qemu-e2k/hw/s390x/sclp.c
Markus Armbruster 24da21f265 s390/sclp: Simplify control flow in sclp_realize()
Suggested-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Message-Id: <1450452927-8346-24-git-send-email-armbru@redhat.com>
2016-01-13 15:16:19 +01:00

613 lines
20 KiB
C

/*
* SCLP Support
*
* Copyright IBM, Corp. 2012
*
* Authors:
* Christian Borntraeger <borntraeger@de.ibm.com>
* Heinz Graalfs <graalfs@linux.vnet.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or (at your
* option) any later version. See the COPYING file in the top-level directory.
*
*/
#include "cpu.h"
#include "sysemu/kvm.h"
#include "exec/memory.h"
#include "sysemu/sysemu.h"
#include "exec/address-spaces.h"
#include "hw/boards.h"
#include "hw/s390x/sclp.h"
#include "hw/s390x/event-facility.h"
#include "hw/s390x/s390-pci-bus.h"
static inline SCLPDevice *get_sclp_device(void)
{
return SCLP(object_resolve_path_type("", TYPE_SCLP, NULL));
}
/* Provide information about the configuration, CPUs and storage */
static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb)
{
ReadInfo *read_info = (ReadInfo *) sccb;
MachineState *machine = MACHINE(qdev_get_machine());
sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
CPUState *cpu;
int cpu_count = 0;
int i = 0;
int rnsize, rnmax;
int slots = MIN(machine->ram_slots, s390_get_memslot_count(kvm_state));
CPU_FOREACH(cpu) {
cpu_count++;
}
/* CPU information */
read_info->entries_cpu = cpu_to_be16(cpu_count);
read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
read_info->highest_cpu = cpu_to_be16(max_cpus);
for (i = 0; i < cpu_count; i++) {
read_info->entries[i].address = i;
read_info->entries[i].type = 0;
}
read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO |
SCLP_HAS_PCI_RECONFIG);
/* Memory Hotplug is only supported for the ccw machine type */
if (mhd) {
mhd->standby_subregion_size = MEM_SECTION_SIZE;
/* Deduct the memory slot already used for core */
if (slots > 0) {
while ((mhd->standby_subregion_size * (slots - 1)
< mhd->standby_mem_size)) {
mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
}
}
/*
* Initialize mapping of guest standby memory sections indicating which
* are and are not online. Assume all standby memory begins offline.
*/
if (mhd->standby_state_map == 0) {
if (mhd->standby_mem_size % mhd->standby_subregion_size) {
mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
mhd->standby_subregion_size + 1) *
(mhd->standby_subregion_size /
MEM_SECTION_SIZE));
} else {
mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
MEM_SECTION_SIZE);
}
}
mhd->padded_ram_size = ram_size + mhd->pad_size;
mhd->rzm = 1 << mhd->increment_size;
read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
}
rnsize = 1 << (sclp->increment_size - 20);
if (rnsize <= 128) {
read_info->rnsize = rnsize;
} else {
read_info->rnsize = 0;
read_info->rnsize2 = cpu_to_be32(rnsize);
}
rnmax = machine->maxram_size >> sclp->increment_size;
if (rnmax < 0x10000) {
read_info->rnmax = cpu_to_be16(rnmax);
} else {
read_info->rnmax = cpu_to_be16(0);
read_info->rnmax2 = cpu_to_be64(rnmax);
}
sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
}
static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb)
{
int i, assigned;
int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
if (!mhd) {
sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
return;
}
if ((ram_size >> mhd->increment_size) >= 0x10000) {
sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
return;
}
/* Return information regarding core memory */
storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
assigned = ram_size >> mhd->increment_size;
storage_info->assigned = cpu_to_be16(assigned);
for (i = 0; i < assigned; i++) {
storage_info->entries[i] = cpu_to_be32(subincrement_id);
subincrement_id += SCLP_INCREMENT_UNIT;
}
sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
}
static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb)
{
ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
if (!mhd) {
sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
return;
}
if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
return;
}
/* Return information regarding standby memory */
storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
mhd->increment_size);
storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
mhd->increment_size);
sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
}
static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb,
uint16_t element)
{
int i, assigned, subincrement_id;
AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
if (!mhd) {
sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
return;
}
if (element != 1) {
sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
return;
}
assigned = mhd->standby_mem_size >> mhd->increment_size;
attach_info->assigned = cpu_to_be16(assigned);
subincrement_id = ((ram_size >> mhd->increment_size) << 16)
+ SCLP_STARTING_SUBINCREMENT_ID;
for (i = 0; i < assigned; i++) {
attach_info->entries[i] = cpu_to_be32(subincrement_id);
subincrement_id += SCLP_INCREMENT_UNIT;
}
sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
}
static void assign_storage(SCLPDevice *sclp, SCCB *sccb)
{
MemoryRegion *mr = NULL;
uint64_t this_subregion_size;
AssignStorage *assign_info = (AssignStorage *) sccb;
sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
ram_addr_t assign_addr;
MemoryRegion *sysmem = get_system_memory();
if (!mhd) {
sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
return;
}
assign_addr = (assign_info->rn - 1) * mhd->rzm;
if ((assign_addr % MEM_SECTION_SIZE == 0) &&
(assign_addr >= mhd->padded_ram_size)) {
/* Re-use existing memory region if found */
mr = memory_region_find(sysmem, assign_addr, 1).mr;
memory_region_unref(mr);
if (!mr) {
MemoryRegion *standby_ram = g_new(MemoryRegion, 1);
/* offset to align to standby_subregion_size for allocation */
ram_addr_t offset = assign_addr -
(assign_addr - mhd->padded_ram_size)
% mhd->standby_subregion_size;
/* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) + NULL */
char id[16];
snprintf(id, 16, "standby.ram%d",
(int)((offset - mhd->padded_ram_size) /
mhd->standby_subregion_size) + 1);
/* Allocate a subregion of the calculated standby_subregion_size */
if (offset + mhd->standby_subregion_size >
mhd->padded_ram_size + mhd->standby_mem_size) {
this_subregion_size = mhd->padded_ram_size +
mhd->standby_mem_size - offset;
} else {
this_subregion_size = mhd->standby_subregion_size;
}
memory_region_init_ram(standby_ram, NULL, id, this_subregion_size,
&error_fatal);
/* This is a hack to make memory hotunplug work again. Once we have
* subdevices, we have to unparent them when unassigning memory,
* instead of doing it via the ref count of the MemoryRegion. */
object_ref(OBJECT(standby_ram));
object_unparent(OBJECT(standby_ram));
vmstate_register_ram_global(standby_ram);
memory_region_add_subregion(sysmem, offset, standby_ram);
}
/* The specified subregion is no longer in standby */
mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
/ MEM_SECTION_SIZE] = 1;
}
sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
}
static void unassign_storage(SCLPDevice *sclp, SCCB *sccb)
{
MemoryRegion *mr = NULL;
AssignStorage *assign_info = (AssignStorage *) sccb;
sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
ram_addr_t unassign_addr;
MemoryRegion *sysmem = get_system_memory();
if (!mhd) {
sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
return;
}
unassign_addr = (assign_info->rn - 1) * mhd->rzm;
/* if the addr is a multiple of 256 MB */
if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
(unassign_addr >= mhd->padded_ram_size)) {
mhd->standby_state_map[(unassign_addr -
mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;
/* find the specified memory region and destroy it */
mr = memory_region_find(sysmem, unassign_addr, 1).mr;
memory_region_unref(mr);
if (mr) {
int i;
int is_removable = 1;
ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
(unassign_addr - mhd->padded_ram_size)
% mhd->standby_subregion_size);
/* Mark all affected subregions as 'standby' once again */
for (i = 0;
i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
i++) {
if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
is_removable = 0;
break;
}
}
if (is_removable) {
memory_region_del_subregion(sysmem, mr);
object_unref(OBJECT(mr));
}
}
}
sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
}
/* Provide information about the CPU */
static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb)
{
ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
CPUState *cpu;
int cpu_count = 0;
int i = 0;
CPU_FOREACH(cpu) {
cpu_count++;
}
