qemu-e2k/target-arm/helper-a64.c
Edgar E. Iglesias 2f0180c51b target-arm: Make far_el1 an array
No functional change.
Prepares for future additions of the EL2 and 3 versions of this reg.

Reviewed-by: Greg Bellows <greg.bellows@linaro.org>
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-id: 1402994746-8328-5-git-send-email-edgar.iglesias@gmail.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2014-08-04 14:41:54 +01:00

515 lines
14 KiB
C

/*
* AArch64 specific helpers
*
* Copyright (c) 2013 Alexander Graf <agraf@suse.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "cpu.h"
#include "exec/gdbstub.h"
#include "exec/helper-proto.h"
#include "qemu/host-utils.h"
#include "sysemu/sysemu.h"
#include "qemu/bitops.h"
#include "internals.h"
#include "qemu/crc32c.h"
#include <zlib.h> /* For crc32 */
/* C2.4.7 Multiply and divide */
/* special cases for 0 and LLONG_MIN are mandated by the standard */
uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
{
if (den == 0) {
return 0;
}
return num / den;
}
int64_t HELPER(sdiv64)(int64_t num, int64_t den)
{
if (den == 0) {
return 0;
}
if (num == LLONG_MIN && den == -1) {
return LLONG_MIN;
}
return num / den;
}
uint64_t HELPER(clz64)(uint64_t x)
{
return clz64(x);
}
uint64_t HELPER(cls64)(uint64_t x)
{
return clrsb64(x);
}
uint32_t HELPER(cls32)(uint32_t x)
{
return clrsb32(x);
}
uint32_t HELPER(clz32)(uint32_t x)
{
return clz32(x);
}
uint64_t HELPER(rbit64)(uint64_t x)
{
/* assign the correct byte position */
x = bswap64(x);
/* assign the correct nibble position */
x = ((x & 0xf0f0f0f0f0f0f0f0ULL) >> 4)
| ((x & 0x0f0f0f0f0f0f0f0fULL) << 4);
/* assign the correct bit position */
x = ((x & 0x8888888888888888ULL) >> 3)
| ((x & 0x4444444444444444ULL) >> 1)
| ((x & 0x2222222222222222ULL) << 1)
| ((x & 0x1111111111111111ULL) << 3);
return x;
}
/* Convert a softfloat float_relation_ (as returned by
* the float*_compare functions) to the correct ARM
* NZCV flag state.
*/
static inline uint32_t float_rel_to_flags(int res)
{
uint64_t flags;
switch (res) {
case float_relation_equal:
flags = PSTATE_Z | PSTATE_C;
break;
case float_relation_less:
flags = PSTATE_N;
break;
case float_relation_greater:
flags = PSTATE_C;
break;
case float_relation_unordered:
default:
flags = PSTATE_C | PSTATE_V;
break;
}
return flags;
}
uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
{
return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
}
uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
{
return float_rel_to_flags(float32_compare(x, y, fp_status));
}
uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
{
return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
}
uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
{
return float_rel_to_flags(float64_compare(x, y, fp_status));
}
float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
{
float_status *fpst = fpstp;
if ((float32_is_zero(a) && float32_is_infinity(b)) ||
(float32_is_infinity(a) && float32_is_zero(b))) {
/* 2.0 with the sign bit set to sign(A) XOR sign(B) */
return make_float32((1U << 30) |
((float32_val(a) ^ float32_val(b)) & (1U << 31)));
}
return float32_mul(a, b, fpst);
}
float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
if ((float64_is_zero(a) && float64_is_infinity(b)) ||
(float64_is_infinity(a) && float64_is_zero(b))) {
/* 2.0 with the sign bit set to sign(A) XOR sign(B) */
return make_float64((1ULL << 62) |
((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
}
return float64_mul(a, b, fpst);
}
uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
uint32_t rn, uint32_t numregs)
{
/* Helper function for SIMD TBL and TBX. We have to do the table
* lookup part for the 64 bits worth of indices we're passed in.
* result is the initial results vector (either zeroes for TBL
* or some guest values for TBX), rn the register number where
* the table starts, and numregs the number of registers in the table.
* We return the results of the lookups.
*/
int shift;
for (shift = 0; shift < 64; shift += 8) {
int index = extract64(indices, shift, 8);
if (index < 16 * numregs) {
/* Convert index (a byte offset into the virtual table
* which is a series of 128-bit vectors concatenated)
* into the correct vfp.regs[] element plus a bit offset
* into that element, bearing in mind that the table
* can wrap around from V31 to V0.
