qemu-e2k/hw/spapr_pci.c
David Gibson caae58cba0 pseries: Improve handling of multiple PCI host bridges
Multiple - even many - PCI host bridges (i.e. PCI domains) are very
common on real PAPR compliant hardware.  For reasons related to the
PAPR specified IOMMU interfaces, PCI device assignment with VFIO will
generally require at least two (virtual) PHBs and possibly more
depending on which devices are assigned.

At the moment the qemu PAPR PCI code will not deal with this well,
leaving several crucial parameters of PHBs other than the default one
uninitialized.  This patch reworks the code to allow this.

Every PHB needs a unique BUID (Bus Unit Identifier, the id used for
the PAPR PCI related interfaces) and a unique LIOBN (Logical IO Bus
Number, the id used for the PAPR IOMMU related interfaces).  In
addition they need windows in CPU real address space to access PCI
memory space, PCI IO space and MSIs.  Properties are added to the PCI
host bridge qdevice to allow configuration of all these.

To simplify configuration of multiple PHBs for common cases, a
convenience "index" property is also added.  This can be set instead
of the low-level properties, and will generate suitable values for the
other parameters, different for each index value.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-01-25 22:02:55 +01:00

826 lines
26 KiB
C

/*
* QEMU sPAPR PCI host originated from Uninorth PCI host
*
* Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
* Copyright (C) 2011 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "pci/pci.h"
#include "pci/msi.h"
#include "pci/msix.h"
#include "pci/pci_host.h"
#include "hw/spapr.h"
#include "hw/spapr_pci.h"
#include "exec/address-spaces.h"
#include <libfdt.h>
#include "trace.h"
#include "hw/pci/pci_bus.h"
/* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
#define RTAS_QUERY_FN 0
#define RTAS_CHANGE_FN 1
#define RTAS_RESET_FN 2
#define RTAS_CHANGE_MSI_FN 3
#define RTAS_CHANGE_MSIX_FN 4
/* Interrupt types to return on RTAS_CHANGE_* */
#define RTAS_TYPE_MSI 1
#define RTAS_TYPE_MSIX 2
static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid)
{
sPAPRPHBState *sphb;
QLIST_FOREACH(sphb, &spapr->phbs, list) {
if (sphb->buid != buid) {
continue;
}
return sphb;
}
return NULL;
}
static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid,
uint32_t config_addr)
{
sPAPRPHBState *sphb = find_phb(spapr, buid);
PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
BusState *bus = BUS(phb->bus);
BusChild *kid;
int devfn = (config_addr >> 8) & 0xFF;
if (!phb) {
return NULL;
}
QTAILQ_FOREACH(kid, &bus->children, sibling) {
PCIDevice *dev = (PCIDevice *)kid->child;
if (dev->devfn == devfn) {
return dev;
}
}
return NULL;
}
static uint32_t rtas_pci_cfgaddr(uint32_t arg)
{
/* This handles the encoding of extended config space addresses */
return ((arg >> 20) & 0xf00) | (arg & 0xff);
}
static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
uint32_t addr, uint32_t size,
target_ulong rets)
{
PCIDevice *pci_dev;
uint32_t val;
if ((size != 1) && (size != 2) && (size != 4)) {
/* access must be 1, 2 or 4 bytes */
rtas_st(rets, 0, -1);
return;
}
pci_dev = find_dev(spapr, buid, addr);
addr = rtas_pci_cfgaddr(addr);
if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
/* Access must be to a valid device, within bounds and
* naturally aligned */
rtas_st(rets, 0, -1);
return;
}
val = pci_host_config_read_common(pci_dev, addr,
pci_config_size(pci_dev), size);
rtas_st(rets, 0, 0);
rtas_st(rets, 1, val);
}
static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint64_t buid;
uint32_t size, addr;
if ((nargs != 4) || (nret != 2)) {
rtas_st(rets, 0, -1);
return;
}
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
size = rtas_ld(args, 3);
addr = rtas_ld(args, 0);
finish_read_pci_config(spapr, buid, addr, size, rets);
