qemu-e2k/exec-all.h
bellard a57f63167c removed unused code
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4434 c046a42c-6fe2-441c-8c8c-71466251a162
2008-05-12 12:00:46 +00:00

605 lines
18 KiB
C

/*
* internal execution defines for qemu
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* allow to see translation results - the slowdown should be negligible, so we leave it */
#define DEBUG_DISAS
/* is_jmp field values */
#define DISAS_NEXT 0 /* next instruction can be analyzed */
#define DISAS_JUMP 1 /* only pc was modified dynamically */
#define DISAS_UPDATE 2 /* cpu state was modified dynamically */
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
struct TranslationBlock;
/* XXX: make safe guess about sizes */
#define MAX_OP_PER_INSTR 64
/* A Call op needs up to 6 + 2N parameters (N = number of arguments). */
#define MAX_OPC_PARAM 10
#define OPC_BUF_SIZE 512
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
/* Maximum size a TCG op can expand to. This is complicated because a
single op may require several host instructions and regirster reloads.
For now take a wild guess at 128 bytes, which should allow at least
a couple of fixup instructions per argument. */
#define TCG_MAX_OP_SIZE 128
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
extern target_ulong gen_opc_jump_pc[2];
extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
typedef void (GenOpFunc)(void);
typedef void (GenOpFunc1)(long);
typedef void (GenOpFunc2)(long, long);
typedef void (GenOpFunc3)(long, long, long);
#if defined(TARGET_I386)
void optimize_flags_init(void);
#endif
extern FILE *logfile;
extern int loglevel;
int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
void gen_pc_load(CPUState *env, struct TranslationBlock *tb,
unsigned long searched_pc, int pc_pos, void *puc);
unsigned long code_gen_max_block_size(void);
void cpu_gen_init(void);
int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
int *gen_code_size_ptr);
int cpu_restore_state(struct TranslationBlock *tb,
CPUState *env, unsigned long searched_pc,
void *puc);
int cpu_restore_state_copy(struct TranslationBlock *tb,
CPUState *env, unsigned long searched_pc,
void *puc);
void cpu_resume_from_signal(CPUState *env1, void *puc);
void cpu_exec_init(CPUState *env);
int page_unprotect(target_ulong address, unsigned long pc, void *puc);
void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
int is_cpu_write_access);
void tb_invalidate_page_range(target_ulong start, target_ulong end);
void tlb_flush_page(CPUState *env, target_ulong addr);
void tlb_flush(CPUState *env, int flush_global);
int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
target_phys_addr_t paddr, int prot,
int mmu_idx, int is_softmmu);
static inline int tlb_set_page(CPUState *env1, target_ulong vaddr,
target_phys_addr_t paddr, int prot,
int mmu_idx, int is_softmmu)
{
if (prot & PAGE_READ)
prot |= PAGE_EXEC;
return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu);
}
#define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
#define CODE_GEN_PHYS_HASH_BITS 15
#define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
/* maximum total translate dcode allocated */
/* NOTE: the translated code area cannot be too big because on some
archs the range of "fast" function calls is limited. Here is a
summary of the ranges:
i386 : signed 32 bits
arm : signed 26 bits
ppc : signed 24 bits
sparc : signed 32 bits
alpha : signed 23 bits
*/
#if defined(__alpha__)
#define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
#elif defined(__ia64)
#define CODE_GEN_BUFFER_SIZE (4 * 1024 * 1024) /* range of addl */
#elif defined(__powerpc__)
#define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
#else
/* XXX: make it dynamic on x86 */
#define CODE_GEN_BUFFER_SIZE (16 * 1024 * 1024)
#endif
//#define CODE_GEN_BUFFER_SIZE (128 * 1024)
/* estimated block size for TB allocation */
/* XXX: use a per code average code fragment size and modulate it
according to the host CPU */
#if defined(CONFIG_SOFTMMU)
#define CODE_GEN_AVG_BLOCK_SIZE 128
#else
#define CODE_GEN_AVG_BLOCK_SIZE 64
#endif
#define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
#if defined(__powerpc__) || defined(__x86_64__)
#define USE_DIRECT_JUMP
#endif
#if defined(__i386__) && !defined(_WIN32)
#define USE_DIRECT_JUMP
#endif
typedef struct TranslationBlock {
target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
target_ulong cs_base; /* CS base for this block */
uint64_t flags; /* flags defining in which context the code was generated */
uint16_t size; /* size of target code for this block (1 <=
size <= TARGET_PAGE_SIZE) */
uint16_t cflags; /* compile flags */
#define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
#define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
#define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