cpu_info->nr_configured = cpu_to_be16(cpu_count);
cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
cpu_info->nr_standby = cpu_to_be16(0);
/* The standby offset is 16-byte for each CPU */
cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
+ cpu_info->nr_configured*sizeof(CPUEntry));
for (i = 0; i < cpu_count; i++) {
cpu_info->entries[i].address = i;
cpu_info->entries[i].type = 0;
}
sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
}
static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code)
{
SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
SCLPEventFacility *ef = sclp->event_facility;
SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
switch (code & SCLP_CMD_CODE_MASK) {
case SCLP_CMDW_READ_SCP_INFO:
case SCLP_CMDW_READ_SCP_INFO_FORCED:
sclp_c->read_SCP_info(sclp, sccb);
break;
case SCLP_CMDW_READ_CPU_INFO:
sclp_c->read_cpu_info(sclp, sccb);
break;
case SCLP_READ_STORAGE_ELEMENT_INFO:
if (code & 0xff00) {
sclp_c->read_storage_element1_info(sclp, sccb);
} else {
sclp_c->read_storage_element0_info(sclp, sccb);
}
break;
case SCLP_ATTACH_STORAGE_ELEMENT:
sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8);
break;
case SCLP_ASSIGN_STORAGE:
sclp_c->assign_storage(sclp, sccb);
break;
case SCLP_UNASSIGN_STORAGE:
sclp_c->unassign_storage(sclp, sccb);
break;
case SCLP_CMDW_CONFIGURE_PCI:
s390_pci_sclp_configure(1, sccb);
break;
case SCLP_CMDW_DECONFIGURE_PCI:
s390_pci_sclp_configure(0, sccb);
break;
default:
efc->command_handler(ef, sccb, code);
break;
}
}
int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
{
SCLPDevice *sclp = get_sclp_device();
SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
int r = 0;
SCCB work_sccb;
hwaddr sccb_len = sizeof(SCCB);
/* first some basic checks on program checks */
if (env->psw.mask & PSW_MASK_PSTATE) {
r = -PGM_PRIVILEGED;
goto out;
}
if (cpu_physical_memory_is_io(sccb)) {
r = -PGM_ADDRESSING;
goto out;
}
if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
|| (sccb & ~0x7ffffff8UL) != 0) {
r = -PGM_SPECIFICATION;
goto out;
}
/*
* we want to work on a private copy of the sccb, to prevent guests
* from playing dirty tricks by modifying the memory content after
* the host has checked the values
*/
cpu_physical_memory_read(sccb, &work_sccb, sccb_len);
/* Valid sccb sizes */
if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
r = -PGM_SPECIFICATION;
goto out;
}
sclp_c->execute(sclp, (SCCB *)&work_sccb, code);
cpu_physical_memory_write(sccb, &work_sccb,
be16_to_cpu(work_sccb.h.length));
sclp_c->service_interrupt(sclp, sccb);
out:
return r;
}
static void service_interrupt(SCLPDevice *sclp, uint32_t sccb)
{
SCLPEventFacility *ef = sclp->event_facility;
SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);
uint32_t param = sccb & ~3;
/* Indicate whether an event is still pending */
param |= efc->event_pending(ef) ? 1 : 0;
if (!param) {
/* No need to send an interrupt, there's nothing to be notified about */
return;
}
s390_sclp_extint(param);
}
void sclp_service_interrupt(uint32_t sccb)
{
SCLPDevice *sclp = get_sclp_device();
SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp);
sclp_c->service_interrupt(sclp, sccb);
}
/* qemu object creation and initialization functions */
void s390_sclp_init(void)
{
Object *new = object_new(TYPE_SCLP);
object_property_add_child(qdev_get_machine(), TYPE_SCLP, new,
NULL);
object_unref(OBJECT(new));
qdev_init_nofail(DEVICE(new));
}
static void sclp_realize(DeviceState *dev, Error **errp)
{
MachineState *machine = MACHINE(qdev_get_machine());
SCLPDevice *sclp = SCLP(dev);
Error *err = NULL;
uint64_t hw_limit;
int ret;
object_property_set_bool(OBJECT(sclp->event_facility), true, "realized",
&err);
if (err) {
goto out;
}
ret = s390_set_memory_limit(machine->maxram_size, &hw_limit);
if (ret == -E2BIG) {
error_setg(&err, "qemu: host supports a maximum of %" PRIu64 " GB",
hw_limit >> 30);
} else if (ret) {
error_setg(&err, "qemu: setting the guest size failed");
}
out:
error_propagate(errp, err);
}
static void sclp_memory_init(SCLPDevice *sclp)
{
MachineState *machine = MACHINE(qdev_get_machine());
ram_addr_t initial_mem = machine->ram_size;
ram_addr_t max_mem = machine->maxram_size;
ram_addr_t standby_mem = max_mem - initial_mem;
ram_addr_t pad_mem = 0;
int increment_size = 20;
/* The storage increment size is a multiple of 1M and is a power of 2.