}
static void rtas_read_pci_config(sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t size, addr;
if ((nargs != 2) || (nret != 2)) {
rtas_st(rets, 0, -1);
return;
}
size = rtas_ld(args, 1);
addr = rtas_ld(args, 0);
finish_read_pci_config(spapr, 0, addr, size, rets);
}
static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
uint32_t addr, uint32_t size,
uint32_t val, target_ulong rets)
{
PCIDevice *pci_dev;
if ((size != 1) && (size != 2) && (size != 4)) {
/* access must be 1, 2 or 4 bytes */
rtas_st(rets, 0, -1);
return;
}
pci_dev = find_dev(spapr, buid, addr);
addr = rtas_pci_cfgaddr(addr);
if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
/* Access must be to a valid device, within bounds and
* naturally aligned */
rtas_st(rets, 0, -1);
return;
}
pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
val, size);
rtas_st(rets, 0, 0);
}
static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint64_t buid;
uint32_t val, size, addr;
if ((nargs != 5) || (nret != 1)) {
rtas_st(rets, 0, -1);
return;
}
buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
val = rtas_ld(args, 4);
size = rtas_ld(args, 3);
addr = rtas_ld(args, 0);
finish_write_pci_config(spapr, buid, addr, size, val, rets);
}
static void rtas_write_pci_config(sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t val, size, addr;
if ((nargs != 3) || (nret != 1)) {
rtas_st(rets, 0, -1);
return;
}
val = rtas_ld(args, 2);
size = rtas_ld(args, 1);
addr = rtas_ld(args, 0);
finish_write_pci_config(spapr, 0, addr, size, val, rets);
}
/*
* Find an entry with config_addr or returns the empty one if not found AND
* alloc_new is set.
* At the moment the msi_table entries are never released so there is
* no point to look till the end of the list if we need to find the free entry.
*/
static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr,
bool alloc_new)
{
int i;
for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) {
if (!phb->msi_table[i].nvec) {
break;
}
if (phb->msi_table[i].config_addr == config_addr) {
return i;
}
}
if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) {
trace_spapr_pci_msi("Allocating new MSI config", i, config_addr);
return i;
}
return -1;
}
/*
* Set MSI/MSIX message data.
* This is required for msi_notify()/msix_notify() which
* will write at the addresses via spapr_msi_write().
*/
static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr,
bool msix, unsigned req_num)
{
unsigned i;
MSIMessage msg = { .address = addr, .data = 0 };
if (!msix) {
msi_set_message(pdev, msg);
trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
return;
}
for (i = 0; i < req_num; ++i) {
msg.address = addr | (i << 2);
msix_set_message(pdev, i, msg);
trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
}
}
static void rtas_ibm_change_msi(sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
uint32_t config_addr = rtas_ld(args, 0);
uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
unsigned int func = rtas_ld(args, 3);
unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
unsigned int seq_num = rtas_ld(args, 5);
unsigned int ret_intr_type;
int ndev, irq;
sPAPRPHBState *phb = NULL;
PCIDevice *pdev = NULL;
switch (func) {
case RTAS_CHANGE_MSI_FN:
case RTAS_CHANGE_FN:
ret_intr_type = RTAS_TYPE_MSI;
break;
case RTAS_CHANGE_MSIX_FN:
ret_intr_type = RTAS_TYPE_MSIX;
break;
default:
fprintf(stderr, "rtas_ibm_change_msi(%u) is not implemented\n", func);
rtas_st(rets, 0, -3); /* Parameter error */
return;
}
/* Fins sPAPRPHBState */
phb = find_phb(spapr, buid);
if (phb) {
pdev = find_dev(spapr, buid, config_addr);
}
if (!phb || !pdev) {
rtas_st(rets, 0, -3); /* Parameter error */
return;
}
/* Releasing MSIs */
if (!req_num) {
ndev = spapr_msicfg_find(phb, config_addr, false);
if (ndev < 0) {
trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
