_temp_free_i32(addr);
|
|
s->base.is_jmp = DISAS_UPDATE;
|
|
}
|
|
|
|
/* Generate a label used for skipping this instruction */
|
|
static void arm_gen_condlabel(DisasContext *s)
|
|
{
|
|
if (!s->condjmp) {
|
|
s->condlabel = gen_new_label();
|
|
s->condjmp = 1;
|
|
}
|
|
}
|
|
|
|
/* Skip this instruction if the ARM condition is false */
|
|
static void arm_skip_unless(DisasContext *s, uint32_t cond)
|
|
{
|
|
arm_gen_condlabel(s);
|
|
arm_gen_test_cc(cond ^ 1, s->condlabel);
|
|
}
|
|
|
|
|
|
/*
|
|
* Constant expanders for the decoders.
|
|
*/
|
|
|
|
static int negate(DisasContext *s, int x)
|
|
{
|
|
return -x;
|
|
}
|
|
|
|
static int plus_2(DisasContext *s, int x)
|
|
{
|
|
return x + 2;
|
|
}
|
|
|
|
static int times_2(DisasContext *s, int x)
|
|
{
|
|
return x * 2;
|
|
}
|
|
|
|
static int times_4(DisasContext *s, int x)
|
|
{
|
|
return x * 4;
|
|
}
|
|
|
|
/* Return only the rotation part of T32ExpandImm. */
|
|
static int t32_expandimm_rot(DisasContext *s, int x)
|
|
{
|
|
return x & 0xc00 ? extract32(x, 7, 5) : 0;
|
|
}
|
|
|
|
/* Return the unrotated immediate from T32ExpandImm. */
|
|
static int t32_expandimm_imm(DisasContext *s, int x)
|
|
{
|
|
int imm = extract32(x, 0, 8);
|
|
|
|
switch (extract32(x, 8, 4)) {
|
|
case 0: /* XY */
|
|
/* Nothing to do. */
|
|
break;
|
|
case 1: /* 00XY00XY */
|
|
imm *= 0x00010001;
|
|
break;
|
|
case 2: /* XY00XY00 */
|
|
imm *= 0x01000100;
|
|
break;
|
|
case 3: /* XYXYXYXY */
|
|
imm *= 0x01010101;
|
|
break;
|
|
default:
|
|
/* Rotated constant. */
|
|
imm |= 0x80;
|
|
break;
|
|
}
|
|
return imm;
|
|
}
|
|
|
|
static int t32_branch24(DisasContext *s, int x)
|
|
{
|
|
/* Convert J1:J2 at x[22:21] to I2:I1, which involves I=J^~S. */
|
|
x ^= !(x < 0) * (3 << 21);
|
|
/* Append the final zero. */
|
|
return x << 1;
|
|
}
|
|
|
|
static int t16_setflags(DisasContext *s)
|
|
{
|
|
return s->condexec_mask == 0;
|
|
}
|
|
|
|
static int t16_push_list(DisasContext *s, int x)
|
|
{
|
|
return (x & 0xff) | (x & 0x100) << (14 - 8);
|
|
}
|
|
|
|
static int t16_pop_list(DisasContext *s, int x)
|
|
{
|
|
return (x & 0xff) | (x & 0x100) << (15 - 8);
|
|
}
|
|
|
|
/*
|
|
* Include the generated decoders.
|
|
*/
|
|
|
|
#include "decode-a32.inc.c"
|
|
#include "decode-a32-uncond.inc.c"
|
|
#include "decode-t32.inc.c"
|
|
#include "decode-t16.inc.c"
|
|
|
|
/* Helpers to swap operands for reverse-subtract. */
|
|
static void gen_rsb(TCGv_i32 dst, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
tcg_gen_sub_i32(dst, b, a);
|
|
}
|
|
|
|
static void gen_rsb_CC(TCGv_i32 dst, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
gen_sub_CC(dst, b, a);
|
|
}
|
|
|
|
static void gen_rsc(TCGv_i32 dest, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
gen_sub_carry(dest, b, a);
|
|
}
|
|
|
|
static void gen_rsc_CC(TCGv_i32 dest, TCGv_i32 a, TCGv_i32 b)
|
|
{
|
|
gen_sbc_CC(dest, b, a);
|
|
}
|
|
|
|
/*
|
|
* Helpers for the data processing routines.
|
|
*
|
|
* After the computation store the results back.
|
|
* This may be suppressed altogether (STREG_NONE), require a runtime
|
|
* check against the stack limits (STREG_SP_CHECK), or generate an
|
|
* exception return. Oh, or store into a register.
|
|
*
|
|
* Always return true, indicating success for a trans_* function.
|
|
*/
|
|
typedef enum {
|
|
STREG_NONE,
|
|
STREG_NORMAL,
|
|
STREG_SP_CHECK,
|
|
STREG_EXC_RET,
|
|
} StoreRegKind;
|
|
|
|
static bool store_reg_kind(DisasContext *s, int rd,
|
|
TCGv_i32 val, StoreRegKind kind)
|
|
{
|
|
switch (kind) {
|
|
case STREG_NONE:
|
|
tcg_temp_free_i32(val);
|
|
return true;
|
|
case STREG_NORMAL:
|
|
/* See ALUWritePC: Interworking only from a32 mode. */
|
|
if (s->thumb) {
|
|
store_reg(s, rd, val);
|
|
} else {
|
|
store_reg_bx(s, rd, val);
|
|
}
|
|
return true;
|
|
case STREG_SP_CHECK:
|
|
store_sp_checked(s, val);
|
|
return true;
|
|
case STREG_EXC_RET:
|
|
gen_exception_return(s, val);
|
|
return true;
|
|
}
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/*
|
|
* Data Processing (register)
|
|
*
|
|
* Operate, with set flags, one register source,
|
|
* one immediate shifted register source, and a destination.
|
|
*/
|
|
static bool op_s_rrr_shi(DisasContext *s, arg_s_rrr_shi *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32),
|
|
int logic_cc, StoreRegKind kind)
|
|
{
|
|
TCGv_i32 tmp1, tmp2;
|
|
|
|
tmp2 = load_reg(s, a->rm);
|
|
gen_arm_shift_im(tmp2, a->shty, a->shim, logic_cc);
|
|
tmp1 = load_reg(s, a->rn);
|
|
|
|
gen(tmp1, tmp1, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
|
|
if (logic_cc) {
|
|
gen_logic_CC(tmp1);
|
|
}
|
|
return store_reg_kind(s, a->rd, tmp1, kind);
|
|
}
|
|
|
|
static bool op_s_rxr_shi(DisasContext *s, arg_s_rrr_shi *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32),
|
|
int logic_cc, StoreRegKind kind)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
tmp = load_reg(s, a->rm);
|
|
gen_arm_shift_im(tmp, a->shty, a->shim, logic_cc);
|
|
|
|
gen(tmp, tmp);
|
|
if (logic_cc) {
|
|
gen_logic_CC(tmp);
|
|
}
|
|
return store_reg_kind(s, a->rd, tmp, kind);
|
|
}
|
|
|
|
/*
|
|
* Data-processing (register-shifted register)
|
|
*
|
|
* Operate, with set flags, one register source,
|
|
* one register shifted register source, and a destination.
|
|
*/
|
|
static bool op_s_rrr_shr(DisasContext *s, arg_s_rrr_shr *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32),
|
|
int logic_cc, StoreRegKind kind)
|
|
{
|
|
TCGv_i32 tmp1, tmp2;
|
|
|
|
tmp1 = load_reg(s, a->rs);
|
|
tmp2 = load_reg(s, a->rm);
|
|
gen_arm_shift_reg(tmp2, a->shty, tmp1, logic_cc);
|
|
tmp1 = load_reg(s, a->rn);
|
|
|
|
gen(tmp1, tmp1, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
|
|
if (logic_cc) {
|
|
gen_logic_CC(tmp1);
|
|
}
|
|
return store_reg_kind(s, a->rd, tmp1, kind);
|
|
}
|
|
|
|
static bool op_s_rxr_shr(DisasContext *s, arg_s_rrr_shr *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32),
|
|
int logic_cc, StoreRegKind kind)
|
|
{
|
|
TCGv_i32 tmp1, tmp2;
|
|
|
|
tmp1 = load_reg(s, a->rs);
|
|
tmp2 = load_reg(s, a->rm);
|
|
gen_arm_shift_reg(tmp2, a->shty, tmp1, logic_cc);
|
|
|
|
gen(tmp2, tmp2);
|
|
if (logic_cc) {
|
|
gen_logic_CC(tmp2);
|
|
}
|
|
return store_reg_kind(s, a->rd, tmp2, kind);
|
|
}
|
|
|
|
/*
|
|
* Data-processing (immediate)
|
|
*
|
|
* Operate, with set flags, one register source,
|
|
* one rotated immediate, and a destination.
|
|
*
|
|
* Note that logic_cc && a->rot setting CF based on the msb of the
|
|
* immediate is the reason why we must pass in the unrotated form
|
|
* of the immediate.
|
|
*/
|
|
static bool op_s_rri_rot(DisasContext *s, arg_s_rri_rot *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32),
|
|
int logic_cc, StoreRegKind kind)
|
|
{
|
|
TCGv_i32 tmp1, tmp2;
|
|
uint32_t imm;
|
|
|
|
imm = ror32(a->imm, a->rot);
|
|
if (logic_cc && a->rot) {
|
|
tcg_gen_movi_i32(cpu_CF, imm >> 31);
|
|
}
|
|
tmp2 = tcg_const_i32(imm);
|
|
tmp1 = load_reg(s, a->rn);
|
|
|
|
gen(tmp1, tmp1, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
|
|
if (logic_cc) {
|
|
gen_logic_CC(tmp1);
|
|
}
|
|
return store_reg_kind(s, a->rd, tmp1, kind);
|
|
}
|
|
|
|
static bool op_s_rxi_rot(DisasContext *s, arg_s_rri_rot *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32),
|
|
int logic_cc, StoreRegKind kind)
|
|
{
|
|
TCGv_i32 tmp;
|
|
uint32_t imm;
|
|
|
|
imm = ror32(a->imm, a->rot);
|
|
if (logic_cc && a->rot) {
|
|
tcg_gen_movi_i32(cpu_CF, imm >> 31);
|
|
}
|
|
tmp = tcg_const_i32(imm);
|
|
|
|
gen(tmp, tmp);
|
|
if (logic_cc) {
|
|
gen_logic_CC(tmp);
|
|
}
|
|
return store_reg_kind(s, a->rd, tmp, kind);
|
|
}
|
|
|
|
#define DO_ANY3(NAME, OP, L, K) \
|
|
static bool trans_##NAME##_rrri(DisasContext *s, arg_s_rrr_shi *a) \
|
|
{ StoreRegKind k = (K); return op_s_rrr_shi(s, a, OP, L, k); } \
|
|
static bool trans_##NAME##_rrrr(DisasContext *s, arg_s_rrr_shr *a) \
|
|
{ StoreRegKind k = (K); return op_s_rrr_shr(s, a, OP, L, k); } \
|
|
static bool trans_##NAME##_rri(DisasContext *s, arg_s_rri_rot *a) \
|
|
{ StoreRegKind k = (K); return op_s_rri_rot(s, a, OP, L, k); }
|
|
|
|
#define DO_ANY2(NAME, OP, L, K) \
|
|
static bool trans_##NAME##_rxri(DisasContext *s, arg_s_rrr_shi *a) \
|
|
{ StoreRegKind k = (K); return op_s_rxr_shi(s, a, OP, L, k); } \
|
|
static bool trans_##NAME##_rxrr(DisasContext *s, arg_s_rrr_shr *a) \
|
|
{ StoreRegKind k = (K); return op_s_rxr_shr(s, a, OP, L, k); } \
|
|
static bool trans_##NAME##_rxi(DisasContext *s, arg_s_rri_rot *a) \
|
|
{ StoreRegKind k = (K); return op_s_rxi_rot(s, a, OP, L, k); }
|
|
|
|
#define DO_CMP2(NAME, OP, L) \
|
|
static bool trans_##NAME##_xrri(DisasContext *s, arg_s_rrr_shi *a) \
|
|
{ return op_s_rrr_shi(s, a, OP, L, STREG_NONE); } \
|
|
static bool trans_##NAME##_xrrr(DisasContext *s, arg_s_rrr_shr *a) \
|
|
{ return op_s_rrr_shr(s, a, OP, L, STREG_NONE); } \
|
|
static bool trans_##NAME##_xri(DisasContext *s, arg_s_rri_rot *a) \
|
|
{ return op_s_rri_rot(s, a, OP, L, STREG_NONE); }
|
|
|
|
DO_ANY3(AND, tcg_gen_and_i32, a->s, STREG_NORMAL)
|
|
DO_ANY3(EOR, tcg_gen_xor_i32, a->s, STREG_NORMAL)
|
|
DO_ANY3(ORR, tcg_gen_or_i32, a->s, STREG_NORMAL)
|
|
DO_ANY3(BIC, tcg_gen_andc_i32, a->s, STREG_NORMAL)
|
|
|
|
DO_ANY3(RSB, a->s ? gen_rsb_CC : gen_rsb, false, STREG_NORMAL)
|
|
DO_ANY3(ADC, a->s ? gen_adc_CC : gen_add_carry, false, STREG_NORMAL)
|
|
DO_ANY3(SBC, a->s ? gen_sbc_CC : gen_sub_carry, false, STREG_NORMAL)
|
|
DO_ANY3(RSC, a->s ? gen_rsc_CC : gen_rsc, false, STREG_NORMAL)
|
|
|
|
DO_CMP2(TST, tcg_gen_and_i32, true)
|
|
DO_CMP2(TEQ, tcg_gen_xor_i32, true)
|
|
DO_CMP2(CMN, gen_add_CC, false)
|
|
DO_CMP2(CMP, gen_sub_CC, false)
|
|
|
|
DO_ANY3(ADD, a->s ? gen_add_CC : tcg_gen_add_i32, false,
|
|
a->rd == 13 && a->rn == 13 ? STREG_SP_CHECK : STREG_NORMAL)
|
|
|
|
/*
|
|
* Note for the computation of StoreRegKind we return out of the
|
|
* middle of the functions that are expanded by DO_ANY3, and that
|
|
* we modify a->s via that parameter before it is used by OP.
|
|
*/
|
|
DO_ANY3(SUB, a->s ? gen_sub_CC : tcg_gen_sub_i32, false,
|
|
({
|
|
StoreRegKind ret = STREG_NORMAL;
|
|
if (a->rd == 15 && a->s) {
|
|
/*
|
|
* See ALUExceptionReturn:
|
|
* In User mode, UNPREDICTABLE; we choose UNDEF.
|
|
* In Hyp mode, UNDEFINED.
|
|
*/
|
|
if (IS_USER(s) || s->current_el == 2) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
/* There is no writeback of nzcv to PSTATE. */
|
|
a->s = 0;
|
|
ret = STREG_EXC_RET;
|
|
} else if (a->rd == 13 && a->rn == 13) {
|
|
ret = STREG_SP_CHECK;
|
|
}
|
|
ret;
|
|
}))
|
|
|
|
DO_ANY2(MOV, tcg_gen_mov_i32, a->s,
|
|
({
|
|
StoreRegKind ret = STREG_NORMAL;
|
|
if (a->rd == 15 && a->s) {
|
|
/*
|
|
* See ALUExceptionReturn:
|
|
* In User mode, UNPREDICTABLE; we choose UNDEF.
|
|
* In Hyp mode, UNDEFINED.
|
|
*/
|
|
if (IS_USER(s) || s->current_el == 2) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
/* There is no writeback of nzcv to PSTATE. */
|
|
a->s = 0;
|
|
ret = STREG_EXC_RET;
|
|
} else if (a->rd == 13) {
|
|
ret = STREG_SP_CHECK;
|
|
}
|
|
ret;
|
|
}))
|
|
|
|
DO_ANY2(MVN, tcg_gen_not_i32, a->s, STREG_NORMAL)
|
|
|
|
/*
|
|
* ORN is only available with T32, so there is no register-shifted-register
|
|
* form of the insn. Using the DO_ANY3 macro would create an unused function.