uint8_t *tc_ptr; /* pointer to the translated code */
/* next matching tb for physical address. */
struct TranslationBlock *phys_hash_next;
/* first and second physical page containing code. The lower bit
of the pointer tells the index in page_next[] */
struct TranslationBlock *page_next[2];
target_ulong page_addr[2];
/* the following data are used to directly call another TB from
the code of this one. */
uint16_t tb_next_offset[2]; /* offset of original jump target */
#ifdef USE_DIRECT_JUMP
uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
#else
unsigned long tb_next[2]; /* address of jump generated code */
#endif
/* list of TBs jumping to this one. This is a circular list using
the two least significant bits of the pointers to tell what is
the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
jmp_first */
struct TranslationBlock *jmp_next[2];
struct TranslationBlock *jmp_first;
} TranslationBlock;
static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
{
target_ulong tmp;
tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK;
}
static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
{
target_ulong tmp;
tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK)
| (tmp & TB_JMP_ADDR_MASK));
}
static inline unsigned int tb_phys_hash_func(unsigned long pc)
{
return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
}
TranslationBlock *tb_alloc(target_ulong pc);
void tb_flush(CPUState *env);
void tb_link_phys(TranslationBlock *tb,
target_ulong phys_pc, target_ulong phys_page2);
extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
extern uint8_t *code_gen_ptr;
#if defined(USE_DIRECT_JUMP)
#if defined(__powerpc__)
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
{
uint32_t val, *ptr;
/* patch the branch destination */
ptr = (uint32_t *)jmp_addr;
val = *ptr;
val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
*ptr = val;
/* flush icache */
asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
asm volatile ("sync" : : : "memory");
asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
asm volatile ("sync" : : : "memory");
asm volatile ("isync" : : : "memory");
}
#elif defined(__i386__) || defined(__x86_64__)
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
{
/* patch the branch destination */
*(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
/* no need to flush icache explicitely */
}
#endif
static inline void tb_set_jmp_target(TranslationBlock *tb,
int n, unsigned long addr)
{
unsigned long offset;
offset = tb->tb_jmp_offset[n];
tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
offset = tb->tb_jmp_offset[n + 2];
if (offset != 0xffff)
tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
}
#else
/* set the jump target */
static inline void tb_set_jmp_target(TranslationBlock *tb,
int n, unsigned long addr)
{
tb->tb_next[n] = addr;
}
#endif
static inline void tb_add_jump(TranslationBlock *tb, int n,
TranslationBlock *tb_next)
{
/* NOTE: this test is only needed for thread safety */
if (!tb->jmp_next[n]) {
/* patch the native jump address */
tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
/* add in TB jmp circular list */
tb->jmp_next[n] = tb_next->jmp_first;
tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
}
}
TranslationBlock *tb_find_pc(unsigned long pc_ptr);
#ifndef offsetof
#define offsetof(type, field) ((size_t) &((type *)0)->field)
#endif
#if defined(_WIN32)
#define ASM_DATA_SECTION ".section \".data\"\n"
#define ASM_PREVIOUS_SECTION ".section .text\n"
#elif defined(__APPLE__)
#define ASM_DATA_SECTION ".data\n"
#define ASM_PREVIOUS_SECTION ".text\n"
#else
#define ASM_DATA_SECTION ".section \".data\"\n"
#define ASM_PREVIOUS_SECTION ".previous\n"
#endif
#define ASM_OP_LABEL_NAME(n, opname) \
ASM_NAME(__op_label) #n "." ASM_NAME(opname)
extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
#if defined(__hppa__)
typedef int spinlock_t[4];
#define SPIN_LOCK_UNLOCKED { 1, 1, 1, 1 }
static inline void resetlock (spinlock_t *p)
{
(*p)[0] = (*p)[1] = (*p)[2] = (*p)[3] = 1;
}
#else
typedef int spinlock_t;
#define SPIN_LOCK_UNLOCKED 0
static inline void resetlock (spinlock_t *p)
{
*p = SPIN_LOCK_UNLOCKED;
}
#endif
#if defined(__powerpc__)
static inline int testandset (int *p)
{
int ret;
__asm__ __volatile__ (
"0: lwarx %0,0,%1\n"
" xor. %0,%3,%0\n"
" bne 1f\n"
" stwcx. %2,0,%1\n"
" bne- 0b\n"
"1: "
: "=&r" (ret)
: "r" (p), "r" (1), "r" (0)
: "cr0", "memory");
return ret;
}
#elif defined(__i386__)
static inline int testandset (int *p)
{
long int readval = 0;
__asm__ __volatile__ ("lock; cmpxchgl %2, %0"
: "+m" (*p), "+a" (readval)
: "r" (1)
: "cc");
return readval;
}
#elif defined(__x86_64__)
static inline int testandset (int *p)
{
long int readval = 0;
__asm__ __volatile__ ("lock; cmpxchgl %2, %0"
: "+m" (*p), "+a" (readval)
: "r" (1)
: "cc");
return readval;
}