rtas_st(rets, 0, -1); /* Hardware error */
return;
}
trace_spapr_pci_msi("Released MSIs", ndev, config_addr);
rtas_st(rets, 0, 0);
rtas_st(rets, 1, 0);
return;
}
/* Enabling MSI */
/* Find a device number in the map to add or reuse the existing one */
ndev = spapr_msicfg_find(phb, config_addr, true);
if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) {
fprintf(stderr, "No free entry for a new MSI device\n");
rtas_st(rets, 0, -1); /* Hardware error */
return;
}
trace_spapr_pci_msi("Configuring MSI", ndev, config_addr);
/* Check if there is an old config and MSI number has not changed */
if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) {
/* Unexpected behaviour */
fprintf(stderr, "Cannot reuse MSI config for device#%d", ndev);
rtas_st(rets, 0, -1); /* Hardware error */
return;
}
/* There is no cached config, allocate MSIs */
if (!phb->msi_table[ndev].nvec) {
irq = spapr_allocate_irq_block(req_num, false);
if (irq < 0) {
fprintf(stderr, "Cannot allocate MSIs for device#%d", ndev);
rtas_st(rets, 0, -1); /* Hardware error */
return;
}
phb->msi_table[ndev].irq = irq;
phb->msi_table[ndev].nvec = req_num;
phb->msi_table[ndev].config_addr = config_addr;
}
/* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
spapr_msi_setmsg(pdev, phb->msi_win_addr | (ndev << 16),
ret_intr_type == RTAS_TYPE_MSIX, req_num);
rtas_st(rets, 0, 0);
rtas_st(rets, 1, req_num);
rtas_st(rets, 2, ++seq_num);
rtas_st(rets, 3, ret_intr_type);
trace_spapr_pci_rtas_ibm_change_msi(func, req_num);
}
static void rtas_ibm_query_interrupt_source_number(sPAPREnvironment *spapr,
uint32_t token,
uint32_t nargs,
target_ulong args,
uint32_t nret,
target_ulong rets)
{
uint32_t config_addr = rtas_ld(args, 0);
uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
int ndev;
sPAPRPHBState *phb = NULL;
/* Fins sPAPRPHBState */
phb = find_phb(spapr, buid);
if (!phb) {
rtas_st(rets, 0, -3); /* Parameter error */
return;
}
/* Find device descriptor and start IRQ */
ndev = spapr_msicfg_find(phb, config_addr, false);
if (ndev < 0) {
trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr);
rtas_st(rets, 0, -1); /* Hardware error */
return;
}
intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num;
trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
intr_src_num);
rtas_st(rets, 0, 0);
rtas_st(rets, 1, intr_src_num);
rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
}
static int pci_spapr_swizzle(int slot, int pin)
{
return (slot + pin) % PCI_NUM_PINS;
}
static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
{
/*
* Here we need to convert pci_dev + irq_num to some unique value
* which is less than number of IRQs on the specific bus (4). We
* use standard PCI swizzling, that is (slot number + pin number)
* % 4.
*/
return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
}
static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
{
/*
* Here we use the number returned by pci_spapr_map_irq to find a
* corresponding qemu_irq.
*/
sPAPRPHBState *phb = opaque;
trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
}
static uint64_t spapr_io_read(void *opaque, hwaddr addr,
unsigned size)
{
switch (size) {
case 1:
return cpu_inb(addr);
case 2:
return cpu_inw(addr);
case 4:
return cpu_inl(addr);
}
assert(0);
}
static void spapr_io_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
switch (size) {
case 1:
cpu_outb(addr, data);
return;
case 2:
cpu_outw(addr, data);
return;
case 4:
cpu_outl(addr, data);
return;
}
assert(0);
}
static const MemoryRegionOps spapr_io_ops = {
.endianness = DEVICE_LITTLE_ENDIAN,
.read = spapr_io_read,
.write = spapr_io_write
};
/*
* MSI/MSIX memory region implementation.
* The handler handles both MSI and MSIX.
* For MSI-X, the vector number is encoded as a part of the address,
* data is set to 0.
* For MSI, the vector number is encoded in least bits in data.