|
|
*/
|
|
static bool trans_ORN_rrri(DisasContext *s, arg_s_rrr_shi *a)
|
|
{
|
|
return op_s_rrr_shi(s, a, tcg_gen_orc_i32, a->s, STREG_NORMAL);
|
|
}
|
|
|
|
static bool trans_ORN_rri(DisasContext *s, arg_s_rri_rot *a)
|
|
{
|
|
return op_s_rri_rot(s, a, tcg_gen_orc_i32, a->s, STREG_NORMAL);
|
|
}
|
|
|
|
#undef DO_ANY3
|
|
#undef DO_ANY2
|
|
#undef DO_CMP2
|
|
|
|
static bool trans_ADR(DisasContext *s, arg_ri *a)
|
|
{
|
|
store_reg_bx(s, a->rd, add_reg_for_lit(s, 15, a->imm));
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MOVW(DisasContext *s, arg_MOVW *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (!ENABLE_ARCH_6T2) {
|
|
return false;
|
|
}
|
|
|
|
tmp = tcg_const_i32(a->imm);
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MOVT(DisasContext *s, arg_MOVW *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (!ENABLE_ARCH_6T2) {
|
|
return false;
|
|
}
|
|
|
|
tmp = load_reg(s, a->rd);
|
|
tcg_gen_ext16u_i32(tmp, tmp);
|
|
tcg_gen_ori_i32(tmp, tmp, a->imm << 16);
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Multiply and multiply accumulate
|
|
*/
|
|
|
|
static bool op_mla(DisasContext *s, arg_s_rrrr *a, bool add)
|
|
{
|
|
TCGv_i32 t1, t2;
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
tcg_gen_mul_i32(t1, t1, t2);
|
|
tcg_temp_free_i32(t2);
|
|
if (add) {
|
|
t2 = load_reg(s, a->ra);
|
|
tcg_gen_add_i32(t1, t1, t2);
|
|
tcg_temp_free_i32(t2);
|
|
}
|
|
if (a->s) {
|
|
gen_logic_CC(t1);
|
|
}
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MUL(DisasContext *s, arg_MUL *a)
|
|
{
|
|
return op_mla(s, a, false);
|
|
}
|
|
|
|
static bool trans_MLA(DisasContext *s, arg_MLA *a)
|
|
{
|
|
return op_mla(s, a, true);
|
|
}
|
|
|
|
static bool trans_MLS(DisasContext *s, arg_MLS *a)
|
|
{
|
|
TCGv_i32 t1, t2;
|
|
|
|
if (!ENABLE_ARCH_6T2) {
|
|
return false;
|
|
}
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
tcg_gen_mul_i32(t1, t1, t2);
|
|
tcg_temp_free_i32(t2);
|
|
t2 = load_reg(s, a->ra);
|
|
tcg_gen_sub_i32(t1, t2, t1);
|
|
tcg_temp_free_i32(t2);
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool op_mlal(DisasContext *s, arg_s_rrrr *a, bool uns, bool add)
|
|
{
|
|
TCGv_i32 t0, t1, t2, t3;
|
|
|
|
t0 = load_reg(s, a->rm);
|
|
t1 = load_reg(s, a->rn);
|
|
if (uns) {
|
|
tcg_gen_mulu2_i32(t0, t1, t0, t1);
|
|
} else {
|
|
tcg_gen_muls2_i32(t0, t1, t0, t1);
|
|
}
|
|
if (add) {
|
|
t2 = load_reg(s, a->ra);
|
|
t3 = load_reg(s, a->rd);
|
|
tcg_gen_add2_i32(t0, t1, t0, t1, t2, t3);
|
|
tcg_temp_free_i32(t2);
|
|
tcg_temp_free_i32(t3);
|
|
}
|
|
if (a->s) {
|
|
gen_logicq_cc(t0, t1);
|
|
}
|
|
store_reg(s, a->ra, t0);
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_UMULL(DisasContext *s, arg_UMULL *a)
|
|
{
|
|
return op_mlal(s, a, true, false);
|
|
}
|
|
|
|
static bool trans_SMULL(DisasContext *s, arg_SMULL *a)
|
|
{
|
|
return op_mlal(s, a, false, false);
|
|
}
|
|
|
|
static bool trans_UMLAL(DisasContext *s, arg_UMLAL *a)
|
|
{
|
|
return op_mlal(s, a, true, true);
|
|
}
|
|
|
|
static bool trans_SMLAL(DisasContext *s, arg_SMLAL *a)
|
|
{
|
|
return op_mlal(s, a, false, true);
|
|
}
|
|
|
|
static bool trans_UMAAL(DisasContext *s, arg_UMAAL *a)
|
|
{
|
|
TCGv_i32 t0, t1, t2, zero;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t0 = load_reg(s, a->rm);
|
|
t1 = load_reg(s, a->rn);
|
|
tcg_gen_mulu2_i32(t0, t1, t0, t1);
|
|
zero = tcg_const_i32(0);
|
|
t2 = load_reg(s, a->ra);
|
|
tcg_gen_add2_i32(t0, t1, t0, t1, t2, zero);
|
|
tcg_temp_free_i32(t2);
|
|
t2 = load_reg(s, a->rd);
|
|
tcg_gen_add2_i32(t0, t1, t0, t1, t2, zero);
|
|
tcg_temp_free_i32(t2);
|
|
tcg_temp_free_i32(zero);
|
|
store_reg(s, a->ra, t0);
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Saturating addition and subtraction
|
|
*/
|
|
|
|
static bool op_qaddsub(DisasContext *s, arg_rrr *a, bool add, bool doub)
|
|
{
|
|
TCGv_i32 t0, t1;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_5TE) {
|
|
return false;
|
|
}
|
|
|
|
t0 = load_reg(s, a->rm);
|
|
t1 = load_reg(s, a->rn);
|
|
if (doub) {
|
|
gen_helper_add_saturate(t1, cpu_env, t1, t1);
|
|
}
|
|
if (add) {
|
|
gen_helper_add_saturate(t0, cpu_env, t0, t1);
|
|
} else {
|
|
gen_helper_sub_saturate(t0, cpu_env, t0, t1);
|
|
}
|
|
tcg_temp_free_i32(t1);
|
|
store_reg(s, a->rd, t0);
|
|
return true;
|
|
}
|
|
|
|
#define DO_QADDSUB(NAME, ADD, DOUB) \
|
|
static bool trans_##NAME(DisasContext *s, arg_rrr *a) \
|
|
{ \
|
|
return op_qaddsub(s, a, ADD, DOUB); \
|
|
}
|
|
|
|
DO_QADDSUB(QADD, true, false)
|
|
DO_QADDSUB(QSUB, false, false)
|
|
DO_QADDSUB(QDADD, true, true)
|
|
DO_QADDSUB(QDSUB, false, true)
|
|
|
|
#undef DO_QADDSUB
|
|
|
|
/*
|
|
* Halfword multiply and multiply accumulate
|
|
*/
|
|
|
|
static bool op_smlaxxx(DisasContext *s, arg_rrrr *a,
|
|
int add_long, bool nt, bool mt)
|
|
{
|
|
TCGv_i32 t0, t1, tl, th;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_5TE) {
|
|
return false;
|
|
}
|
|
|
|
t0 = load_reg(s, a->rn);
|
|
t1 = load_reg(s, a->rm);
|
|
gen_mulxy(t0, t1, nt, mt);
|
|
tcg_temp_free_i32(t1);
|
|
|
|
switch (add_long) {
|
|
case 0:
|
|
store_reg(s, a->rd, t0);
|
|
break;
|
|
case 1:
|
|
t1 = load_reg(s, a->ra);
|
|
gen_helper_add_setq(t0, cpu_env, t0, t1);
|
|
tcg_temp_free_i32(t1);
|
|
store_reg(s, a->rd, t0);
|
|
break;
|
|
case 2:
|
|
tl = load_reg(s, a->ra);
|
|
th = load_reg(s, a->rd);
|
|
/* Sign-extend the 32-bit product to 64 bits. */
|
|
t1 = tcg_temp_new_i32();
|
|
tcg_gen_sari_i32(t1, t0, 31);
|
|
tcg_gen_add2_i32(tl, th, tl, th, t0, t1);
|
|
tcg_temp_free_i32(t0);
|
|
tcg_temp_free_i32(t1);
|
|
store_reg(s, a->ra, tl);
|
|
store_reg(s, a->rd, th);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#define DO_SMLAX(NAME, add, nt, mt) \
|
|
static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \
|
|
{ \
|
|
return op_smlaxxx(s, a, add, nt, mt); \
|
|
}
|
|
|
|
DO_SMLAX(SMULBB, 0, 0, 0)
|
|
DO_SMLAX(SMULBT, 0, 0, 1)
|
|
DO_SMLAX(SMULTB, 0, 1, 0)
|
|
DO_SMLAX(SMULTT, 0, 1, 1)
|
|
|
|
DO_SMLAX(SMLABB, 1, 0, 0)
|
|
DO_SMLAX(SMLABT, 1, 0, 1)
|
|
DO_SMLAX(SMLATB, 1, 1, 0)
|
|
DO_SMLAX(SMLATT, 1, 1, 1)
|
|
|
|
DO_SMLAX(SMLALBB, 2, 0, 0)
|
|
DO_SMLAX(SMLALBT, 2, 0, 1)
|
|
DO_SMLAX(SMLALTB, 2, 1, 0)
|
|
DO_SMLAX(SMLALTT, 2, 1, 1)
|
|
|
|
#undef DO_SMLAX
|
|
|
|
static bool op_smlawx(DisasContext *s, arg_rrrr *a, bool add, bool mt)
|
|
{
|
|
TCGv_i32 t0, t1;
|
|
|
|
if (!ENABLE_ARCH_5TE) {
|
|
return false;
|
|
}
|
|
|
|
t0 = load_reg(s, a->rn);
|
|
t1 = load_reg(s, a->rm);
|
|
/*
|
|
* Since the nominal result is product<47:16>, shift the 16-bit
|
|
* input up by 16 bits, so that the result is at product<63:32>.
|
|
*/
|
|
if (mt) {
|
|
tcg_gen_andi_i32(t1, t1, 0xffff0000);
|
|
} else {
|
|
tcg_gen_shli_i32(t1, t1, 16);
|
|
}
|
|
tcg_gen_muls2_i32(t0, t1, t0, t1);
|
|
tcg_temp_free_i32(t0);
|
|
if (add) {
|
|
t0 = load_reg(s, a->ra);
|
|
gen_helper_add_setq(t1, cpu_env, t1, t0);
|
|
tcg_temp_free_i32(t0);
|
|
}
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
#define DO_SMLAWX(NAME, add, mt) \
|
|
static bool trans_##NAME(DisasContext *s, arg_rrrr *a) \
|
|
{ \
|
|
return op_smlawx(s, a, add, mt); \
|
|
}
|
|
|
|
DO_SMLAWX(SMULWB, 0, 0)
|
|
DO_SMLAWX(SMULWT, 0, 1)
|
|
DO_SMLAWX(SMLAWB, 1, 0)
|
|
DO_SMLAWX(SMLAWT, 1, 1)
|
|
|
|
#undef DO_SMLAWX
|
|
|
|
/*
|
|
* MSR (immediate) and hints
|
|
*/
|
|
|
|
static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
|
|
{
|
|
/*
|
|
* When running single-threaded TCG code, use the helper to ensure that
|
|
* the next round-robin scheduled vCPU gets a crack. When running in
|
|
* MTTCG we don't generate jumps to the helper as it won't affect the
|
|
* scheduling of other vCPUs.
|
|
*/
|
|
if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
s->base.is_jmp = DISAS_YIELD;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_WFE(DisasContext *s, arg_WFE *a)
|
|
{
|
|
/*
|
|
* When running single-threaded TCG code, use the helper to ensure that
|
|
* the next round-robin scheduled vCPU gets a crack. In MTTCG mode we
|
|
* just skip this instruction. Currently the SEV/SEVL instructions,
|
|
* which are *one* of many ways to wake the CPU from WFE, are not
|
|
* implemented so we can't sleep like WFI does.
|
|
*/
|
|
if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
s->base.is_jmp = DISAS_WFE;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_WFI(DisasContext *s, arg_WFI *a)
|
|
{
|
|
/* For WFI, halt the vCPU until an IRQ. */
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
s->base.is_jmp = DISAS_WFI;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_NOP(DisasContext *s, arg_NOP *a)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_imm(DisasContext *s, arg_MSR_imm *a)
|
|
{
|
|
uint32_t val = ror32(a->imm, a->rot * 2);
|
|
uint32_t mask = msr_mask(s, a->mask, a->r);
|
|
|
|
if (gen_set_psr_im(s, mask, a->r, val)) {
|
|
unallocated_encoding(s);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Cyclic Redundancy Check
|
|
*/
|
|
|
|
static bool op_crc32(DisasContext *s, arg_rrr *a, bool c, MemOp sz)
|
|
{
|
|
TCGv_i32 t1, t2, t3;
|
|
|
|
if (!dc_isar_feature(aa32_crc32, s)) {
|
|
return false;
|
|
}
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
switch (sz) {
|
|
case MO_8:
|
|
gen_uxtb(t2);
|
|
break;
|
|
case MO_16:
|
|
gen_uxth(t2);
|
|
break;
|
|
case MO_32:
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
t3 = tcg_const_i32(1 << sz);
|
|
if (c) {
|
|
gen_helper_crc32c(t1, t1, t2, t3);
|
|
} else {
|
|
gen_helper_crc32(t1, t1, t2, t3);
|
|
}
|
|
tcg_temp_free_i32(t2);
|
|
tcg_temp_free_i32(t3);
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
#define DO_CRC32(NAME, c, sz) \
|
|
static bool trans_##NAME(DisasContext *s, arg_rrr *a) \
|
|
{ return op_crc32(s, a, c, sz); }
|
|
|
|
DO_CRC32(CRC32B, false, MO_8)
|
|
DO_CRC32(CRC32H, false, MO_16)
|
|
DO_CRC32(CRC32W, false, MO_32)
|
|
DO_CRC32(CRC32CB, true, MO_8)
|
|
DO_CRC32(CRC32CH, true, MO_16)
|
|
DO_CRC32(CRC32CW, true, MO_32)
|
|
|
|
#undef DO_CRC32
|
|
|
|
/*
|
|
* Miscellaneous instructions
|
|
*/
|
|
|
|
static bool trans_MRS_bank(DisasContext *s, arg_MRS_bank *a)
|
|
{
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
gen_mrs_banked(s, a->r, a->sysm, a->rd);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_bank(DisasContext *s, arg_MSR_bank *a)
|
|
{
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
gen_msr_banked(s, a->r, a->sysm, a->rn);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MRS_reg(DisasContext *s, arg_MRS_reg *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
if (a->r) {
|
|
if (IS_USER(s)) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
tmp = load_cpu_field(spsr);
|
|
} else {
|
|
tmp = tcg_temp_new_i32();
|
|
gen_helper_cpsr_read(tmp, cpu_env);
|
|
}
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_reg(DisasContext *s, arg_MSR_reg *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
uint32_t mask = msr_mask(s, a->mask, a->r);
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
tmp = load_reg(s, a->rn);
|
|
if (gen_set_psr(s, mask, a->r, tmp)) {
|
|
unallocated_encoding(s);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MRS_v7m(DisasContext *s, arg_MRS_v7m *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
tmp = tcg_const_i32(a->sysm);
|
|
gen_helper_v7m_mrs(tmp, cpu_env, tmp);
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_v7m(DisasContext *s, arg_MSR_v7m *a)
|
|
{
|
|
TCGv_i32 addr, reg, el;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
addr = tcg_const_i32((a->mask << 10) | a->sysm);
|
|
reg = load_reg(s, a->rn);
|
|
gen_helper_v7m_msr(cpu_env, addr, reg);
|
|
tcg_temp_free_i32(addr);
|
|
tcg_temp_free_i32(reg);
|
|
el = tcg_const_i32(s->current_el);
|
|
gen_helper_rebuild_hflags_m32(cpu_env, el);
|
|
tcg_temp_free_i32(el);
|
|
gen_lookup_tb(s);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BX(DisasContext *s, arg_BX *a)
|
|
{
|
|
if (!ENABLE_ARCH_4T) {
|
|
return false;
|
|
}
|
|
gen_bx_excret(s, load_reg(s, a->rm));
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BXJ(DisasContext *s, arg_BXJ *a)
|
|
{
|
|
if (!ENABLE_ARCH_5J || arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
/* Trivial implementation equivalent to bx. */
|
|
gen_bx(s, load_reg(s, a->rm));
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BLX_r(DisasContext *s, arg_BLX_r *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (!ENABLE_ARCH_5) {
|
|
return false;
|
|
}
|
|
tmp = load_reg(s, a->rm);
|
|
tcg_gen_movi_i32(cpu_R[14], s->base.pc_next | s->thumb);
|
|
gen_bx(s, tmp);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* BXNS/BLXNS: only exist for v8M with the security extensions,
|
|
* and always UNDEF if NonSecure. We don't implement these in
|
|
* the user-only mode either (in theory you can use them from
|
|
* Secure User mode but they are too tied in to system emulation).