#elif defined(__s390__)
static inline int testandset (int *p)
{
int ret;
__asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
" jl 0b"
: "=&d" (ret)
: "r" (1), "a" (p), "0" (*p)
: "cc", "memory" );
return ret;
}
#elif defined(__alpha__)
static inline int testandset (int *p)
{
int ret;
unsigned long one;
__asm__ __volatile__ ("0: mov 1,%2\n"
" ldl_l %0,%1\n"
" stl_c %2,%1\n"
" beq %2,1f\n"
".subsection 2\n"
"1: br 0b\n"
".previous"
: "=r" (ret), "=m" (*p), "=r" (one)
: "m" (*p));
return ret;
}
#elif defined(__sparc__)
static inline int testandset (int *p)
{
int ret;
__asm__ __volatile__("ldstub [%1], %0"
: "=r" (ret)
: "r" (p)
: "memory");
return (ret ? 1 : 0);
}
#elif defined(__arm__)
static inline int testandset (int *spinlock)
{
register unsigned int ret;
__asm__ __volatile__("swp %0, %1, [%2]"
: "=r"(ret)
: "0"(1), "r"(spinlock));
return ret;
}
#elif defined(__mc68000)
static inline int testandset (int *p)
{
char ret;
__asm__ __volatile__("tas %1; sne %0"
: "=r" (ret)
: "m" (p)
: "cc","memory");
return ret;
}
#elif defined(__hppa__)
/* Because malloc only guarantees 8-byte alignment for malloc'd data,
and GCC only guarantees 8-byte alignment for stack locals, we can't
be assured of 16-byte alignment for atomic lock data even if we
specify "__attribute ((aligned(16)))" in the type declaration. So,
we use a struct containing an array of four ints for the atomic lock
type and dynamically select the 16-byte aligned int from the array
for the semaphore. */
#define __PA_LDCW_ALIGNMENT 16
static inline void *ldcw_align (void *p) {
unsigned long a = (unsigned long)p;
a = (a + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1);
return (void *)a;
}
static inline int testandset (spinlock_t *p)
{
unsigned int ret;
p = ldcw_align(p);
__asm__ __volatile__("ldcw 0(%1),%0"
: "=r" (ret)
: "r" (p)
: "memory" );
return !ret;
}
#elif defined(__ia64)
#include <ia64intrin.h>
static inline int testandset (int *p)
{
return __sync_lock_test_and_set (p, 1);
}
#elif defined(__mips__)
static inline int testandset (int *p)
{
int ret;
__asm__ __volatile__ (
" .set push \n"
" .set noat \n"
" .set mips2 \n"
"1: li $1, 1 \n"
" ll %0, %1 \n"
" sc $1, %1 \n"
" beqz $1, 1b \n"
" .set pop "
: "=r" (ret), "+R" (*p)
:
: "memory");
return ret;
}
#else
#error unimplemented CPU support
#endif
#if defined(CONFIG_USER_ONLY)
static inline void spin_lock(spinlock_t *lock)
{
while (testandset(lock));
}
static inline void spin_unlock(spinlock_t *lock)
{
resetlock(lock);
}
static inline int spin_trylock(spinlock_t *lock)
{
return !testandset(lock);
}
#else
static inline void spin_lock(spinlock_t *lock)
{
}
static inline void spin_unlock(spinlock_t *lock)
{
}
static inline int spin_trylock(spinlock_t *lock)
{
return 1;
}
#endif
extern spinlock_t tb_lock;
extern int tb_invalidated_flag;
#if !defined(CONFIG_USER_ONLY)
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
void *retaddr);
#define ACCESS_TYPE (NB_MMU_MODES + 1)
#define MEMSUFFIX _code
#define env cpu_single_env
#define DATA_SIZE 1
#include "softmmu_header.h"
#define DATA_SIZE 2
#include "softmmu_header.h"
#define DATA_SIZE 4
#include "softmmu_header.h"
#define DATA_SIZE 8
#include "softmmu_header.h"
#undef ACCESS_TYPE
#undef MEMSUFFIX
#undef env
#endif
#if defined(CONFIG_USER_ONLY)
static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
{
return addr;
}
#else
/* NOTE: this function can trigger an exception */
/* NOTE2: the returned address is not exactly the physical address: it
is the offset relative to phys_ram_base */
static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
{
int mmu_idx, page_index, pd;
page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
mmu_idx = cpu_mmu_index(env1);
if (__builtin_expect(env1->tlb_table[mmu_idx][page_index].addr_code !=
(addr & TARGET_PAGE_MASK), 0)) {
ldub_code(addr);
}
pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
#if defined(TARGET_SPARC) || defined(TARGET_MIPS)
do_unassigned_access(addr, 0, 1, 0);
#else
cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
#endif
}
return addr + env1->tlb_table[mmu_idx][page_index].addend - (unsigned long)phys_ram_base;
}
#endif
#ifdef USE_KQEMU
#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
int kqemu_init(CPUState *env);
int kqemu_cpu_exec(CPUState *env);
void kqemu_flush_page(CPUState *env, target_ulong addr);
void kqemu_flush(CPUState *env, int global);
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
void kqemu_cpu_interrupt(CPUState *env);
void kqemu_record_dump(void);
static inline int kqemu_is_ok(CPUState *env)
{
return(env->kqemu_enabled &&
(env->cr[0] & CR0_PE_MASK) &&
!(env->hflags & HF_INHIBIT_IRQ_MASK) &&
(env->eflags & IF_MASK) &&
!(env->eflags & VM_MASK) &&
(env->kqemu_enabled == 2 ||
((env->hflags & HF_CPL_MASK) == 3 &&
(env->eflags & IOPL_MASK) != IOPL_MASK)));
}
#endif