*/
static void spapr_msi_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
sPAPRPHBState *phb = opaque;
int ndev = addr >> 16;
int vec = ((addr & 0xFFFF) >> 2) | data;
uint32_t irq = phb->msi_table[ndev].irq + vec;
trace_spapr_pci_msi_write(addr, data, irq);
qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
}
static const MemoryRegionOps spapr_msi_ops = {
/* There is no .read as the read result is undefined by PCI spec */
.read = NULL,
.write = spapr_msi_write,
.endianness = DEVICE_LITTLE_ENDIAN
};
/*
* PHB PCI device
*/
static DMAContext *spapr_pci_dma_context_fn(PCIBus *bus, void *opaque,
int devfn)
{
sPAPRPHBState *phb = opaque;
return phb->dma;
}
static int spapr_phb_init(SysBusDevice *s)
{
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
PCIHostState *phb = PCI_HOST_BRIDGE(s);
char *namebuf;
int i;
PCIBus *bus;
if (sphb->index != -1) {
hwaddr windows_base;
if ((sphb->buid != -1) || (sphb->dma_liobn != -1)
|| (sphb->mem_win_addr != -1)
|| (sphb->io_win_addr != -1)
|| (sphb->msi_win_addr != -1)) {
fprintf(stderr, "Either \"index\" or other parameters must"
" be specified for PAPR PHB, not both\n");
return -1;
}
sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index;
windows_base = SPAPR_PCI_WINDOW_BASE
+ sphb->index * SPAPR_PCI_WINDOW_SPACING;
sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
sphb->msi_win_addr = windows_base + SPAPR_PCI_MSI_WIN_OFF;
}
if (sphb->buid == -1) {
fprintf(stderr, "BUID not specified for PHB\n");
return -1;
}
if (sphb->dma_liobn == -1) {
fprintf(stderr, "LIOBN not specified for PHB\n");
return -1;
}
if (sphb->mem_win_addr == -1) {
fprintf(stderr, "Memory window address not specified for PHB\n");
return -1;
}
if (sphb->io_win_addr == -1) {
fprintf(stderr, "IO window address not specified for PHB\n");
return -1;
}
if (sphb->msi_win_addr == -1) {
fprintf(stderr, "MSI window address not specified for PHB\n");
return -1;
}
if (find_phb(spapr, sphb->buid)) {
fprintf(stderr, "PCI host bridges must have unique BUIDs\n");
return -1;
}
sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
if (!sphb->busname) {
sphb->busname = sphb->dtbusname;
}
namebuf = alloca(strlen(sphb->dtbusname) + 32);
/* Initialize memory regions */
sprintf(namebuf, "%s.mmio", sphb->dtbusname);
memory_region_init(&sphb->memspace, namebuf, INT64_MAX);
sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
memory_region_init_alias(&sphb->memwindow, namebuf, &sphb->memspace,
SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
&sphb->memwindow);
/* On ppc, we only have MMIO no specific IO space from the CPU
* perspective. In theory we ought to be able to embed the PCI IO
* memory region direction in the system memory space. However,
* if any of the IO BAR subregions use the old_portio mechanism,
* that won't be processed properly unless accessed from the
* system io address space. This hack to bounce things via
* system_io works around the problem until all the users of
* old_portion are updated */
sprintf(namebuf, "%s.io", sphb->dtbusname);
memory_region_init(&sphb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
/* FIXME: fix to support multiple PHBs */
memory_region_add_subregion(get_system_io(), 0, &sphb->iospace);
sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
memory_region_init_io(&sphb->iowindow, &spapr_io_ops, sphb,
namebuf, SPAPR_PCI_IO_WIN_SIZE);
memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
&sphb->iowindow);
/* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
* we need to allocate some memory to catch those writes coming
* from msi_notify()/msix_notify() */
if (msi_supported) {
sprintf(namebuf, "%s.msi", sphb->dtbusname);
memory_region_init_io(&sphb->msiwindow, &spapr_msi_ops, sphb,
namebuf, SPAPR_MSIX_MAX_DEVS * 0x10000);
memory_region_add_subregion(get_system_memory(), sphb->msi_win_addr,
&sphb->msiwindow);
}
bus = pci_register_bus(DEVICE(s), sphb->busname,
pci_spapr_set_irq, pci_spapr_map_irq, sphb,
&sphb->memspace, &sphb->iospace,
PCI_DEVFN(0, 0), PCI_NUM_PINS);
phb->bus = bus;
sphb->dma_window_start = 0;
sphb->dma_window_size = 0x40000000;
sphb->dma = spapr_tce_new_dma_context(sphb->dma_liobn, sphb->dma_window_size);
if (!sphb->dma) {
fprintf(stderr, "Unable to create TCE table for %s\n", sphb->dtbusname);
return -1;
}
pci_setup_iommu(bus, spapr_pci_dma_context_fn, sphb);
QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
/* Initialize the LSI table */
for (i = 0; i < PCI_NUM_PINS; i++) {
uint32_t irq;
irq = spapr_allocate_lsi(0);
if (!irq) {
return -1;
}
sphb->lsi_table[i].irq = irq;
}
return 0;
}
static void spapr_phb_reset(DeviceState *qdev)
{
SysBusDevice *s = SYS_BUS_DEVICE(qdev);
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
/* Reset the IOMMU state */