|
|
*/
|
|
static bool trans_BXNS(DisasContext *s, arg_BXNS *a)
|
|
{
|
|
if (!s->v8m_secure || IS_USER_ONLY) {
|
|
unallocated_encoding(s);
|
|
} else {
|
|
gen_bxns(s, a->rm);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BLXNS(DisasContext *s, arg_BLXNS *a)
|
|
{
|
|
if (!s->v8m_secure || IS_USER_ONLY) {
|
|
unallocated_encoding(s);
|
|
} else {
|
|
gen_blxns(s, a->rm);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_CLZ(DisasContext *s, arg_CLZ *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (!ENABLE_ARCH_5) {
|
|
return false;
|
|
}
|
|
tmp = load_reg(s, a->rm);
|
|
tcg_gen_clzi_i32(tmp, tmp, 32);
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_ERET(DisasContext *s, arg_ERET *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_V7VE)) {
|
|
return false;
|
|
}
|
|
if (IS_USER(s)) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
if (s->current_el == 2) {
|
|
/* ERET from Hyp uses ELR_Hyp, not LR */
|
|
tmp = load_cpu_field(elr_el[2]);
|
|
} else {
|
|
tmp = load_reg(s, 14);
|
|
}
|
|
gen_exception_return(s, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_HLT(DisasContext *s, arg_HLT *a)
|
|
{
|
|
gen_hlt(s, a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BKPT(DisasContext *s, arg_BKPT *a)
|
|
{
|
|
if (!ENABLE_ARCH_5) {
|
|
return false;
|
|
}
|
|
if (arm_dc_feature(s, ARM_FEATURE_M) &&
|
|
semihosting_enabled() &&
|
|
#ifndef CONFIG_USER_ONLY
|
|
!IS_USER(s) &&
|
|
#endif
|
|
(a->imm == 0xab)) {
|
|
gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST);
|
|
} else {
|
|
gen_exception_bkpt_insn(s, syn_aa32_bkpt(a->imm, false));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_HVC(DisasContext *s, arg_HVC *a)
|
|
{
|
|
if (!ENABLE_ARCH_7 || arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
if (IS_USER(s)) {
|
|
unallocated_encoding(s);
|
|
} else {
|
|
gen_hvc(s, a->imm);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SMC(DisasContext *s, arg_SMC *a)
|
|
{
|
|
if (!ENABLE_ARCH_6K || arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
if (IS_USER(s)) {
|
|
unallocated_encoding(s);
|
|
} else {
|
|
gen_smc(s);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SG(DisasContext *s, arg_SG *a)
|
|
{
|
|
if (!arm_dc_feature(s, ARM_FEATURE_M) ||
|
|
!arm_dc_feature(s, ARM_FEATURE_V8)) {
|
|
return false;
|
|
}
|
|
/*
|
|
* SG (v8M only)
|
|
* The bulk of the behaviour for this instruction is implemented
|
|
* in v7m_handle_execute_nsc(), which deals with the insn when
|
|
* it is executed by a CPU in non-secure state from memory
|
|
* which is Secure & NonSecure-Callable.
|
|
* Here we only need to handle the remaining cases:
|
|
* * in NS memory (including the "security extension not
|
|
* implemented" case) : NOP
|
|
* * in S memory but CPU already secure (clear IT bits)
|
|
* We know that the attribute for the memory this insn is
|
|
* in must match the current CPU state, because otherwise
|
|
* get_phys_addr_pmsav8 would have generated an exception.
|
|
*/
|
|
if (s->v8m_secure) {
|
|
/* Like the IT insn, we don't need to generate any code */
|
|
s->condexec_cond = 0;
|
|
s->condexec_mask = 0;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_TT(DisasContext *s, arg_TT *a)
|
|
{
|
|
TCGv_i32 addr, tmp;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_M) ||
|
|
!arm_dc_feature(s, ARM_FEATURE_V8)) {
|
|
return false;
|
|
}
|
|
if (a->rd == 13 || a->rd == 15 || a->rn == 15) {
|
|
/* We UNDEF for these UNPREDICTABLE cases */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
if (a->A && !s->v8m_secure) {
|
|
/* This case is UNDEFINED. */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
addr = load_reg(s, a->rn);
|
|
tmp = tcg_const_i32((a->A << 1) | a->T);
|
|
gen_helper_v7m_tt(tmp, cpu_env, addr, tmp);
|
|
tcg_temp_free_i32(addr);
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Load/store register index
|
|
*/
|
|
|
|
static ISSInfo make_issinfo(DisasContext *s, int rd, bool p, bool w)
|
|
{
|
|
ISSInfo ret;
|
|
|
|
/* ISS not valid if writeback */
|
|
if (p && !w) {
|
|
ret = rd;
|
|
} else {
|
|
ret = ISSInvalid;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static TCGv_i32 op_addr_rr_pre(DisasContext *s, arg_ldst_rr *a)
|
|
{
|
|
TCGv_i32 addr = load_reg(s, a->rn);
|
|
|
|
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
|
|
gen_helper_v8m_stackcheck(cpu_env, addr);
|
|
}
|
|
|
|
if (a->p) {
|
|
TCGv_i32 ofs = load_reg(s, a->rm);
|
|
gen_arm_shift_im(ofs, a->shtype, a->shimm, 0);
|
|
if (a->u) {
|
|
tcg_gen_add_i32(addr, addr, ofs);
|
|
} else {
|
|
tcg_gen_sub_i32(addr, addr, ofs);
|
|
}
|
|
tcg_temp_free_i32(ofs);
|
|
}
|
|
return addr;
|
|
}
|
|
|
|
static void op_addr_rr_post(DisasContext *s, arg_ldst_rr *a,
|
|
TCGv_i32 addr, int address_offset)
|
|
{
|
|
if (!a->p) {
|
|
TCGv_i32 ofs = load_reg(s, a->rm);
|
|
gen_arm_shift_im(ofs, a->shtype, a->shimm, 0);
|
|
if (a->u) {
|
|
tcg_gen_add_i32(addr, addr, ofs);
|
|
} else {
|
|
tcg_gen_sub_i32(addr, addr, ofs);
|
|
}
|
|
tcg_temp_free_i32(ofs);
|
|
} else if (!a->w) {
|
|
tcg_temp_free_i32(addr);
|
|
return;
|
|
}
|
|
tcg_gen_addi_i32(addr, addr, address_offset);
|
|
store_reg(s, a->rn, addr);
|
|
}
|
|
|
|
static bool op_load_rr(DisasContext *s, arg_ldst_rr *a,
|
|
MemOp mop, int mem_idx)
|
|
{
|
|
ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w);
|
|
TCGv_i32 addr, tmp;
|
|
|
|
addr = op_addr_rr_pre(s, a);
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, tmp, addr, mem_idx, mop | s->be_data);
|
|
disas_set_da_iss(s, mop, issinfo);
|
|
|
|
/*
|
|
* Perform base writeback before the loaded value to
|
|
* ensure correct behavior with overlapping index registers.
|
|
*/
|
|
op_addr_rr_post(s, a, addr, 0);
|
|
store_reg_from_load(s, a->rt, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool op_store_rr(DisasContext *s, arg_ldst_rr *a,
|
|
MemOp mop, int mem_idx)
|
|
{
|
|
ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w) | ISSIsWrite;
|
|
TCGv_i32 addr, tmp;
|
|
|
|
addr = op_addr_rr_pre(s, a);
|
|
|
|
tmp = load_reg(s, a->rt);
|
|
gen_aa32_st_i32(s, tmp, addr, mem_idx, mop | s->be_data);
|
|
disas_set_da_iss(s, mop, issinfo);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
op_addr_rr_post(s, a, addr, 0);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDRD_rr(DisasContext *s, arg_ldst_rr *a)
|
|
{
|
|
int mem_idx = get_mem_index(s);
|
|
TCGv_i32 addr, tmp;
|
|
|
|
if (!ENABLE_ARCH_5TE) {
|
|
return false;
|
|
}
|
|
if (a->rt & 1) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
addr = op_addr_rr_pre(s, a);
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data);
|
|
store_reg(s, a->rt, tmp);
|
|
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data);
|
|
store_reg(s, a->rt + 1, tmp);
|
|
|
|
/* LDRD w/ base writeback is undefined if the registers overlap. */
|
|
op_addr_rr_post(s, a, addr, -4);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STRD_rr(DisasContext *s, arg_ldst_rr *a)
|
|
{
|
|
int mem_idx = get_mem_index(s);
|
|
TCGv_i32 addr, tmp;
|
|
|
|
if (!ENABLE_ARCH_5TE) {
|
|
return false;
|
|
}
|
|
if (a->rt & 1) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
addr = op_addr_rr_pre(s, a);
|
|
|
|
tmp = load_reg(s, a->rt);
|
|
gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
|
|
tmp = load_reg(s, a->rt + 1);
|
|
gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
op_addr_rr_post(s, a, addr, -4);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Load/store immediate index
|
|
*/
|
|
|
|
static TCGv_i32 op_addr_ri_pre(DisasContext *s, arg_ldst_ri *a)
|
|
{
|
|
int ofs = a->imm;
|
|
|
|
if (!a->u) {
|
|
ofs = -ofs;
|
|
}
|
|
|
|
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
|
|
/*
|
|
* Stackcheck. Here we know 'addr' is the current SP;
|
|
* U is set if we're moving SP up, else down. It is
|
|
* UNKNOWN whether the limit check triggers when SP starts
|
|
* below the limit and ends up above it; we chose to do so.
|
|
*/
|
|
if (!a->u) {
|
|
TCGv_i32 newsp = tcg_temp_new_i32();
|
|
tcg_gen_addi_i32(newsp, cpu_R[13], ofs);
|
|
gen_helper_v8m_stackcheck(cpu_env, newsp);
|
|
tcg_temp_free_i32(newsp);
|
|
} else {
|
|
gen_helper_v8m_stackcheck(cpu_env, cpu_R[13]);
|
|
}
|
|
}
|
|
|
|
return add_reg_for_lit(s, a->rn, a->p ? ofs : 0);
|
|
}
|
|
|
|
static void op_addr_ri_post(DisasContext *s, arg_ldst_ri *a,
|
|
TCGv_i32 addr, int address_offset)
|
|
{
|
|
if (!a->p) {
|
|
if (a->u) {
|
|
address_offset += a->imm;
|
|
} else {
|
|
address_offset -= a->imm;
|
|
}
|
|
} else if (!a->w) {
|
|
tcg_temp_free_i32(addr);
|
|
return;
|
|
}
|
|
tcg_gen_addi_i32(addr, addr, address_offset);
|
|
store_reg(s, a->rn, addr);
|
|
}
|
|
|
|
static bool op_load_ri(DisasContext *s, arg_ldst_ri *a,
|
|
MemOp mop, int mem_idx)
|
|
{
|
|
ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w);
|
|
TCGv_i32 addr, tmp;
|
|
|
|
addr = op_addr_ri_pre(s, a);
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, tmp, addr, mem_idx, mop | s->be_data);
|
|
disas_set_da_iss(s, mop, issinfo);
|
|
|
|
/*
|
|
* Perform base writeback before the loaded value to
|
|
* ensure correct behavior with overlapping index registers.
|
|
*/
|
|
op_addr_ri_post(s, a, addr, 0);
|
|
store_reg_from_load(s, a->rt, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool op_store_ri(DisasContext *s, arg_ldst_ri *a,
|
|
MemOp mop, int mem_idx)
|
|
{
|
|
ISSInfo issinfo = make_issinfo(s, a->rt, a->p, a->w) | ISSIsWrite;
|
|
TCGv_i32 addr, tmp;
|
|
|
|
addr = op_addr_ri_pre(s, a);
|
|
|
|
tmp = load_reg(s, a->rt);
|
|
gen_aa32_st_i32(s, tmp, addr, mem_idx, mop | s->be_data);
|
|
disas_set_da_iss(s, mop, issinfo);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
op_addr_ri_post(s, a, addr, 0);
|
|
return true;
|
|
}
|
|
|
|
static bool op_ldrd_ri(DisasContext *s, arg_ldst_ri *a, int rt2)
|
|
{
|
|
int mem_idx = get_mem_index(s);
|
|
TCGv_i32 addr, tmp;
|
|
|
|
addr = op_addr_ri_pre(s, a);
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data);
|
|
store_reg(s, a->rt, tmp);
|
|
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data);
|
|
store_reg(s, rt2, tmp);
|
|
|
|
/* LDRD w/ base writeback is undefined if the registers overlap. */
|
|
op_addr_ri_post(s, a, addr, -4);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDRD_ri_a32(DisasContext *s, arg_ldst_ri *a)
|
|
{
|
|
if (!ENABLE_ARCH_5TE || (a->rt & 1)) {
|
|
return false;
|
|
}
|
|
return op_ldrd_ri(s, a, a->rt + 1);
|
|
}
|
|
|
|
static bool trans_LDRD_ri_t32(DisasContext *s, arg_ldst_ri2 *a)
|
|
{
|
|
arg_ldst_ri b = {
|
|
.u = a->u, .w = a->w, .p = a->p,
|
|
.rn = a->rn, .rt = a->rt, .imm = a->imm
|
|
};
|
|
return op_ldrd_ri(s, &b, a->rt2);
|
|
}
|
|
|
|
static bool op_strd_ri(DisasContext *s, arg_ldst_ri *a, int rt2)
|
|
{
|
|
int mem_idx = get_mem_index(s);
|
|
TCGv_i32 addr, tmp;
|
|
|
|
addr = op_addr_ri_pre(s, a);
|
|
|
|
tmp = load_reg(s, a->rt);
|
|
gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
|
|
tmp = load_reg(s, rt2);
|
|
gen_aa32_st_i32(s, tmp, addr, mem_idx, MO_UL | s->be_data);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
op_addr_ri_post(s, a, addr, -4);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STRD_ri_a32(DisasContext *s, arg_ldst_ri *a)
|
|
{
|
|
if (!ENABLE_ARCH_5TE || (a->rt & 1)) {
|
|
return false;
|
|
}
|
|
return op_strd_ri(s, a, a->rt + 1);
|
|
}
|
|
|
|
static bool trans_STRD_ri_t32(DisasContext *s, arg_ldst_ri2 *a)
|
|
{
|
|
arg_ldst_ri b = {
|
|
.u = a->u, .w = a->w, .p = a->p,
|
|
.rn = a->rn, .rt = a->rt, .imm = a->imm
|
|
};
|
|
return op_strd_ri(s, &b, a->rt2);
|
|
}
|
|
|
|
#define DO_LDST(NAME, WHICH, MEMOP) \
|
|
static bool trans_##NAME##_ri(DisasContext *s, arg_ldst_ri *a) \
|
|
{ \
|
|
return op_##WHICH##_ri(s, a, MEMOP, get_mem_index(s)); \
|
|
} \
|
|
static bool trans_##NAME##T_ri(DisasContext *s, arg_ldst_ri *a) \
|
|
{ \
|
|
return op_##WHICH##_ri(s, a, MEMOP, get_a32_user_mem_index(s)); \
|
|
} \
|
|
static bool trans_##NAME##_rr(DisasContext *s, arg_ldst_rr *a) \
|
|
{ \
|
|
return op_##WHICH##_rr(s, a, MEMOP, get_mem_index(s)); \
|
|
} \
|
|
static bool trans_##NAME##T_rr(DisasContext *s, arg_ldst_rr *a) \
|
|
{ \
|
|
return op_##WHICH##_rr(s, a, MEMOP, get_a32_user_mem_index(s)); \
|
|
}
|
|
|
|
DO_LDST(LDR, load, MO_UL)
|
|
DO_LDST(LDRB, load, MO_UB)
|
|
DO_LDST(LDRH, load, MO_UW)
|
|
DO_LDST(LDRSB, load, MO_SB)
|
|
DO_LDST(LDRSH, load, MO_SW)
|
|
|
|
DO_LDST(STR, store, MO_UL)
|
|
DO_LDST(STRB, store, MO_UB)
|
|
DO_LDST(STRH, store, MO_UW)
|
|
|
|
#undef DO_LDST
|
|
|
|
/*
|
|
* Synchronization primitives
|
|
*/
|
|
|
|
static bool op_swp(DisasContext *s, arg_SWP *a, MemOp opc)
|
|
{
|
|
TCGv_i32 addr, tmp;
|
|
TCGv taddr;
|
|
|
|
opc |= s->be_data;
|
|
addr = load_reg(s, a->rn);
|
|
taddr = gen_aa32_addr(s, addr, opc);
|
|
tcg_temp_free_i32(addr);
|
|
|
|
tmp = load_reg(s, a->rt2);
|
|
tcg_gen_atomic_xchg_i32(tmp, taddr, tmp, get_mem_index(s), opc);
|
|
tcg_temp_free(taddr);
|
|
|
|
store_reg(s, a->rt, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SWP(DisasContext *s, arg_SWP *a)
|
|
{
|
|
return op_swp(s, a, MO_UL | MO_ALIGN);
|
|
}
|
|
|
|
static bool trans_SWPB(DisasContext *s, arg_SWP *a)
|
|
{
|
|
return op_swp(s, a, MO_UB);
|
|
}
|
|
|
|
/*
|
|
* Load/Store Exclusive and Load-Acquire/Store-Release
|
|
*/
|
|
|
|
static bool op_strex(DisasContext *s, arg_STREX *a, MemOp mop, bool rel)
|
|
{
|
|
TCGv_i32 addr;
|
|
/* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */
|
|
bool v8a = ENABLE_ARCH_8 && !arm_dc_feature(s, ARM_FEATURE_M);
|
|