*/
int elt = (rn * 2 + (index >> 3)) % 64;
int bitidx = (index & 7) * 8;
uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8);
result = deposit64(result, shift, 8, val);
}
}
return result;
}
/* 64bit/double versions of the neon float compare functions */
uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
return -float64_eq_quiet(a, b, fpst);
}
uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
return -float64_le(b, a, fpst);
}
uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
return -float64_lt(b, a, fpst);
}
/* Reciprocal step and sqrt step. Note that unlike the A32/T32
* versions, these do a fully fused multiply-add or
* multiply-add-and-halve.
*/
#define float32_two make_float32(0x40000000)
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
#define float64_two make_float64(0x4000000000000000ULL)
#define float64_three make_float64(0x4008000000000000ULL)
#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
{
float_status *fpst = fpstp;
a = float32_chs(a);
if ((float32_is_infinity(a) && float32_is_zero(b)) ||
(float32_is_infinity(b) && float32_is_zero(a))) {
return float32_two;
}
return float32_muladd(a, b, float32_two, 0, fpst);
}
float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
a = float64_chs(a);
if ((float64_is_infinity(a) && float64_is_zero(b)) ||
(float64_is_infinity(b) && float64_is_zero(a))) {
return float64_two;
}
return float64_muladd(a, b, float64_two, 0, fpst);
}
float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
{
float_status *fpst = fpstp;
a = float32_chs(a);
if ((float32_is_infinity(a) && float32_is_zero(b)) ||
(float32_is_infinity(b) && float32_is_zero(a))) {
return float32_one_point_five;
}
return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
}
float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
{
float_status *fpst = fpstp;
a = float64_chs(a);
if ((float64_is_infinity(a) && float64_is_zero(b)) ||
(float64_is_infinity(b) && float64_is_zero(a))) {
return float64_one_point_five;
}
return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
}
/* Pairwise long add: add pairs of adjacent elements into
* double-width elements in the result (eg _s8 is an 8x8->16 op)
*/
uint64_t HELPER(neon_addlp_s8)(uint64_t a)
{
uint64_t nsignmask = 0x0080008000800080ULL;
uint64_t wsignmask = 0x8000800080008000ULL;
uint64_t elementmask = 0x00ff00ff00ff00ffULL;
uint64_t tmp1, tmp2;
uint64_t res, signres;
/* Extract odd elements, sign extend each to a 16 bit field */
tmp1 = a & elementmask;
tmp1 ^= nsignmask;
tmp1 |= wsignmask;
tmp1 = (tmp1 - nsignmask) ^ wsignmask;
/* Ditto for the even elements */
tmp2 = (a >> 8) & elementmask;
tmp2 ^= nsignmask;
tmp2 |= wsignmask;
tmp2 = (tmp2 - nsignmask) ^ wsignmask;
/* calculate the result by summing bits 0..14, 16..22, etc,
* and then adjusting the sign bits 15, 23, etc manually.
* This ensures the addition can't overflow the 16 bit field.
*/
signres = (tmp1 ^ tmp2) & wsignmask;
res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
res ^= signres;
return res;
}
uint64_t HELPER(neon_addlp_u8)(uint64_t a)
{
uint64_t tmp;
tmp = a & 0x00ff00ff00ff00ffULL;
tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
return tmp;
}
uint64_t HELPER(neon_addlp_s16)(uint64_t a)
{
int32_t reslo, reshi;
reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
return (uint32_t)reslo | (((uint64_t)reshi) << 32);
}
uint64_t HELPER(neon_addlp_u16)(uint64_t a)
{
uint64_t tmp;
tmp = a & 0x0000ffff0000ffffULL;
tmp += (a >> 16) & 0x0000ffff0000ffffULL;
return tmp;
}
/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
{
float_status *fpst = fpstp;
uint32_t val32, sbit;
int32_t exp;
if (float32_is_any_nan(a)) {
float32 nan = a;
if (float32_is_signaling_nan(a)) {
float_raise(float_flag_invalid, fpst);
nan = float32_maybe_silence_nan(a);
}
if (fpst->default_nan_mode) {
nan = float32_default_nan;
}
return nan;
}
val32 = float32_val(a);
sbit = 0x80000000ULL & val32;
exp = extract32(val32, 23, 8);
if (exp == 0) {
return make_float32(sbit | (0xfe << 23));
} else {
return make_float32(sbit | (~exp & 0xff) << 23);
}
}
float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
{
float_status *fpst = fpstp;
uint64_t val64, sbit;
int64_t exp;
if (float64_is_any_nan(a)) {
float64 nan = a;
if (float64_is_signaling_nan(a)) {
float_raise(float_flag_invalid, fpst);
nan = float64_maybe_silence_nan(a);
}
if (fpst->default_nan_mode) {
nan = float64_default_nan;
}
return nan;
}
val64 = float64_val(a);
sbit = 0x8000000000000000ULL & val64;
exp = extract64(float64_val(a), 52, 11);
if (exp == 0) {
return make_float64(sbit | (0x7feULL << 52));
} else {
return make_float64(sbit | (~exp & 0x7ffULL) << 52);
}
}
float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
{
/* Von Neumann rounding is implemented by using round-to-zero
* and then setting the LSB of the result if Inexact was raised.