spapr_tce_reset(sphb->dma);
}
static Property spapr_phb_properties[] = {
DEFINE_PROP_STRING("busname", sPAPRPHBState, busname),
DEFINE_PROP_INT32("index", sPAPRPHBState, index, -1),
DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, -1),
DEFINE_PROP_HEX32("liobn", sPAPRPHBState, dma_liobn, -1),
DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size,
SPAPR_PCI_MMIO_WIN_SIZE),
DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size,
SPAPR_PCI_IO_WIN_SIZE),
DEFINE_PROP_HEX64("msi_win_addr", sPAPRPHBState, msi_win_addr, -1),
DEFINE_PROP_END_OF_LIST(),
};
static void spapr_phb_class_init(ObjectClass *klass, void *data)
{
SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
sdc->init = spapr_phb_init;
dc->props = spapr_phb_properties;
dc->reset = spapr_phb_reset;
}
static const TypeInfo spapr_phb_info = {
.name = TYPE_SPAPR_PCI_HOST_BRIDGE,
.parent = TYPE_PCI_HOST_BRIDGE,
.instance_size = sizeof(sPAPRPHBState),
.class_init = spapr_phb_class_init,
};
PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index,
const char *busname)
{
DeviceState *dev;
dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
qdev_prop_set_uint32(dev, "index", index);
qdev_prop_set_string(dev, "busname", busname);
qdev_init_nofail(dev);
return PCI_HOST_BRIDGE(dev);
}
/* Macros to operate with address in OF binding to PCI */
#define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
#define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
#define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
#define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
#define b_ss(x) b_x((x), 24, 2) /* the space code */
#define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
#define b_ddddd(x) b_x((x), 11, 5) /* device number */
#define b_fff(x) b_x((x), 8, 3) /* function number */
#define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
int spapr_populate_pci_dt(sPAPRPHBState *phb,
uint32_t xics_phandle,
void *fdt)
{
int bus_off, i, j;
char nodename[256];
uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
struct {
uint32_t hi;
uint64_t child;
uint64_t parent;
uint64_t size;
} QEMU_PACKED ranges[] = {
{
cpu_to_be32(b_ss(1)), cpu_to_be64(0),
cpu_to_be64(phb->io_win_addr),
cpu_to_be64(memory_region_size(&phb->iospace)),
},
{
cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
cpu_to_be64(phb->mem_win_addr),
cpu_to_be64(memory_region_size(&phb->memwindow)),
},
};
uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
uint32_t interrupt_map_mask[] = {
cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
/* Start populating the FDT */
sprintf(nodename, "pci@%" PRIx64, phb->buid);
bus_off = fdt_add_subnode(fdt, 0, nodename);
if (bus_off < 0) {
return bus_off;
}
#define _FDT(exp) \
do { \
int ret = (exp); \
if (ret < 0) { \
return ret; \
} \
} while (0)
/* Write PHB properties */
_FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
_FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
_FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
_FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
_FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
_FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
_FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
_FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
_FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
_FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
/* Build the interrupt-map, this must matches what is done
* in pci_spapr_map_irq
*/
_FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
&interrupt_map_mask, sizeof(interrupt_map_mask)));
for (i = 0; i < PCI_SLOT_MAX; i++) {
for (j = 0; j < PCI_NUM_PINS; j++) {
uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
int lsi_num = pci_spapr_swizzle(i, j);
irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
irqmap[1] = 0;
irqmap[2] = 0;
irqmap[3] = cpu_to_be32(j+1);
irqmap[4] = cpu_to_be32(xics_phandle);
irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
irqmap[6] = cpu_to_be32(0x8);
}
}
/* Write interrupt map */
_FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
sizeof(interrupt_map)));
spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
phb->dma_liobn, phb->dma_window_start,
phb->dma_window_size);
return 0;
}
void spapr_pci_rtas_init(void)
{
spapr_rtas_register("read-pci-config", rtas_read_pci_config);
spapr_rtas_register("write-pci-config", rtas_write_pci_config);
spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
if (msi_supported) {
spapr_rtas_register("ibm,query-interrupt-source-number",
rtas_ibm_query_interrupt_source_number);
spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi);
}
}
static void spapr_pci_register_types(void)
{
type_register_static(&spapr_phb_info);
}
type_init(spapr_pci_register_types)