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rd == 15 || a->rn == 15 || a->rt == 15
|
|
|| a->rd == a->rn || a->rd == a->rt
|
|
|| (!v8a && s->thumb && (a->rd == 13 || a->rt == 13))
|
|
|| (mop == MO_64
|
|
&& (a->rt2 == 15
|
|
|| a->rd == a->rt2
|
|
|| (!v8a && s->thumb && a->rt2 == 13)))) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
if (rel) {
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
|
|
}
|
|
|
|
addr = tcg_temp_local_new_i32();
|
|
load_reg_var(s, addr, a->rn);
|
|
tcg_gen_addi_i32(addr, addr, a->imm);
|
|
|
|
gen_store_exclusive(s, a->rd, a->rt, a->rt2, addr, mop);
|
|
tcg_temp_free_i32(addr);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STREX(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
return op_strex(s, a, MO_32, false);
|
|
}
|
|
|
|
static bool trans_STREXD_a32(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_6K) {
|
|
return false;
|
|
}
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rt & 1) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
a->rt2 = a->rt + 1;
|
|
return op_strex(s, a, MO_64, false);
|
|
}
|
|
|
|
static bool trans_STREXD_t32(DisasContext *s, arg_STREX *a)
|
|
{
|
|
return op_strex(s, a, MO_64, false);
|
|
}
|
|
|
|
static bool trans_STREXB(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) {
|
|
return false;
|
|
}
|
|
return op_strex(s, a, MO_8, false);
|
|
}
|
|
|
|
static bool trans_STREXH(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) {
|
|
return false;
|
|
}
|
|
return op_strex(s, a, MO_16, false);
|
|
}
|
|
|
|
static bool trans_STLEX(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_strex(s, a, MO_32, true);
|
|
}
|
|
|
|
static bool trans_STLEXD_a32(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rt & 1) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
a->rt2 = a->rt + 1;
|
|
return op_strex(s, a, MO_64, true);
|
|
}
|
|
|
|
static bool trans_STLEXD_t32(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_strex(s, a, MO_64, true);
|
|
}
|
|
|
|
static bool trans_STLEXB(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_strex(s, a, MO_8, true);
|
|
}
|
|
|
|
static bool trans_STLEXH(DisasContext *s, arg_STREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_strex(s, a, MO_16, true);
|
|
}
|
|
|
|
static bool op_stl(DisasContext *s, arg_STL *a, MemOp mop)
|
|
{
|
|
TCGv_i32 addr, tmp;
|
|
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rn == 15 || a->rt == 15) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
addr = load_reg(s, a->rn);
|
|
tmp = load_reg(s, a->rt);
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
|
|
gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), mop | s->be_data);
|
|
disas_set_da_iss(s, mop, a->rt | ISSIsAcqRel | ISSIsWrite);
|
|
|
|
tcg_temp_free_i32(tmp);
|
|
tcg_temp_free_i32(addr);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STL(DisasContext *s, arg_STL *a)
|
|
{
|
|
return op_stl(s, a, MO_UL);
|
|
}
|
|
|
|
static bool trans_STLB(DisasContext *s, arg_STL *a)
|
|
{
|
|
return op_stl(s, a, MO_UB);
|
|
}
|
|
|
|
static bool trans_STLH(DisasContext *s, arg_STL *a)
|
|
{
|
|
return op_stl(s, a, MO_UW);
|
|
}
|
|
|
|
static bool op_ldrex(DisasContext *s, arg_LDREX *a, MemOp mop, bool acq)
|
|
{
|
|
TCGv_i32 addr;
|
|
/* Some cases stopped being UNPREDICTABLE in v8A (but not v8M) */
|
|
bool v8a = ENABLE_ARCH_8 && !arm_dc_feature(s, ARM_FEATURE_M);
|
|
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rn == 15 || a->rt == 15
|
|
|| (!v8a && s->thumb && a->rt == 13)
|
|
|| (mop == MO_64
|
|
&& (a->rt2 == 15 || a->rt == a->rt2
|
|
|| (!v8a && s->thumb && a->rt2 == 13)))) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
addr = tcg_temp_local_new_i32();
|
|
load_reg_var(s, addr, a->rn);
|
|
tcg_gen_addi_i32(addr, addr, a->imm);
|
|
|
|
gen_load_exclusive(s, a->rt, a->rt2, addr, mop);
|
|
tcg_temp_free_i32(addr);
|
|
|
|
if (acq) {
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDREX(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
return op_ldrex(s, a, MO_32, false);
|
|
}
|
|
|
|
static bool trans_LDREXD_a32(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_6K) {
|
|
return false;
|
|
}
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rt & 1) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
a->rt2 = a->rt + 1;
|
|
return op_ldrex(s, a, MO_64, false);
|
|
}
|
|
|
|
static bool trans_LDREXD_t32(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
return op_ldrex(s, a, MO_64, false);
|
|
}
|
|
|
|
static bool trans_LDREXB(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) {
|
|
return false;
|
|
}
|
|
return op_ldrex(s, a, MO_8, false);
|
|
}
|
|
|
|
static bool trans_LDREXH(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (s->thumb ? !ENABLE_ARCH_7 : !ENABLE_ARCH_6K) {
|
|
return false;
|
|
}
|
|
return op_ldrex(s, a, MO_16, false);
|
|
}
|
|
|
|
static bool trans_LDAEX(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_ldrex(s, a, MO_32, true);
|
|
}
|
|
|
|
static bool trans_LDAEXD_a32(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rt & 1) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
a->rt2 = a->rt + 1;
|
|
return op_ldrex(s, a, MO_64, true);
|
|
}
|
|
|
|
static bool trans_LDAEXD_t32(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_ldrex(s, a, MO_64, true);
|
|
}
|
|
|
|
static bool trans_LDAEXB(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_ldrex(s, a, MO_8, true);
|
|
}
|
|
|
|
static bool trans_LDAEXH(DisasContext *s, arg_LDREX *a)
|
|
{
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
return op_ldrex(s, a, MO_16, true);
|
|
}
|
|
|
|
static bool op_lda(DisasContext *s, arg_LDA *a, MemOp mop)
|
|
{
|
|
TCGv_i32 addr, tmp;
|
|
|
|
if (!ENABLE_ARCH_8) {
|
|
return false;
|
|
}
|
|
/* We UNDEF for these UNPREDICTABLE cases. */
|
|
if (a->rn == 15 || a->rt == 15) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
addr = load_reg(s, a->rn);
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), mop | s->be_data);
|
|
disas_set_da_iss(s, mop, a->rt | ISSIsAcqRel);
|
|
tcg_temp_free_i32(addr);
|
|
|
|
store_reg(s, a->rt, tmp);
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDA(DisasContext *s, arg_LDA *a)
|
|
{
|
|
return op_lda(s, a, MO_UL);
|
|
}
|
|
|
|
static bool trans_LDAB(DisasContext *s, arg_LDA *a)
|
|
{
|
|
return op_lda(s, a, MO_UB);
|
|
}
|
|
|
|
static bool trans_LDAH(DisasContext *s, arg_LDA *a)
|
|
{
|
|
return op_lda(s, a, MO_UW);
|
|
}
|
|
|
|
/*
|
|
* Media instructions
|
|
*/
|
|
|
|
static bool trans_USADA8(DisasContext *s, arg_USADA8 *a)
|
|
{
|
|
TCGv_i32 t1, t2;
|
|
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
gen_helper_usad8(t1, t1, t2);
|
|
tcg_temp_free_i32(t2);
|
|
if (a->ra != 15) {
|
|
t2 = load_reg(s, a->ra);
|
|
tcg_gen_add_i32(t1, t1, t2);
|
|
tcg_temp_free_i32(t2);
|
|
}
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool op_bfx(DisasContext *s, arg_UBFX *a, bool u)
|
|
{
|
|
TCGv_i32 tmp;
|
|
int width = a->widthm1 + 1;
|
|
int shift = a->lsb;
|
|
|
|
if (!ENABLE_ARCH_6T2) {
|
|
return false;
|
|
}
|
|
if (shift + width > 32) {
|
|
/* UNPREDICTABLE; we choose to UNDEF */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
tmp = load_reg(s, a->rn);
|
|
if (u) {
|
|
tcg_gen_extract_i32(tmp, tmp, shift, width);
|
|
} else {
|
|
tcg_gen_sextract_i32(tmp, tmp, shift, width);
|
|
}
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SBFX(DisasContext *s, arg_SBFX *a)
|
|
{
|
|
return op_bfx(s, a, false);
|
|
}
|
|
|
|
static bool trans_UBFX(DisasContext *s, arg_UBFX *a)
|
|
{
|
|
return op_bfx(s, a, true);
|
|
}
|
|
|
|
static bool trans_BFCI(DisasContext *s, arg_BFCI *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
int msb = a->msb, lsb = a->lsb;
|
|
int width;
|
|
|
|
if (!ENABLE_ARCH_6T2) {
|
|
return false;
|
|
}
|
|
if (msb < lsb) {
|
|
/* UNPREDICTABLE; we choose to UNDEF */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
width = msb + 1 - lsb;
|
|
if (a->rn == 15) {
|
|
/* BFC */
|
|
tmp = tcg_const_i32(0);
|
|
} else {
|
|
/* BFI */
|
|
tmp = load_reg(s, a->rn);
|
|
}
|
|
if (width != 32) {
|
|
TCGv_i32 tmp2 = load_reg(s, a->rd);
|
|
tcg_gen_deposit_i32(tmp, tmp2, tmp, lsb, width);
|
|
tcg_temp_free_i32(tmp2);
|
|
}
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_UDF(DisasContext *s, arg_UDF *a)
|
|
{
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Parallel addition and subtraction
|
|
*/
|
|
|
|
static bool op_par_addsub(DisasContext *s, arg_rrr *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32, TCGv_i32))
|
|
{
|
|
TCGv_i32 t0, t1;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t0 = load_reg(s, a->rn);
|
|
t1 = load_reg(s, a->rm);
|
|
|
|
gen(t0, t0, t1);
|
|
|
|
tcg_temp_free_i32(t1);
|
|
store_reg(s, a->rd, t0);
|
|
return true;
|
|
}
|
|
|
|
static bool op_par_addsub_ge(DisasContext *s, arg_rrr *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32,
|
|
TCGv_i32, TCGv_ptr))
|
|
{
|
|
TCGv_i32 t0, t1;
|
|
TCGv_ptr ge;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t0 = load_reg(s, a->rn);
|
|
t1 = load_reg(s, a->rm);
|
|
|
|
ge = tcg_temp_new_ptr();
|
|
tcg_gen_addi_ptr(ge, cpu_env, offsetof(CPUARMState, GE));
|
|
gen(t0, t0, t1, ge);
|
|
|
|
tcg_temp_free_ptr(ge);
|
|
tcg_temp_free_i32(t1);
|
|
store_reg(s, a->rd, t0);
|
|
return true;
|
|
}
|
|
|
|
#define DO_PAR_ADDSUB(NAME, helper) \
|
|
static bool trans_##NAME(DisasContext *s, arg_rrr *a) \
|
|
{ \
|
|
return op_par_addsub(s, a, helper); \
|
|
}
|
|
|
|
#define DO_PAR_ADDSUB_GE(NAME, helper) \
|
|
static bool trans_##NAME(DisasContext *s, arg_rrr *a) \
|
|
{ \
|
|
return op_par_addsub_ge(s, a, helper); \
|
|
}
|
|
|
|
DO_PAR_ADDSUB_GE(SADD16, gen_helper_sadd16)
|
|
DO_PAR_ADDSUB_GE(SASX, gen_helper_saddsubx)
|
|
DO_PAR_ADDSUB_GE(SSAX, gen_helper_ssubaddx)
|
|
DO_PAR_ADDSUB_GE(SSUB16, gen_helper_ssub16)
|
|
DO_PAR_ADDSUB_GE(SADD8, gen_helper_sadd8)
|
|
DO_PAR_ADDSUB_GE(SSUB8, gen_helper_ssub8)
|
|
|
|
DO_PAR_ADDSUB_GE(UADD16, gen_helper_uadd16)
|
|
DO_PAR_ADDSUB_GE(UASX, gen_helper_uaddsubx)
|
|
DO_PAR_ADDSUB_GE(USAX, gen_helper_usubaddx)
|
|
DO_PAR_ADDSUB_GE(USUB16, gen_helper_usub16)
|
|
DO_PAR_ADDSUB_GE(UADD8, gen_helper_uadd8)
|
|
DO_PAR_ADDSUB_GE(USUB8, gen_helper_usub8)
|
|
|
|
DO_PAR_ADDSUB(QADD16, gen_helper_qadd16)
|
|
DO_PAR_ADDSUB(QASX, gen_helper_qaddsubx)
|
|
DO_PAR_ADDSUB(QSAX, gen_helper_qsubaddx)
|
|
DO_PAR_ADDSUB(QSUB16, gen_helper_qsub16)
|
|
DO_PAR_ADDSUB(QADD8, gen_helper_qadd8)
|
|
DO_PAR_ADDSUB(QSUB8, gen_helper_qsub8)
|
|
|
|
DO_PAR_ADDSUB(UQADD16, gen_helper_uqadd16)
|
|
DO_PAR_ADDSUB(UQASX, gen_helper_uqaddsubx)
|
|
DO_PAR_ADDSUB(UQSAX, gen_helper_uqsubaddx)
|
|
DO_PAR_ADDSUB(UQSUB16, gen_helper_uqsub16)
|
|
DO_PAR_ADDSUB(UQADD8, gen_helper_uqadd8)
|
|
DO_PAR_ADDSUB(UQSUB8, gen_helper_uqsub8)
|
|
|
|
DO_PAR_ADDSUB(SHADD16, gen_helper_shadd16)
|
|
DO_PAR_ADDSUB(SHASX, gen_helper_shaddsubx)
|
|
DO_PAR_ADDSUB(SHSAX, gen_helper_shsubaddx)
|
|
DO_PAR_ADDSUB(SHSUB16, gen_helper_shsub16)
|
|
DO_PAR_ADDSUB(SHADD8, gen_helper_shadd8)
|
|
DO_PAR_ADDSUB(SHSUB8, gen_helper_shsub8)
|
|
|
|
DO_PAR_ADDSUB(UHADD16, gen_helper_uhadd16)
|
|
DO_PAR_ADDSUB(UHASX, gen_helper_uhaddsubx)
|
|
DO_PAR_ADDSUB(UHSAX, gen_helper_uhsubaddx)
|
|
DO_PAR_ADDSUB(UHSUB16, gen_helper_uhsub16)
|
|
DO_PAR_ADDSUB(UHADD8, gen_helper_uhadd8)
|
|
DO_PAR_ADDSUB(UHSUB8, gen_helper_uhsub8)
|
|
|
|
#undef DO_PAR_ADDSUB
|
|
#undef DO_PAR_ADDSUB_GE
|
|
|
|
/*
|
|
* Packing, unpacking, saturation, and reversal
|
|
*/
|
|
|
|
static bool trans_PKH(DisasContext *s, arg_PKH *a)
|
|
{
|
|
TCGv_i32 tn, tm;
|
|
int shift = a->imm;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
tn = load_reg(s, a->rn);
|
|
tm = load_reg(s, a->rm);
|
|
if (a->tb) {
|
|
/* PKHTB */
|
|
if (shift == 0) {
|
|
shift = 31;
|
|
}
|
|
tcg_gen_sari_i32(tm, tm, shift);
|
|
tcg_gen_deposit_i32(tn, tn, tm, 0, 16);
|
|
} else {
|
|
/* PKHBT */
|
|
tcg_gen_shli_i32(tm, tm, shift);
|
|
tcg_gen_deposit_i32(tn, tm, tn, 0, 16);
|
|
}
|
|
tcg_temp_free_i32(tm);
|
|
store_reg(s, a->rd, tn);
|
|
return true;
|
|
}
|
|
|
|
static bool op_sat(DisasContext *s, arg_sat *a,
|
|
void (*gen)(TCGv_i32, TCGv_env, TCGv_i32, TCGv_i32))
|
|
{
|
|
TCGv_i32 tmp, satimm;
|
|
int shift = a->imm;
|
|
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
tmp = load_reg(s, a->rn);
|
|
if (a->sh) {
|
|
tcg_gen_sari_i32(tmp, tmp, shift ? shift : 31);
|
|
} else {
|
|
tcg_gen_shli_i32(tmp, tmp, shift);
|
|
}
|
|
|
|
satimm = tcg_const_i32(a->satimm);
|
|
gen(tmp, cpu_env, tmp, satimm);
|
|
tcg_temp_free_i32(satimm);
|
|
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SSAT(DisasContext *s, arg_sat *a)
|
|
{
|
|
return op_sat(s, a, gen_helper_ssat);
|
|
}
|
|
|
|
static bool trans_USAT(DisasContext *s, arg_sat *a)
|
|
{
|
|
return op_sat(s, a, gen_helper_usat);
|
|
}
|
|
|
|
static bool trans_SSAT16(DisasContext *s, arg_sat *a)
|
|
{
|
|
if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
|
|
return false;
|
|
}
|
|
return op_sat(s, a, gen_helper_ssat16);
|
|
}
|
|
|
|
static bool trans_USAT16(DisasContext *s, arg_sat *a)
|
|
{
|
|
if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
|
|
return false;
|
|
}
|
|
return op_sat(s, a, gen_helper_usat16);
|
|
}
|
|
|
|
static bool op_xta(DisasContext *s, arg_rrr_rot *a,
|
|
void (*gen_extract)(TCGv_i32, TCGv_i32),
|
|
void (*gen_add)(TCGv_i32, TCGv_i32, TCGv_i32))
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
tmp = load_reg(s, a->rm);
|
|
/*
|
|
* TODO: In many cases we could do a shift instead of a rotate.