*/
float32 r;
float_status *fpst = &env->vfp.fp_status;
float_status tstat = *fpst;
int exflags;
set_float_rounding_mode(float_round_to_zero, &tstat);
set_float_exception_flags(0, &tstat);
r = float64_to_float32(a, &tstat);
r = float32_maybe_silence_nan(r);
exflags = get_float_exception_flags(&tstat);
if (exflags & float_flag_inexact) {
r = make_float32(float32_val(r) | 1);
}
exflags |= get_float_exception_flags(fpst);
set_float_exception_flags(exflags, fpst);
return r;
}
/* 64-bit versions of the CRC helpers. Note that although the operation
* (and the prototypes of crc32c() and crc32() mean that only the bottom
* 32 bits of the accumulator and result are used, we pass and return
* uint64_t for convenience of the generated code. Unlike the 32-bit
* instruction set versions, val may genuinely have 64 bits of data in it.
* The upper bytes of val (above the number specified by 'bytes') must have
* been zeroed out by the caller.
*/
uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
{
uint8_t buf[8];
stq_le_p(buf, val);
/* zlib crc32 converts the accumulator and output to one's complement. */
return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}
uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
{
uint8_t buf[8];
stq_le_p(buf, val);
/* Linux crc32c converts the output to one's complement. */
return crc32c(acc, buf, bytes) ^ 0xffffffff;
}
/* Handle a CPU exception. */
void aarch64_cpu_do_interrupt(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
target_ulong addr = env->cp15.vbar_el[1];
int i;
if (arm_current_pl(env) == 0) {
if (env->aarch64) {
addr += 0x400;
} else {
addr += 0x600;
}
} else if (pstate_read(env) & PSTATE_SP) {
addr += 0x200;
}
arm_log_exception(cs->exception_index);
qemu_log_mask(CPU_LOG_INT, "...from EL%d\n", arm_current_pl(env));
if (qemu_loglevel_mask(CPU_LOG_INT)
&& !excp_is_internal(cs->exception_index)) {
qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%" PRIx32 "\n",
env->exception.syndrome);
}
env->cp15.esr_el[1] = env->exception.syndrome;
env->cp15.far_el[1] = env->exception.vaddress;
switch (cs->exception_index) {
case EXCP_PREFETCH_ABORT:
case EXCP_DATA_ABORT:
qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
env->cp15.far_el[1]);
break;
case EXCP_BKPT:
case EXCP_UDEF:
case EXCP_SWI:
break;
case EXCP_IRQ:
addr += 0x80;
break;
case EXCP_FIQ:
addr += 0x100;
break;
default:
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
}
if (is_a64(env)) {
env->banked_spsr[aarch64_banked_spsr_index(1)] = pstate_read(env);
aarch64_save_sp(env, arm_current_pl(env));
env->elr_el[1] = env->pc;
} else {
env->banked_spsr[0] = cpsr_read(env);
if (!env->thumb) {
env->cp15.esr_el[1] |= 1 << 25;
}
env->elr_el[1] = env->regs[15];
for (i = 0; i < 15; i++) {
env->xregs[i] = env->regs[i];
}
env->condexec_bits = 0;
}
pstate_write(env, PSTATE_DAIF | PSTATE_MODE_EL1h);
env->aarch64 = 1;
aarch64_restore_sp(env, 1);
env->pc = addr;
cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
}