* The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
* The variable 'increment_size' is an exponent of 2 that can be
* used to calculate the size (in bytes) of an increment. */
while ((initial_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
increment_size++;
}
if (machine->ram_slots) {
while ((standby_mem >> increment_size) > MAX_STORAGE_INCREMENTS) {
increment_size++;
}
}
sclp->increment_size = increment_size;
/* The core and standby memory areas need to be aligned with
* the increment size. In effect, this can cause the
* user-specified memory size to be rounded down to align
* with the nearest increment boundary. */
initial_mem = initial_mem >> increment_size << increment_size;
standby_mem = standby_mem >> increment_size << increment_size;
/* If the size of ram is not on a MEM_SECTION_SIZE boundary,
calculate the pad size necessary to force this boundary. */
if (machine->ram_slots && standby_mem) {
sclpMemoryHotplugDev *mhd = init_sclp_memory_hotplug_dev();
if (initial_mem % MEM_SECTION_SIZE) {
pad_mem = MEM_SECTION_SIZE - initial_mem % MEM_SECTION_SIZE;
}
mhd->increment_size = increment_size;
mhd->pad_size = pad_mem;
mhd->standby_mem_size = standby_mem;
}
machine->ram_size = initial_mem;
machine->maxram_size = initial_mem + pad_mem + standby_mem;
/* let's propagate the changed ram size into the global variable. */
ram_size = initial_mem;
}
static void sclp_init(Object *obj)
{
SCLPDevice *sclp = SCLP(obj);
Object *new;
new = object_new(TYPE_SCLP_EVENT_FACILITY);
object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL);
/* qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS */
qdev_set_parent_bus(DEVICE(new), sysbus_get_default());
object_unref(new);
sclp->event_facility = EVENT_FACILITY(new);
sclp_memory_init(sclp);
}
static void sclp_class_init(ObjectClass *oc, void *data)
{
SCLPDeviceClass *sc = SCLP_CLASS(oc);
DeviceClass *dc = DEVICE_CLASS(oc);
dc->desc = "SCLP (Service-Call Logical Processor)";
dc->realize = sclp_realize;
dc->hotpluggable = false;
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
sc->read_SCP_info = read_SCP_info;
sc->read_storage_element0_info = read_storage_element0_info;
sc->read_storage_element1_info = read_storage_element1_info;
sc->attach_storage_element = attach_storage_element;
sc->assign_storage = assign_storage;
sc->unassign_storage = unassign_storage;
sc->read_cpu_info = sclp_read_cpu_info;
sc->execute = sclp_execute;
sc->service_interrupt = service_interrupt;
}
static TypeInfo sclp_info = {
.name = TYPE_SCLP,
.parent = TYPE_DEVICE,
.instance_init = sclp_init,
.instance_size = sizeof(SCLPDevice),
.class_init = sclp_class_init,
.class_size = sizeof(SCLPDeviceClass),
};
sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
{
DeviceState *dev;
dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
object_property_add_child(qdev_get_machine(),
TYPE_SCLP_MEMORY_HOTPLUG_DEV,
OBJECT(dev), NULL);
qdev_init_nofail(dev);
return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
}
sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
{
return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
}
static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass,
void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
}
static TypeInfo sclp_memory_hotplug_dev_info = {
.name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(sclpMemoryHotplugDev),
.class_init = sclp_memory_hotplug_dev_class_init,
};
static void register_types(void)
{
type_register_static(&sclp_memory_hotplug_dev_info);
type_register_static(&sclp_info);
}
type_init(register_types);