|
|
* Combined with a simple extend, that becomes an extract.
|
|
*/
|
|
tcg_gen_rotri_i32(tmp, tmp, a->rot * 8);
|
|
gen_extract(tmp, tmp);
|
|
|
|
if (a->rn != 15) {
|
|
TCGv_i32 tmp2 = load_reg(s, a->rn);
|
|
gen_add(tmp, tmp, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
}
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SXTAB(DisasContext *s, arg_rrr_rot *a)
|
|
{
|
|
return op_xta(s, a, tcg_gen_ext8s_i32, tcg_gen_add_i32);
|
|
}
|
|
|
|
static bool trans_SXTAH(DisasContext *s, arg_rrr_rot *a)
|
|
{
|
|
return op_xta(s, a, tcg_gen_ext16s_i32, tcg_gen_add_i32);
|
|
}
|
|
|
|
static bool trans_SXTAB16(DisasContext *s, arg_rrr_rot *a)
|
|
{
|
|
if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
|
|
return false;
|
|
}
|
|
return op_xta(s, a, gen_helper_sxtb16, gen_add16);
|
|
}
|
|
|
|
static bool trans_UXTAB(DisasContext *s, arg_rrr_rot *a)
|
|
{
|
|
return op_xta(s, a, tcg_gen_ext8u_i32, tcg_gen_add_i32);
|
|
}
|
|
|
|
static bool trans_UXTAH(DisasContext *s, arg_rrr_rot *a)
|
|
{
|
|
return op_xta(s, a, tcg_gen_ext16u_i32, tcg_gen_add_i32);
|
|
}
|
|
|
|
static bool trans_UXTAB16(DisasContext *s, arg_rrr_rot *a)
|
|
{
|
|
if (s->thumb && !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)) {
|
|
return false;
|
|
}
|
|
return op_xta(s, a, gen_helper_uxtb16, gen_add16);
|
|
}
|
|
|
|
static bool trans_SEL(DisasContext *s, arg_rrr *a)
|
|
{
|
|
TCGv_i32 t1, t2, t3;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
t3 = tcg_temp_new_i32();
|
|
tcg_gen_ld_i32(t3, cpu_env, offsetof(CPUARMState, GE));
|
|
gen_helper_sel_flags(t1, t3, t1, t2);
|
|
tcg_temp_free_i32(t3);
|
|
tcg_temp_free_i32(t2);
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool op_rr(DisasContext *s, arg_rr *a,
|
|
void (*gen)(TCGv_i32, TCGv_i32))
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
tmp = load_reg(s, a->rm);
|
|
gen(tmp, tmp);
|
|
store_reg(s, a->rd, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_REV(DisasContext *s, arg_rr *a)
|
|
{
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
return op_rr(s, a, tcg_gen_bswap32_i32);
|
|
}
|
|
|
|
static bool trans_REV16(DisasContext *s, arg_rr *a)
|
|
{
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
return op_rr(s, a, gen_rev16);
|
|
}
|
|
|
|
static bool trans_REVSH(DisasContext *s, arg_rr *a)
|
|
{
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
return op_rr(s, a, gen_revsh);
|
|
}
|
|
|
|
static bool trans_RBIT(DisasContext *s, arg_rr *a)
|
|
{
|
|
if (!ENABLE_ARCH_6T2) {
|
|
return false;
|
|
}
|
|
return op_rr(s, a, gen_helper_rbit);
|
|
}
|
|
|
|
/*
|
|
* Signed multiply, signed and unsigned divide
|
|
*/
|
|
|
|
static bool op_smlad(DisasContext *s, arg_rrrr *a, bool m_swap, bool sub)
|
|
{
|
|
TCGv_i32 t1, t2;
|
|
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
if (m_swap) {
|
|
gen_swap_half(t2);
|
|
}
|
|
gen_smul_dual(t1, t2);
|
|
|
|
if (sub) {
|
|
/* This subtraction cannot overflow. */
|
|
tcg_gen_sub_i32(t1, t1, t2);
|
|
} else {
|
|
/*
|
|
* This addition cannot overflow 32 bits; however it may
|
|
* overflow considered as a signed operation, in which case
|
|
* we must set the Q flag.
|
|
*/
|
|
gen_helper_add_setq(t1, cpu_env, t1, t2);
|
|
}
|
|
tcg_temp_free_i32(t2);
|
|
|
|
if (a->ra != 15) {
|
|
t2 = load_reg(s, a->ra);
|
|
gen_helper_add_setq(t1, cpu_env, t1, t2);
|
|
tcg_temp_free_i32(t2);
|
|
}
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SMLAD(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlad(s, a, false, false);
|
|
}
|
|
|
|
static bool trans_SMLADX(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlad(s, a, true, false);
|
|
}
|
|
|
|
static bool trans_SMLSD(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlad(s, a, false, true);
|
|
}
|
|
|
|
static bool trans_SMLSDX(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlad(s, a, true, true);
|
|
}
|
|
|
|
static bool op_smlald(DisasContext *s, arg_rrrr *a, bool m_swap, bool sub)
|
|
{
|
|
TCGv_i32 t1, t2;
|
|
TCGv_i64 l1, l2;
|
|
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
if (m_swap) {
|
|
gen_swap_half(t2);
|
|
}
|
|
gen_smul_dual(t1, t2);
|
|
|
|
l1 = tcg_temp_new_i64();
|
|
l2 = tcg_temp_new_i64();
|
|
tcg_gen_ext_i32_i64(l1, t1);
|
|
tcg_gen_ext_i32_i64(l2, t2);
|
|
tcg_temp_free_i32(t1);
|
|
tcg_temp_free_i32(t2);
|
|
|
|
if (sub) {
|
|
tcg_gen_sub_i64(l1, l1, l2);
|
|
} else {
|
|
tcg_gen_add_i64(l1, l1, l2);
|
|
}
|
|
tcg_temp_free_i64(l2);
|
|
|
|
gen_addq(s, l1, a->ra, a->rd);
|
|
gen_storeq_reg(s, a->ra, a->rd, l1);
|
|
tcg_temp_free_i64(l1);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SMLALD(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlald(s, a, false, false);
|
|
}
|
|
|
|
static bool trans_SMLALDX(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlald(s, a, true, false);
|
|
}
|
|
|
|
static bool trans_SMLSLD(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlald(s, a, false, true);
|
|
}
|
|
|
|
static bool trans_SMLSLDX(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smlald(s, a, true, true);
|
|
}
|
|
|
|
static bool op_smmla(DisasContext *s, arg_rrrr *a, bool round, bool sub)
|
|
{
|
|
TCGv_i32 t1, t2;
|
|
|
|
if (s->thumb
|
|
? !arm_dc_feature(s, ARM_FEATURE_THUMB_DSP)
|
|
: !ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
tcg_gen_muls2_i32(t2, t1, t1, t2);
|
|
|
|
if (a->ra != 15) {
|
|
TCGv_i32 t3 = load_reg(s, a->ra);
|
|
if (sub) {
|
|
/*
|
|
* For SMMLS, we need a 64-bit subtract. Borrow caused by
|
|
* a non-zero multiplicand lowpart, and the correct result
|
|
* lowpart for rounding.
|
|
*/
|
|
TCGv_i32 zero = tcg_const_i32(0);
|
|
tcg_gen_sub2_i32(t2, t1, zero, t3, t2, t1);
|
|
tcg_temp_free_i32(zero);
|
|
} else {
|
|
tcg_gen_add_i32(t1, t1, t3);
|
|
}
|
|
tcg_temp_free_i32(t3);
|
|
}
|
|
if (round) {
|
|
/*
|
|
* Adding 0x80000000 to the 64-bit quantity means that we have
|
|
* carry in to the high word when the low word has the msb set.
|
|
*/
|
|
tcg_gen_shri_i32(t2, t2, 31);
|
|
tcg_gen_add_i32(t1, t1, t2);
|
|
}
|
|
tcg_temp_free_i32(t2);
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SMMLA(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smmla(s, a, false, false);
|
|
}
|
|
|
|
static bool trans_SMMLAR(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smmla(s, a, true, false);
|
|
}
|
|
|
|
static bool trans_SMMLS(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smmla(s, a, false, true);
|
|
}
|
|
|
|
static bool trans_SMMLSR(DisasContext *s, arg_rrrr *a)
|
|
{
|
|
return op_smmla(s, a, true, true);
|
|
}
|
|
|
|
static bool op_div(DisasContext *s, arg_rrr *a, bool u)
|
|
{
|
|
TCGv_i32 t1, t2;
|
|
|
|
if (s->thumb
|
|
? !dc_isar_feature(thumb_div, s)
|
|
: !dc_isar_feature(arm_div, s)) {
|
|
return false;
|
|
}
|
|
|
|
t1 = load_reg(s, a->rn);
|
|
t2 = load_reg(s, a->rm);
|
|
if (u) {
|
|
gen_helper_udiv(t1, t1, t2);
|
|
} else {
|
|
gen_helper_sdiv(t1, t1, t2);
|
|
}
|
|
tcg_temp_free_i32(t2);
|
|
store_reg(s, a->rd, t1);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SDIV(DisasContext *s, arg_rrr *a)
|
|
{
|
|
return op_div(s, a, false);
|
|
}
|
|
|
|
static bool trans_UDIV(DisasContext *s, arg_rrr *a)
|
|
{
|
|
return op_div(s, a, true);
|
|
}
|
|
|
|
/*
|
|
* Block data transfer
|
|
*/
|
|
|
|
static TCGv_i32 op_addr_block_pre(DisasContext *s, arg_ldst_block *a, int n)
|
|
{
|
|
TCGv_i32 addr = load_reg(s, a->rn);
|
|
|
|
if (a->b) {
|
|
if (a->i) {
|
|
/* pre increment */
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
} else {
|
|
/* pre decrement */
|
|
tcg_gen_addi_i32(addr, addr, -(n * 4));
|
|
}
|
|
} else if (!a->i && n != 1) {
|
|
/* post decrement */
|
|
tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
|
|
}
|
|
|
|
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
|
|
/*
|
|
* If the writeback is incrementing SP rather than
|
|
* decrementing it, and the initial SP is below the
|
|
* stack limit but the final written-back SP would
|
|
* be above, then then we must not perform any memory
|
|
* accesses, but it is IMPDEF whether we generate
|
|
* an exception. We choose to do so in this case.
|
|
* At this point 'addr' is the lowest address, so
|
|
* either the original SP (if incrementing) or our
|
|
* final SP (if decrementing), so that's what we check.
|
|
*/
|
|
gen_helper_v8m_stackcheck(cpu_env, addr);
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
static void op_addr_block_post(DisasContext *s, arg_ldst_block *a,
|
|
TCGv_i32 addr, int n)
|
|
{
|
|
if (a->w) {
|
|
/* write back */
|
|
if (!a->b) {
|
|
if (a->i) {
|
|
/* post increment */
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
} else {
|
|
/* post decrement */
|
|
tcg_gen_addi_i32(addr, addr, -(n * 4));
|
|
}
|
|
} else if (!a->i && n != 1) {
|
|
/* pre decrement */
|
|
tcg_gen_addi_i32(addr, addr, -((n - 1) * 4));
|
|
}
|
|
store_reg(s, a->rn, addr);
|
|
} else {
|
|
tcg_temp_free_i32(addr);
|
|
}
|
|
}
|
|
|
|
static bool op_stm(DisasContext *s, arg_ldst_block *a, int min_n)
|
|
{
|
|
int i, j, n, list, mem_idx;
|
|
bool user = a->u;
|
|
TCGv_i32 addr, tmp, tmp2;
|
|
|
|
if (user) {
|
|
/* STM (user) */
|
|
if (IS_USER(s)) {
|
|
/* Only usable in supervisor mode. */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
list = a->list;
|
|
n = ctpop16(list);
|
|
if (n < min_n || a->rn == 15) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
addr = op_addr_block_pre(s, a, n);
|
|
mem_idx = get_mem_index(s);
|
|
|
|
for (i = j = 0; i < 16; i++) {
|
|
if (!(list & (1 << i))) {
|
|
continue;
|
|
}
|
|
|
|
if (user && i != 15) {
|
|
tmp = tcg_temp_new_i32();
|
|
tmp2 = tcg_const_i32(i);
|
|
gen_helper_get_user_reg(tmp, cpu_env, tmp2);
|
|
tcg_temp_free_i32(tmp2);
|
|
} else {
|
|
tmp = load_reg(s, i);
|
|
}
|
|
gen_aa32_st32(s, tmp, addr, mem_idx);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
/* No need to add after the last transfer. */
|
|
if (++j != n) {
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
}
|
|
}
|
|
|
|
op_addr_block_post(s, a, addr, n);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STM(DisasContext *s, arg_ldst_block *a)
|
|
{
|
|
/* BitCount(list) < 1 is UNPREDICTABLE */
|
|
return op_stm(s, a, 1);
|
|
}
|
|
|
|
static bool trans_STM_t32(DisasContext *s, arg_ldst_block *a)
|
|
{
|
|
/* Writeback register in register list is UNPREDICTABLE for T32. */
|
|
if (a->w && (a->list & (1 << a->rn))) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
/* BitCount(list) < 2 is UNPREDICTABLE */
|
|
return op_stm(s, a, 2);
|
|
}
|
|
|
|
static bool do_ldm(DisasContext *s, arg_ldst_block *a, int min_n)
|
|
{
|
|
int i, j, n, list, mem_idx;
|
|
bool loaded_base;
|
|
bool user = a->u;
|
|
bool exc_return = false;
|
|
TCGv_i32 addr, tmp, tmp2, loaded_var;
|
|
|
|
if (user) {
|
|
/* LDM (user), LDM (exception return) */
|
|
if (IS_USER(s)) {
|
|
/* Only usable in supervisor mode. */
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
if (extract32(a->list, 15, 1)) {
|
|
exc_return = true;
|
|
user = false;
|
|
} else {
|
|
/* LDM (user) does not allow writeback. */
|
|
if (a->w) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
list = a->list;
|
|
n = ctpop16(list);
|
|
if (n < min_n || a->rn == 15) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
addr = op_addr_block_pre(s, a, n);
|
|
mem_idx = get_mem_index(s);
|
|
loaded_base = false;
|
|
loaded_var = NULL;
|
|
|
|
for (i = j = 0; i < 16; i++) {
|
|
if (!(list & (1 << i))) {
|
|
continue;
|
|
}
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
gen_aa32_ld32u(s, tmp, addr, mem_idx);
|
|
if (user) {
|
|
tmp2 = tcg_const_i32(i);
|
|
gen_helper_set_user_reg(cpu_env, tmp2, tmp);
|
|
tcg_temp_free_i32(tmp2);
|
|
tcg_temp_free_i32(tmp);
|
|
} else if (i == a->rn) {
|
|
loaded_var = tmp;
|
|
loaded_base = true;
|
|
} else if (i == 15 && exc_return) {
|
|
store_pc_exc_ret(s, tmp);
|
|
} else {
|
|
store_reg_from_load(s, i, tmp);
|
|
}
|
|
|
|
/* No need to add after the last transfer. */
|
|
if (++j != n) {
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
}
|
|
}
|
|
|
|
op_addr_block_post(s, a, addr, n);
|
|
|
|
if (loaded_base) {
|
|
/* Note that we reject base == pc above. */
|
|
store_reg(s, a->rn, loaded_var);
|
|
}
|
|
|
|
if (exc_return) {
|
|
/* Restore CPSR from SPSR. */
|
|
tmp = load_cpu_field(spsr);
|
|
if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
|
|
gen_io_start();
|
|
}
|
|
gen_helper_cpsr_write_eret(cpu_env, tmp);
|
|
if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
|
|
gen_io_end();
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
/* Must exit loop to check un-masked IRQs */
|
|
s->base.is_jmp = DISAS_EXIT;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDM_a32(DisasContext *s, arg_ldst_block *a)
|
|
{
|
|
/*
|
|
* Writeback register in register list is UNPREDICTABLE
|
|
* for ArchVersion() >= 7. Prior to v7, A32 would write
|
|
* an UNKNOWN value to the base register.
|
|
*/
|
|
if (ENABLE_ARCH_7 && a->w && (a->list & (1 << a->rn))) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
/* BitCount(list) < 1 is UNPREDICTABLE */
|
|
return do_ldm(s, a, 1);
|
|
}
|
|
|
|
static bool trans_LDM_t32(DisasContext *s, arg_ldst_block *a)
|
|
{
|
|
/* Writeback register in register list is UNPREDICTABLE for T32. */
|
|
if (a->w && (a->list & (1 << a->rn))) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
/* BitCount(list) < 2 is UNPREDICTABLE */
|
|
return do_ldm(s, a, 2);
|
|
}
|
|
|
|
static bool trans_LDM_t16(DisasContext *s, arg_ldst_block *a)
|
|
{
|
|
/* Writeback is conditional on the base register not being loaded. */
|
|
a->w = !(a->list & (1 << a->rn));
|
|
/* BitCount(list) < 1 is UNPREDICTABLE */
|
|
return do_ldm(s, a, 1);
|
|
}
|
|
|
|
/*
|
|
* Branch, branch with link
|
|
*/
|
|
|
|
static bool trans_B(DisasContext *s, arg_i *a)
|
|
{
|
|
gen_jmp(s, read_pc(s) + a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_B_cond_thumb(DisasContext *s, arg_ci *a)
|
|
{
|
|
/* This has cond from encoding, required to be outside IT block. */
|
|
if (a->cond >= 0xe) {
|
|
return false;
|
|
}
|
|
if (s->condexec_mask) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
arm_skip_unless(s, a->cond);
|
|
gen_jmp(s, read_pc(s) + a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BL(DisasContext *s, arg_i *a)
|
|
{
|
|
tcg_gen_movi_i32(cpu_R[14], s->base.pc_next | s->thumb);
|
|
gen_jmp(s, read_pc(s) + a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BLX_i(DisasContext *s, arg_BLX_i *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
/* For A32, ARCH(5) is checked near the start of the uncond block. */
|
|
if (s->thumb && (a->imm & 2)) {
|
|
return false;
|
|
}
|
|
tcg_gen_movi_i32(cpu_R[14], s->base.pc_next | s->thumb);
|
|
tmp = tcg_const_i32(!s->thumb);
|
|
store_cpu_field(tmp, thumb);
|
|
gen_jmp(s, (read_pc(s) & ~3) + a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BL_BLX_prefix(DisasContext *s, arg_BL_BLX_prefix *a)
|
|
{
|
|
assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2));
|
|
tcg_gen_movi_i32(cpu_R[14], read_pc(s) + (a->imm << 12));
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BL_suffix(DisasContext *s, arg_BL_suffix *a)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
|
|
assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2));
|
|
tcg_gen_addi_i32(tmp, cpu_R[14], (a->imm << 1) | 1);
|
|
tcg_gen_movi_i32(cpu_R[14], s->base.pc_next | 1);
|
|
gen_bx(s, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BLX_suffix(DisasContext *s, arg_BLX_suffix *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
assert(!arm_dc_feature(s, ARM_FEATURE_THUMB2));
|
|
if (!ENABLE_ARCH_5) {
|
|
return false;
|
|
}
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_addi_i32(tmp, cpu_R[14], a->imm << 1);
|
|
tcg_gen_andi_i32(tmp, tmp, 0xfffffffc);
|
|
tcg_gen_movi_i32(cpu_R[14], s->base.pc_next | 1);
|
|
gen_bx(s, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool op_tbranch(DisasContext *s, arg_tbranch *a, bool half)
|
|
{
|
|
TCGv_i32 addr, tmp;
|
|
|
|
tmp = load_reg(s, a->rm);
|
|
if (half) {
|
|
tcg_gen_add_i32(tmp, tmp, tmp);
|
|
}
|
|
addr = load_reg(s, a->rn);
|
|
tcg_gen_add_i32(addr, addr, tmp);
|
|
|
|
gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s),
|
|
half ? MO_UW | s->be_data : MO_UB);
|
|
tcg_temp_free_i32(addr);
|
|
|
|
tcg_gen_add_i32(tmp, tmp, tmp);
|
|
tcg_gen_addi_i32(tmp, tmp, read_pc(s));
|
|
store_reg(s, 15, tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_TBB(DisasContext *s, arg_tbranch *a)
|
|
{
|
|
return op_tbranch(s, a, false);
|
|
}
|
|
|
|
static bool trans_TBH(DisasContext *s, arg_tbranch *a)
|
|
{
|
|
return op_tbranch(s, a, true);
|
|
}
|
|
|
|
static bool trans_CBZ(DisasContext *s, arg_CBZ *a)
|
|
{
|
|
TCGv_i32 tmp = load_reg(s, a->rn);
|
|
|
|
arm_gen_condlabel(s);
|
|
tcg_gen_brcondi_i32(a->nz ? TCG_COND_EQ : TCG_COND_NE,
|
|
tmp, 0, s->condlabel);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_jmp(s, read_pc(s) + a->imm);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Supervisor call - both T32 & A32 come here so we need to check
|
|
* which mode we are in when checking for semihosting.
|
|
*/
|
|
|
|
static bool trans_SVC(DisasContext *s, arg_SVC *a)
|
|
{
|
|
const uint32_t semihost_imm = s->thumb ? 0xab : 0x123456;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_M) && semihosting_enabled() &&
|
|
#ifndef CONFIG_USER_ONLY
|
|
!IS_USER(s) &&
|
|
#endif
|
|
(a->imm == semihost_imm)) {
|
|
gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST);
|
|
} else {
|
|
gen_set_pc_im(s, s->base.pc_next);
|
|
s->svc_imm = a->imm;
|
|
s->base.is_jmp = DISAS_SWI;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Unconditional system instructions
|
|
*/
|
|
|
|
static bool trans_RFE(DisasContext *s, arg_RFE *a)
|
|
{
|
|
static const int8_t pre_offset[4] = {
|
|
/* DA */ -4, /* IA */ 0, /* DB */ -8, /* IB */ 4
|
|
};
|
|
static const int8_t post_offset[4] = {
|
|
/* DA */ -8, /* IA */ 4, /* DB */ -4, /* IB */ 0
|
|
};
|
|
TCGv_i32 addr, t1, t2;
|
|
|
|
if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
if (IS_USER(s)) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
|
|
addr = load_reg(s, a->rn);
|
|
tcg_gen_addi_i32(addr, addr, pre_offset[a->pu]);
|
|
|
|
/* Load PC into tmp and CPSR into tmp2. */
|
|
t1 = tcg_temp_new_i32();
|
|
gen_aa32_ld32u(s, t1, addr, get_mem_index(s));
|
|
tcg_gen_addi_i32(addr, addr, 4);
|
|
t2 = tcg_temp_new_i32();
|
|
gen_aa32_ld32u(s, t2, addr, get_mem_index(s));
|
|
|
|
if (a->w) {
|
|
/* Base writeback. */
|
|
tcg_gen_addi_i32(addr, addr, post_offset[a->pu]);
|
|
store_reg(s, a->rn, addr);
|
|
} else {
|
|
tcg_temp_free_i32(addr);
|
|
}
|
|
gen_rfe(s, t1, t2);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SRS(DisasContext *s, arg_SRS *a)
|
|
{
|
|
if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
gen_srs(s, a->mode, a->pu, a->w);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_CPS(DisasContext *s, arg_CPS *a)
|
|
{
|
|
uint32_t mask, val;
|
|
|
|
if (!ENABLE_ARCH_6 || arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
if (IS_USER(s)) {
|
|
/* Implemented as NOP in user mode. */
|
|
return true;
|
|
}
|
|
/* TODO: There are quite a lot of UNPREDICTABLE argument combinations. */
|
|
|
|
mask = val = 0;
|
|
if (a->imod & 2) {
|
|
if (a->A) {
|
|
mask |= CPSR_A;
|
|
}
|
|
if (a->I) {
|
|
mask |= CPSR_I;
|
|
}
|
|
if (a->F) {
|
|
mask |= CPSR_F;
|
|
}
|
|
if (a->imod & 1) {
|
|
val |= mask;
|
|
}
|
|
}
|
|
if (a->M) {
|
|
mask |= CPSR_M;
|
|
val |= a->mode;
|
|
}
|
|
if (mask) {
|
|
gen_set_psr_im(s, mask, 0, val);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_CPS_v7m(DisasContext *s, arg_CPS_v7m *a)
|
|
{
|
|
TCGv_i32 tmp, addr;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
if (IS_USER(s)) {
|
|
/* Implemented as NOP in user mode. */
|
|
return true;
|
|
}
|
|
|
|
tmp = tcg_const_i32(a->im);
|
|
/* FAULTMASK */
|
|
if (a->F) {
|
|
addr = tcg_const_i32(19);
|
|
gen_helper_v7m_msr(cpu_env, addr, tmp);
|
|
tcg_temp_free_i32(addr);
|
|
}
|
|
/* PRIMASK */
|
|
if (a->I) {
|
|
addr = tcg_const_i32(16);
|
|
gen_helper_v7m_msr(cpu_env, addr, tmp);
|
|
tcg_temp_free_i32(addr);
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
gen_lookup_tb(s);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Clear-Exclusive, Barriers
|
|
*/
|
|
|
|
static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
|
|
{
|
|
if (s->thumb
|
|
? !ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)
|
|
: !ENABLE_ARCH_6K) {
|
|
return false;
|
|
}
|
|
gen_clrex(s);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_DSB(DisasContext *s, arg_DSB *a)
|
|
{
|
|
if (!ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_DMB(DisasContext *s, arg_DMB *a)
|
|
{
|
|
return trans_DSB(s, NULL);
|
|
}
|
|
|
|
static bool trans_ISB(DisasContext *s, arg_ISB *a)
|
|
{
|
|
if (!ENABLE_ARCH_7 && !arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
return false;
|
|
}
|
|
/*
|
|
* We need to break the TB after this insn to execute
|
|
* self-modifying code correctly and also to take
|
|
* any pending interrupts immediately.
|
|
*/
|
|
gen_goto_tb(s, 0, s->base.pc_next);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SB(DisasContext *s, arg_SB *a)
|
|
{
|
|
if (!dc_isar_feature(aa32_sb, s)) {
|
|
return false;
|
|
}
|
|
/*
|
|
* TODO: There is no speculation barrier opcode
|
|
* for TCG; MB and end the TB instead.
|
|
*/
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
|
|
gen_goto_tb(s, 0, s->base.pc_next);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SETEND(DisasContext *s, arg_SETEND *a)
|
|
{
|
|
if (!ENABLE_ARCH_6) {
|
|
return false;
|
|
}
|
|
if (a->E != (s->be_data == MO_BE)) {
|
|
gen_helper_setend(cpu_env);
|
|
s->base.is_jmp = DISAS_UPDATE;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Preload instructions
|
|
* All are nops, contingent on the appropriate arch level.
|
|
*/
|
|
|
|
static bool trans_PLD(DisasContext *s, arg_PLD *a)
|
|
{
|
|
return ENABLE_ARCH_5TE;
|
|
}
|
|
|
|
static bool trans_PLDW(DisasContext *s, arg_PLD *a)
|
|
{
|
|
return arm_dc_feature(s, ARM_FEATURE_V7MP);
|
|
}
|
|
|
|
static bool trans_PLI(DisasContext *s, arg_PLD *a)
|
|
{
|
|
return ENABLE_ARCH_7;
|
|
}
|
|
|
|
/*
|
|
* If-then
|
|
*/
|
|
|
|
static bool trans_IT(DisasContext *s, arg_IT *a)
|
|
{
|
|
int cond_mask = a->cond_mask;
|
|
|
|
/*
|
|
* No actual code generated for this insn, just setup state.
|
|
*
|
|
* Combinations of firstcond and mask which set up an 0b1111
|
|
* condition are UNPREDICTABLE; we take the CONSTRAINED
|
|
* UNPREDICTABLE choice to treat 0b1111 the same as 0b1110,
|
|
* i.e. both meaning "execute always".
|
|
*/
|
|
s->condexec_cond = (cond_mask >> 4) & 0xe;
|
|
s->condexec_mask = cond_mask & 0x1f;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Legacy decoder.
|
|
*/
|
|
|
|
static void disas_arm_insn(DisasContext *s, unsigned int insn)
|
|
{
|
|
unsigned int cond = insn >> 28;
|
|
|
|
/* M variants do not implement ARM mode; this must raise the INVSTATE
|
|
* UsageFault exception.
|
|
*/
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
gen_exception_insn(s, s->pc_curr, EXCP_INVSTATE, syn_uncategorized(),
|
|
default_exception_el(s));
|
|
return;
|
|
}
|
|
|
|
if (cond == 0xf) {
|
|
/* In ARMv3 and v4 the NV condition is UNPREDICTABLE; we
|
|
* choose to UNDEF. In ARMv5 and above the space is used
|
|
* for miscellaneous unconditional instructions.
|
|
*/
|
|
ARCH(5);
|
|
|
|
/* Unconditional instructions. */
|
|
if (disas_a32_uncond(s, insn)) {
|
|
return;
|
|
}
|
|
/* fall back to legacy decoder */
|
|
|
|
if (((insn >> 25) & 7) == 1) {
|
|
/* NEON Data processing. */
|
|
if (!arm_dc_feature(s, ARM_FEATURE_NEON)) {
|
|
goto illegal_op;
|
|
}
|
|
|
|
if (disas_neon_data_insn(s, insn)) {
|
|
goto illegal_op;
|
|
}
|
|
return;
|
|
}
|
|
if ((insn & 0x0f100000) == 0x04000000) {
|
|
/* NEON load/store. */
|
|
if (!arm_dc_feature(s, ARM_FEATURE_NEON)) {
|
|
goto illegal_op;
|
|
}
|
|
|
|
if (disas_neon_ls_insn(s, insn)) {
|
|
goto illegal_op;
|
|
}
|
|
return;
|
|
}
|
|
if ((insn & 0x0f000e10) == 0x0e000a00) {
|
|
/* VFP. */
|
|
if (disas_vfp_insn(s, insn)) {
|
|
goto illegal_op;
|
|
}
|
|
return;
|
|
}
|
|
if ((insn & 0x0e000f00) == 0x0c000100) {
|
|
if (arm_dc_feature(s, ARM_FEATURE_IWMMXT)) {
|
|
/* iWMMXt register transfer. */
|
|
if (extract32(s->c15_cpar, 1, 1)) {
|
|
if (!disas_iwmmxt_insn(s, insn)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
} else if ((insn & 0x0e000a00) == 0x0c000800
|
|
&& arm_dc_feature(s, ARM_FEATURE_V8)) {
|
|
if (disas_neon_insn_3same_ext(s, insn)) {
|
|
goto illegal_op;
|
|
}
|
|
return;
|
|
} else if ((insn & 0x0f000a00) == 0x0e000800
|
|
&& arm_dc_feature(s, ARM_FEATURE_V8)) {
|
|
if (disas_neon_insn_2reg_scalar_ext(s, insn)) {
|
|
goto illegal_op;
|
|
}
|
|
return;
|
|
}
|
|
goto illegal_op;
|
|
}
|
|
if (cond != 0xe) {
|
|
/* if not always execute, we generate a conditional jump to
|
|
next instruction */
|
|
arm_skip_unless(s, cond);
|
|
}
|
|
|
|
if (disas_a32(s, insn)) {
|
|
return;
|
|
}
|
|
/* fall back to legacy decoder */
|
|
|
|
switch ((insn >> 24) & 0xf) {
|
|
case 0xc:
|
|
case 0xd:
|
|
case 0xe:
|
|
if (((insn >> 8) & 0xe) == 10) {
|
|
/* VFP. */
|
|
if (disas_vfp_insn(s, insn)) {
|
|
goto illegal_op;
|
|
}
|
|
} else if (disas_coproc_insn(s, insn)) {
|
|
/* Coprocessor. */
|
|
goto illegal_op;
|
|
}
|
|
break;
|
|
default:
|
|
illegal_op:
|
|
unallocated_encoding(s);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool thumb_insn_is_16bit(DisasContext *s, uint32_t pc, uint32_t insn)
|
|
{
|
|
/*
|
|
* Return true if this is a 16 bit instruction. We must be precise
|
|
* about this (matching the decode).
|
|
*/
|
|
if ((insn >> 11) < 0x1d) {
|
|
/* Definitely a 16-bit instruction */
|
|
return true;
|
|
}
|
|
|
|
/* Top five bits 0b11101 / 0b11110 / 0b11111 : this is the
|
|
* first half of a 32-bit Thumb insn. Thumb-1 cores might
|
|
* end up actually treating this as two 16-bit insns, though,
|
|
* if it's half of a bl/blx pair that might span a page boundary.
|
|
*/
|
|
if (arm_dc_feature(s, ARM_FEATURE_THUMB2) ||
|
|
arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
/* Thumb2 cores (including all M profile ones) always treat
|
|
* 32-bit insns as 32-bit.
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
if ((insn >> 11) == 0x1e && pc - s->page_start < TARGET_PAGE_SIZE - 3) {
|
|
/* 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix, and the suffix
|
|
* is not on the next page; we merge this into a 32-bit
|
|
* insn.
|
|
*/
|
|
return false;
|
|
}
|
|
/* 0b1110_1xxx_xxxx_xxxx : BLX suffix (or UNDEF);
|
|
* 0b1111_1xxx_xxxx_xxxx : BL suffix;
|
|
* 0b1111_0xxx_xxxx_xxxx : BL/BLX prefix on the end of a page
|
|
* -- handle as single 16 bit insn
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
/* Translate a 32-bit thumb instruction. */
|
|
static void disas_thumb2_insn(DisasContext *s, uint32_t insn)
|
|
{
|
|
/*
|
|
* ARMv6-M supports a limited subset of Thumb2 instructions.
|
|
* Other Thumb1 architectures allow only 32-bit
|
|
* combined BL/BLX prefix and suffix.
|
|
*/
|
|
if (arm_dc_feature(s, ARM_FEATURE_M) &&
|
|
!arm_dc_feature(s, ARM_FEATURE_V7)) {
|
|
int i;
|
|
bool found = false;
|
|
static const uint32_t armv6m_insn[] = {0xf3808000 /* msr */,
|
|
0xf3b08040 /* dsb */,
|
|
0xf3b08050 /* dmb */,
|
|
0xf3b08060 /* isb */,
|
|
0xf3e08000 /* mrs */,
|
|
0xf000d000 /* bl */};
|
|
static const uint32_t armv6m_mask[] = {0xffe0d000,
|
|
0xfff0d0f0,
|
|
0xfff0d0f0,
|
|
0xfff0d0f0,
|
|
0xffe0d000,
|
|
0xf800d000};
|
|
|
|
for (i = 0; i < ARRAY_SIZE(armv6m_insn); i++) {
|
|
if ((insn & armv6m_mask[i]) == armv6m_insn[i]) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
goto illegal_op;
|
|
}
|
|
} else if ((insn & 0xf800e800) != 0xf000e800) {
|
|
ARCH(6T2);
|
|
}
|
|
|
|
if (disas_t32(s, insn)) {
|
|
return;
|
|
}
|
|
/* fall back to legacy decoder */
|
|
|
|
switch ((insn >> 25) & 0xf) {
|
|
case 0: case 1: case 2: case 3:
|
|
/* 16-bit instructions. Should never happen. */
|
|
abort();
|
|
case 6: case 7: case 14: case 15:
|
|
/* Coprocessor. */
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
/* 0b111x_11xx_xxxx_xxxx_xxxx_xxxx_xxxx_xxxx */
|
|
if (extract32(insn, 24, 2) == 3) {
|
|
goto illegal_op; /* op0 = 0b11 : unallocated */
|
|
}
|
|
|
|
/*
|
|
* Decode VLLDM and VLSTM first: these are nonstandard because:
|
|
* * if there is no FPU then these insns must NOP in
|
|
* Secure state and UNDEF in Nonsecure state
|
|
* * if there is an FPU then these insns do not have
|
|
* the usual behaviour that disas_vfp_insn() provides of
|
|
* being controlled by CPACR/NSACR enable bits or the
|
|
* lazy-stacking logic.
|
|
*/
|
|
if (arm_dc_feature(s, ARM_FEATURE_V8) &&
|
|
(insn & 0xffa00f00) == 0xec200a00) {
|
|
/* 0b1110_1100_0x1x_xxxx_xxxx_1010_xxxx_xxxx
|
|
* - VLLDM, VLSTM
|
|
* We choose to UNDEF if the RAZ bits are non-zero.
|
|
*/
|
|
if (!s->v8m_secure || (insn & 0x0040f0ff)) {
|
|
goto illegal_op;
|
|
}
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_VFP)) {
|
|
uint32_t rn = (insn >> 16) & 0xf;
|
|
TCGv_i32 fptr = load_reg(s, rn);
|
|
|
|
if (extract32(insn, 20, 1)) {
|
|
gen_helper_v7m_vlldm(cpu_env, fptr);
|
|
} else {
|
|
gen_helper_v7m_vlstm(cpu_env, fptr);
|
|
}
|
|
tcg_temp_free_i32(fptr);
|
|
|
|
/* End the TB, because we have updated FP control bits */
|
|
s->base.is_jmp = DISAS_UPDATE;
|
|
}
|
|
break;
|
|
}
|
|
if (arm_dc_feature(s, ARM_FEATURE_VFP) &&
|
|
((insn >> 8) & 0xe) == 10) {
|
|
/* FP, and the CPU supports it */
|
|
if (disas_vfp_insn(s, insn)) {
|
|
goto illegal_op;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* All other insns: NOCP */
|
|
gen_exception_insn(s, s->pc_curr, EXCP_NOCP, syn_uncategorized(),
|
|
default_exception_el(s));
|
|
break;
|
|
}
|
|
if ((insn & 0xfe000a00) == 0xfc000800
|
|
&& arm_dc_feature(s, ARM_FEATURE_V8)) {
|
|
/* The Thumb2 and ARM encodings are identical. */
|
|
if (disas_neon_insn_3same_ext(s, insn)) {
|
|
goto illegal_op;
|
|
}
|
|
} else if ((insn & 0xff000a00) == 0xfe000800
|
|
&& arm_dc_feature(s, ARM_FEATURE_V8)) {
|
|
/* The Thumb2 and ARM encodings are identical. */
|
|
if (disas_neon_insn_2reg_scalar_ext(s, insn)) {
|
|
goto illegal_op;
|
|
}
|
|
} else if (((insn >> 24) & 3) == 3) {
|
|
/* Translate into the equivalent ARM encoding. */
|
|
insn = (insn & 0xe2ffffff) | ((insn & (1 << 28)) >> 4) | (1 << 28);
|
|
if (disas_neon_data_insn(s, insn)) {
|
|
goto illegal_op;
|
|
}
|
|
} else if (((insn >> 8) & 0xe) == 10) {
|
|
if (disas_vfp_insn(s, insn)) {
|
|
goto illegal_op;
|
|
}
|
|
} else {
|
|
if (insn & (1 << 28))
|
|
goto illegal_op;
|
|
if (disas_coproc_insn(s, insn)) {
|
|
goto illegal_op;
|
|
}
|
|
}
|
|
break;
|
|
case 12:
|
|
if ((insn & 0x01100000) == 0x01000000) {
|
|
if (disas_neon_ls_insn(s, insn)) {
|
|
goto illegal_op;
|
|
}
|
|
break;
|
|
}
|
|
goto illegal_op;
|
|
default:
|
|
illegal_op:
|
|
unallocated_encoding(s);
|
|
}
|
|
}
|
|
|
|
static void disas_thumb_insn(DisasContext *s, uint32_t insn)
|
|
{
|
|
if (!disas_t16(s, insn)) {
|
|
unallocated_encoding(s);
|
|
}
|
|
}
|
|
|
|
static bool insn_crosses_page(CPUARMState *env, DisasContext *s)
|
|
{
|
|
/* Return true if the insn at dc->base.pc_next might cross a page boundary.
|
|
* (False positives are OK, false negatives are not.)
|
|
* We know this is a Thumb insn, and our caller ensures we are
|
|
* only called if dc->base.pc_next is less than 4 bytes from the page
|
|
* boundary, so we cross the page if the first 16 bits indicate
|
|
* that this is a 32 bit insn.
|
|
*/
|
|
uint16_t insn = arm_lduw_code(env, s->base.pc_next, s->sctlr_b);
|
|
|
|
return !thumb_insn_is_16bit(s, s->base.pc_next, insn);
|
|
}
|
|
|
|
static void arm_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
CPUARMState *env = cs->env_ptr;
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint32_t tb_flags = dc->base.tb->flags;
|
|
uint32_t condexec, core_mmu_idx;
|
|
|
|
dc->isar = &cpu->isar;
|
|
dc->condjmp = 0;
|
|
|
|
dc->aarch64 = 0;
|
|
/* If we are coming from secure EL0 in a system with a 32-bit EL3, then
|
|
* there is no secure EL1, so we route exceptions to EL3.
|
|
*/
|
|
dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!arm_el_is_aa64(env, 3);
|
|
dc->thumb = FIELD_EX32(tb_flags, TBFLAG_A32, THUMB);
|
|
dc->sctlr_b = FIELD_EX32(tb_flags, TBFLAG_A32, SCTLR_B);
|
|
dc->hstr_active = FIELD_EX32(tb_flags, TBFLAG_A32, HSTR_ACTIVE);
|
|
dc->be_data = FIELD_EX32(tb_flags, TBFLAG_ANY, BE_DATA) ? MO_BE : MO_LE;
|
|
condexec = FIELD_EX32(tb_flags, TBFLAG_A32, CONDEXEC);
|
|
dc->condexec_mask = (condexec & 0xf) << 1;
|
|
dc->condexec_cond = condexec >> 4;
|
|
core_mmu_idx = FIELD_EX32(tb_flags, TBFLAG_ANY, MMUIDX);
|
|
dc->mmu_idx = core_to_arm_mmu_idx(env, core_mmu_idx);
|
|
dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
dc->user = (dc->current_el == 0);
|
|
#endif
|
|
dc->ns = FIELD_EX32(tb_flags, TBFLAG_A32, NS);
|
|
dc->fp_excp_el = FIELD_EX32(tb_flags, TBFLAG_ANY, FPEXC_EL);
|
|
dc->vfp_enabled = FIELD_EX32(tb_flags, TBFLAG_A32, VFPEN);
|
|
dc->vec_len = FIELD_EX32(tb_flags, TBFLAG_A32, VECLEN);
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
|
dc->c15_cpar = FIELD_EX32(tb_flags, TBFLAG_A32, XSCALE_CPAR);
|
|
dc->vec_stride = 0;
|
|
} else {
|
|
dc->vec_stride = FIELD_EX32(tb_flags, TBFLAG_A32, VECSTRIDE);
|
|
dc->c15_cpar = 0;
|
|
}
|
|
dc->v7m_handler_mode = FIELD_EX32(tb_flags, TBFLAG_A32, HANDLER);
|
|
dc->v8m_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
|
|
regime_is_secure(env, dc->mmu_idx);
|
|
dc->v8m_stackcheck = FIELD_EX32(tb_flags, TBFLAG_A32, STACKCHECK);
|
|
dc->v8m_fpccr_s_wrong = FIELD_EX32(tb_flags, TBFLAG_A32, FPCCR_S_WRONG);
|
|
dc->v7m_new_fp_ctxt_needed =
|
|
FIELD_EX32(tb_flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED);
|
|
dc->v7m_lspact = FIELD_EX32(tb_flags, TBFLAG_A32, LSPACT);
|
|
dc->cp_regs = cpu->cp_regs;
|
|
dc->features = env->features;
|
|
|
|
/* Single step state. The code-generation logic here is:
|
|
* SS_ACTIVE == 0:
|
|
* generate code with no special handling for single-stepping (except
|
|
* that anything that can make us go to SS_ACTIVE == 1 must end the TB;
|
|
* this happens anyway because those changes are all system register or
|
|
* PSTATE writes).
|
|
* SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
|
|
* emit code for one insn
|
|
* emit code to clear PSTATE.SS
|
|
* emit code to generate software step exception for completed step
|
|
* end TB (as usual for having generated an exception)
|
|
* SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
|
|
* emit code to generate a software step exception
|
|
* end the TB
|
|
*/
|
|
dc->ss_active = FIELD_EX32(tb_flags, TBFLAG_ANY, SS_ACTIVE);
|
|
dc->pstate_ss = FIELD_EX32(tb_flags, TBFLAG_ANY, PSTATE_SS);
|
|
dc->is_ldex = false;
|
|
if (!arm_feature(env, ARM_FEATURE_M)) {
|
|
dc->debug_target_el = FIELD_EX32(tb_flags, TBFLAG_ANY, DEBUG_TARGET_EL);
|
|
}
|
|
|
|
dc->page_start = dc->base.pc_first & TARGET_PAGE_MASK;
|
|
|
|
/* If architectural single step active, limit to 1. */
|
|
if (is_singlestepping(dc)) {
|
|
dc->base.max_insns = 1;
|
|
}
|
|
|
|
/* ARM is a fixed-length ISA. Bound the number of insns to execute
|
|
to those left on the page. */
|
|
if (!dc->thumb) {
|
|
int bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
|
|
dc->base.max_insns = MIN(dc->base.max_insns, bound);
|
|
}
|
|
|
|
cpu_V0 = tcg_temp_new_i64();
|
|
cpu_V1 = tcg_temp_new_i64();
|
|
/* FIXME: cpu_M0 can probably be the same as cpu_V0. */
|
|
cpu_M0 = tcg_temp_new_i64();
|
|
}
|
|
|
|
static void arm_tr_tb_start(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
|
|
/* A note on handling of the condexec (IT) bits:
|
|
*
|
|
* We want to avoid the overhead of having to write the updated condexec
|
|
* bits back to the CPUARMState for every instruction in an IT block. So:
|
|
* (1) if the condexec bits are not already zero then we write
|
|
* zero back into the CPUARMState now. This avoids complications trying
|
|
* to do it at the end of the block. (For example if we don't do this
|
|
* it's hard to identify whether we can safely skip writing condexec
|
|
* at the end of the TB, which we definitely want to do for the case
|
|
* where a TB doesn't do anything with the IT state at all.)
|
|
* (2) if we are going to leave the TB then we call gen_set_condexec()
|
|
* which will write the correct value into CPUARMState if zero is wrong.
|
|
* This is done both for leaving the TB at the end, and for leaving
|
|
* it because of an exception we know will happen, which is done in
|
|
* gen_exception_insn(). The latter is necessary because we need to
|
|
* leave the TB with the PC/IT state just prior to execution of the
|
|
* instruction which caused the exception.
|
|
* (3) if we leave the TB unexpectedly (eg a data abort on a load)
|
|
* then the CPUARMState will be wrong and we need to reset it.
|
|
* This is handled in the same way as restoration of the
|
|
* PC in these situations; we save the value of the condexec bits
|
|
* for each PC via tcg_gen_insn_start(), and restore_state_to_opc()
|
|
* then uses this to restore them after an exception.
|
|
*
|
|
* Note that there are no instructions which can read the condexec
|
|
* bits, and none which can write non-static values to them, so
|
|
* we don't need to care about whether CPUARMState is correct in the
|
|
* middle of a TB.
|
|
*/
|
|
|
|
/* Reset the conditional execution bits immediately. This avoids
|
|
complications trying to do it at the end of the block. */
|
|
if (dc->condexec_mask || dc->condexec_cond) {
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(tmp, 0);
|
|
store_cpu_field(tmp, condexec_bits);
|
|
}
|
|
}
|
|
|
|
static void arm_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
|
|
tcg_gen_insn_start(dc->base.pc_next,
|
|
(dc->condexec_cond << 4) | (dc->condexec_mask >> 1),
|
|
0);
|
|
dc->insn_start = tcg_last_op();
|
|
}
|
|
|
|
static bool arm_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu,
|
|
const CPUBreakpoint *bp)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
|
|
if (bp->flags & BP_CPU) {
|
|
gen_set_condexec(dc);
|
|
gen_set_pc_im(dc, dc->base.pc_next);
|
|
gen_helper_check_breakpoints(cpu_env);
|
|
/* End the TB early; it's likely not going to be executed */
|
|
dc->base.is_jmp = DISAS_TOO_MANY;
|
|
} else {
|
|
gen_exception_internal_insn(dc, dc->base.pc_next, EXCP_DEBUG);
|
|
/* The address covered by the breakpoint must be
|
|
included in [tb->pc, tb->pc + tb->size) in order
|
|
to for it to be properly cleared -- thus we
|
|
increment the PC here so that the logic setting
|
|
tb->size below does the right thing. */
|
|
/* TODO: Advance PC by correct instruction length to
|
|
* avoid disassembler error messages */
|
|
dc->base.pc_next += 2;
|
|
dc->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool arm_pre_translate_insn(DisasContext *dc)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
/* Intercept jump to the magic kernel page. */
|
|
if (dc->base.pc_next >= 0xffff0000) {
|
|
/* We always get here via a jump, so know we are not in a
|
|
conditional execution block. */
|
|
gen_exception_internal(EXCP_KERNEL_TRAP);
|
|
dc->base.is_jmp = DISAS_NORETURN;
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
if (dc->ss_active && !dc->pstate_ss) {
|
|
/* Singlestep state is Active-pending.
|
|
* If we're in this state at the start of a TB then either
|
|
* a) we just took an exception to an EL which is being debugged
|
|
* and this is the first insn in the exception handler
|
|
* b) debug exceptions were masked and we just unmasked them
|
|
* without changing EL (eg by clearing PSTATE.D)
|
|
* In either case we're going to take a swstep exception in the
|
|
* "did not step an insn" case, and so the syndrome ISV and EX
|
|
* bits should be zero.
|
|
*/
|
|
assert(dc->base.num_insns == 1);
|
|
gen_swstep_exception(dc, 0, 0);
|
|
dc->base.is_jmp = DISAS_NORETURN;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void arm_post_translate_insn(DisasContext *dc)
|
|
{
|
|
if (dc->condjmp && !dc->base.is_jmp) {
|
|
gen_set_label(dc->condlabel);
|
|
dc->condjmp = 0;
|
|
}
|
|
translator_loop_temp_check(&dc->base);
|
|
}
|
|
|
|
static void arm_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
CPUARMState *env = cpu->env_ptr;
|
|
unsigned int insn;
|
|
|
|
if (arm_pre_translate_insn(dc)) {
|
|
return;
|
|
}
|
|
|
|
dc->pc_curr = dc->base.pc_next;
|
|
insn = arm_ldl_code(env, dc->base.pc_next, dc->sctlr_b);
|
|
dc->insn = insn;
|
|
dc->base.pc_next += 4;
|
|
disas_arm_insn(dc, insn);
|
|
|
|
arm_post_translate_insn(dc);
|
|
|
|
/* ARM is a fixed-length ISA. We performed the cross-page check
|
|
in init_disas_context by adjusting max_insns. */
|
|
}
|
|
|
|
static bool thumb_insn_is_unconditional(DisasContext *s, uint32_t insn)
|
|
{
|
|
/* Return true if this Thumb insn is always unconditional,
|
|
* even inside an IT block. This is true of only a very few
|
|
* instructions: BKPT, HLT, and SG.
|
|
*
|
|
* A larger class of instructions are UNPREDICTABLE if used
|
|
* inside an IT block; we do not need to detect those here, because
|
|
* what we do by default (perform the cc check and update the IT
|
|
* bits state machine) is a permitted CONSTRAINED UNPREDICTABLE
|
|
* choice for those situations.
|
|
*
|
|
* insn is either a 16-bit or a 32-bit instruction; the two are
|
|
* distinguishable because for the 16-bit case the top 16 bits
|
|
* are zeroes, and that isn't a valid 32-bit encoding.
|
|
*/
|
|
if ((insn & 0xffffff00) == 0xbe00) {
|
|
/* BKPT */
|
|
return true;
|
|
}
|
|
|
|
if ((insn & 0xffffffc0) == 0xba80 && arm_dc_feature(s, ARM_FEATURE_V8) &&
|
|
!arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
/* HLT: v8A only. This is unconditional even when it is going to
|
|
* UNDEF; see the v8A ARM ARM DDI0487B.a H3.3.
|
|
* For v7 cores this was a plain old undefined encoding and so
|
|
* honours its cc check. (We might be using the encoding as
|
|
* a semihosting trap, but we don't change the cc check behaviour
|
|
* on that account, because a debugger connected to a real v7A
|
|
* core and emulating semihosting traps by catching the UNDEF
|
|
* exception would also only see cases where the cc check passed.
|
|
* No guest code should be trying to do a HLT semihosting trap
|
|
* in an IT block anyway.
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
if (insn == 0xe97fe97f && arm_dc_feature(s, ARM_FEATURE_V8) &&
|
|
arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
/* SG: v8M only */
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void thumb_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
CPUARMState *env = cpu->env_ptr;
|
|
uint32_t insn;
|
|
bool is_16bit;
|
|
|
|
if (arm_pre_translate_insn(dc)) {
|
|
return;
|
|
}
|
|
|
|
dc->pc_curr = dc->base.pc_next;
|
|
insn = arm_lduw_code(env, dc->base.pc_next, dc->sctlr_b);
|
|
is_16bit = thumb_insn_is_16bit(dc, dc->base.pc_next, insn);
|
|
dc->base.pc_next += 2;
|
|
if (!is_16bit) {
|
|
uint32_t insn2 = arm_lduw_code(env, dc->base.pc_next, dc->sctlr_b);
|
|
|
|
insn = insn << 16 | insn2;
|
|
dc->base.pc_next += 2;
|
|
}
|
|
dc->insn = insn;
|
|
|
|
if (dc->condexec_mask && !thumb_insn_is_unconditional(dc, insn)) {
|
|
uint32_t cond = dc->condexec_cond;
|
|
|
|
/*
|
|
* Conditionally skip the insn. Note that both 0xe and 0xf mean
|
|
* "always"; 0xf is not "never".
|
|
*/
|
|
if (cond < 0x0e) {
|
|
arm_skip_unless(dc, cond);
|
|
}
|
|
}
|
|
|
|
if (is_16bit) {
|
|
disas_thumb_insn(dc, insn);
|
|
} else {
|
|
disas_thumb2_insn(dc, insn);
|
|
}
|
|
|
|
/* Advance the Thumb condexec condition. */
|
|
if (dc->condexec_mask) {
|
|
dc->condexec_cond = ((dc->condexec_cond & 0xe) |
|
|
((dc->condexec_mask >> 4) & 1));
|
|
dc->condexec_mask = (dc->condexec_mask << 1) & 0x1f;
|
|
if (dc->condexec_mask == 0) {
|
|
dc->condexec_cond = 0;
|
|
}
|
|
}
|
|
|
|
arm_post_translate_insn(dc);
|
|
|
|
/* Thumb is a variable-length ISA. Stop translation when the next insn
|
|
* will touch a new page. This ensures that prefetch aborts occur at
|
|
* the right place.
|
|
*
|
|
* We want to stop the TB if the next insn starts in a new page,
|
|
* or if it spans between this page and the next. This means that
|
|
* if we're looking at the last halfword in the page we need to
|
|
* see if it's a 16-bit Thumb insn (which will fit in this TB)
|
|
* or a 32-bit Thumb insn (which won't).
|
|
* This is to avoid generating a silly TB with a single 16-bit insn
|
|
* in it at the end of this page (which would execute correctly
|
|
* but isn't very efficient).
|
|
*/
|
|
if (dc->base.is_jmp == DISAS_NEXT
|
|
&& (dc->base.pc_next - dc->page_start >= TARGET_PAGE_SIZE
|
|
|| (dc->base.pc_next - dc->page_start >= TARGET_PAGE_SIZE - 3
|
|
&& insn_crosses_page(env, dc)))) {
|
|
dc->base.is_jmp = DISAS_TOO_MANY;
|
|
}
|
|
}
|
|
|
|
static void arm_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
|
|
if (tb_cflags(dc->base.tb) & CF_LAST_IO && dc->condjmp) {
|
|
/* FIXME: This can theoretically happen with self-modifying code. */
|
|
cpu_abort(cpu, "IO on conditional branch instruction");
|
|
}
|
|
|
|
/* At this stage dc->condjmp will only be set when the skipped
|
|
instruction was a conditional branch or trap, and the PC has
|
|
already been written. */
|
|
gen_set_condexec(dc);
|
|
if (dc->base.is_jmp == DISAS_BX_EXCRET) {
|
|
/* Exception return branches need some special case code at the
|
|
* end of the TB, which is complex enough that it has to
|
|
* handle the single-step vs not and the condition-failed
|
|
* insn codepath itself.
|
|
*/
|
|
gen_bx_excret_final_code(dc);
|
|
} else if (unlikely(is_singlestepping(dc))) {
|
|
/* Unconditional and "condition passed" instruction codepath. */
|
|
switch (dc->base.is_jmp) {
|
|
case DISAS_SWI:
|
|
gen_ss_advance(dc);
|
|
gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb),
|
|
default_exception_el(dc));
|
|
break;
|
|
case DISAS_HVC:
|
|
gen_ss_advance(dc);
|
|
gen_exception(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2);
|
|
break;
|
|
case DISAS_SMC:
|
|
gen_ss_advance(dc);
|
|
gen_exception(EXCP_SMC, syn_aa32_smc(), 3);
|
|
break;
|
|
case DISAS_NEXT:
|
|
case DISAS_TOO_MANY:
|
|
case DISAS_UPDATE:
|
|
gen_set_pc_im(dc, dc->base.pc_next);
|
|
/* fall through */
|
|
default:
|
|
/* FIXME: Single stepping a WFI insn will not halt the CPU. */
|
|
gen_singlestep_exception(dc);
|
|
break;
|
|
case DISAS_NORETURN:
|
|
break;
|
|
}
|
|
} else {
|
|
/* While branches must always occur at the end of an IT block,
|
|
there are a few other things that can cause us to terminate
|
|
the TB in the middle of an IT block:
|
|
- Exception generating instructions (bkpt, swi, undefined).
|
|
- Page boundaries.
|
|
- Hardware watchpoints.
|
|
Hardware breakpoints have already been handled and skip this code.
|
|
*/
|
|
switch(dc->base.is_jmp) {
|
|
case DISAS_NEXT:
|
|
case DISAS_TOO_MANY:
|
|
gen_goto_tb(dc, 1, dc->base.pc_next);
|
|
break;
|
|
case DISAS_JUMP:
|
|
gen_goto_ptr();
|
|
break;
|
|
case DISAS_UPDATE:
|
|
gen_set_pc_im(dc, dc->base.pc_next);
|
|
/* fall through */
|
|
default:
|
|
/* indicate that the hash table must be used to find the next TB */
|
|
tcg_gen_exit_tb(NULL, 0);
|
|
break;
|
|
case DISAS_NORETURN:
|
|
/* nothing more to generate */
|
|
break;
|
|
case DISAS_WFI:
|
|
{
|
|
TCGv_i32 tmp = tcg_const_i32((dc->thumb &&
|
|
!(dc->insn & (1U << 31))) ? 2 : 4);
|
|
|
|
gen_helper_wfi(cpu_env, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
/* The helper doesn't necessarily throw an exception, but we
|
|
* must go back to the main loop to check for interrupts anyway.
|
|
*/
|
|
tcg_gen_exit_tb(NULL, 0);
|
|
break;
|
|
}
|
|
case DISAS_WFE:
|
|
gen_helper_wfe(cpu_env);
|
|
break;
|
|
case DISAS_YIELD:
|
|
gen_helper_yield(cpu_env);
|
|
break;
|
|
case DISAS_SWI:
|
|
gen_exception(EXCP_SWI, syn_aa32_svc(dc->svc_imm, dc->thumb),
|
|
default_exception_el(dc));
|
|
break;
|
|
case DISAS_HVC:
|
|
gen_exception(EXCP_HVC, syn_aa32_hvc(dc->svc_imm), 2);
|
|
break;
|
|
case DISAS_SMC:
|
|
gen_exception(EXCP_SMC, syn_aa32_smc(), 3);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (dc->condjmp) {
|
|
/* "Condition failed" instruction codepath for the branch/trap insn */
|
|
gen_set_label(dc->condlabel);
|
|
gen_set_condexec(dc);
|
|
if (unlikely(is_singlestepping(dc))) {
|
|
gen_set_pc_im(dc, dc->base.pc_next);
|
|
gen_singlestep_exception(dc);
|
|
} else {
|
|
gen_goto_tb(dc, 1, dc->base.pc_next);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void arm_tr_disas_log(const DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
|
|
qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
|
|
log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
|
|
}
|
|
|
|
static const TranslatorOps arm_translator_ops = {
|
|
.init_disas_context = arm_tr_init_disas_context,
|
|
.tb_start = arm_tr_tb_start,
|
|
.insn_start = arm_tr_insn_start,
|
|
.breakpoint_check = arm_tr_breakpoint_check,
|
|
.translate_insn = arm_tr_translate_insn,
|
|
.tb_stop = arm_tr_tb_stop,
|
|
.disas_log = arm_tr_disas_log,
|
|
};
|
|
|
|
static const TranslatorOps thumb_translator_ops = {
|
|
.init_disas_context = arm_tr_init_disas_context,
|
|
.tb_start = arm_tr_tb_start,
|
|
.insn_start = arm_tr_insn_start,
|
|
.breakpoint_check = arm_tr_breakpoint_check,
|
|
.translate_insn = thumb_tr_translate_insn,
|
|
.tb_stop = arm_tr_tb_stop,
|
|
.disas_log = arm_tr_disas_log,
|
|
};
|
|
|
|
/* generate intermediate code for basic block 'tb'. */
|
|
void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns)
|
|
{
|
|
DisasContext dc;
|
|
const TranslatorOps *ops = &arm_translator_ops;
|
|
|
|
if (FIELD_EX32(tb->flags, TBFLAG_A32, THUMB)) {
|
|
ops = &thumb_translator_ops;
|
|
}
|
|
#ifdef TARGET_AARCH64
|
|
if (FIELD_EX32(tb->flags, TBFLAG_ANY, AARCH64_STATE)) {
|
|
ops = &aarch64_translator_ops;
|
|
}
|
|
#endif
|
|
|
|
translator_loop(ops, &dc.base, cpu, tb, max_insns);
|
|
}
|
|
|
|
void restore_state_to_opc(CPUARMState *env, TranslationBlock *tb,
|
|
target_ulong *data)
|
|
{
|
|
if (is_a64(env)) {
|
|
env->pc = data[0];
|
|
env->condexec_bits = 0;
|
|
env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
|
|
} else {
|
|
env->regs[15] = data[0];
|
|
env->condexec_bits = data[1];
|
|
env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
|
|
}
|
|
}
|