f3e270377a
Before the next patch, fix coding style of the areas affected. Change the type of the return value from cpu_has_work() and qemu_cpu_has_work() to bool. Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
1031 lines
25 KiB
C
1031 lines
25 KiB
C
/*
|
|
* defines common to all virtual CPUs
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef CPU_ALL_H
|
|
#define CPU_ALL_H
|
|
|
|
#include "qemu-common.h"
|
|
#include "cpu-common.h"
|
|
|
|
/* some important defines:
|
|
*
|
|
* WORDS_ALIGNED : if defined, the host cpu can only make word aligned
|
|
* memory accesses.
|
|
*
|
|
* HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
|
|
* otherwise little endian.
|
|
*
|
|
* (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
|
|
*
|
|
* TARGET_WORDS_BIGENDIAN : same for target cpu
|
|
*/
|
|
|
|
#include "softfloat.h"
|
|
|
|
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
|
|
#define BSWAP_NEEDED
|
|
#endif
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
|
|
static inline uint16_t tswap16(uint16_t s)
|
|
{
|
|
return bswap16(s);
|
|
}
|
|
|
|
static inline uint32_t tswap32(uint32_t s)
|
|
{
|
|
return bswap32(s);
|
|
}
|
|
|
|
static inline uint64_t tswap64(uint64_t s)
|
|
{
|
|
return bswap64(s);
|
|
}
|
|
|
|
static inline void tswap16s(uint16_t *s)
|
|
{
|
|
*s = bswap16(*s);
|
|
}
|
|
|
|
static inline void tswap32s(uint32_t *s)
|
|
{
|
|
*s = bswap32(*s);
|
|
}
|
|
|
|
static inline void tswap64s(uint64_t *s)
|
|
{
|
|
*s = bswap64(*s);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline uint16_t tswap16(uint16_t s)
|
|
{
|
|
return s;
|
|
}
|
|
|
|
static inline uint32_t tswap32(uint32_t s)
|
|
{
|
|
return s;
|
|
}
|
|
|
|
static inline uint64_t tswap64(uint64_t s)
|
|
{
|
|
return s;
|
|
}
|
|
|
|
static inline void tswap16s(uint16_t *s)
|
|
{
|
|
}
|
|
|
|
static inline void tswap32s(uint32_t *s)
|
|
{
|
|
}
|
|
|
|
static inline void tswap64s(uint64_t *s)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
#if TARGET_LONG_SIZE == 4
|
|
#define tswapl(s) tswap32(s)
|
|
#define tswapls(s) tswap32s((uint32_t *)(s))
|
|
#define bswaptls(s) bswap32s(s)
|
|
#else
|
|
#define tswapl(s) tswap64(s)
|
|
#define tswapls(s) tswap64s((uint64_t *)(s))
|
|
#define bswaptls(s) bswap64s(s)
|
|
#endif
|
|
|
|
typedef union {
|
|
float32 f;
|
|
uint32_t l;
|
|
} CPU_FloatU;
|
|
|
|
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
|
|
endian ! */
|
|
typedef union {
|
|
float64 d;
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
struct {
|
|
uint32_t upper;
|
|
uint32_t lower;
|
|
} l;
|
|
#else
|
|
struct {
|
|
uint32_t lower;
|
|
uint32_t upper;
|
|
} l;
|
|
#endif
|
|
uint64_t ll;
|
|
} CPU_DoubleU;
|
|
|
|
typedef union {
|
|
floatx80 d;
|
|
struct {
|
|
uint64_t lower;
|
|
uint16_t upper;
|
|
} l;
|
|
} CPU_LDoubleU;
|
|
|
|
typedef union {
|
|
float128 q;
|
|
#if defined(HOST_WORDS_BIGENDIAN)
|
|
struct {
|
|
uint32_t upmost;
|
|
uint32_t upper;
|
|
uint32_t lower;
|
|
uint32_t lowest;
|
|
} l;
|
|
struct {
|
|
uint64_t upper;
|
|
uint64_t lower;
|
|
} ll;
|
|
#else
|
|
struct {
|
|
uint32_t lowest;
|
|
uint32_t lower;
|
|
uint32_t upper;
|
|
uint32_t upmost;
|
|
} l;
|
|
struct {
|
|
uint64_t lower;
|
|
uint64_t upper;
|
|
} ll;
|
|
#endif
|
|
} CPU_QuadU;
|
|
|
|
/* CPU memory access without any memory or io remapping */
|
|
|
|
/*
|
|
* the generic syntax for the memory accesses is:
|
|
*
|
|
* load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
|
|
*
|
|
* store: st{type}{size}{endian}_{access_type}(ptr, val)
|
|
*
|
|
* type is:
|
|
* (empty): integer access
|
|
* f : float access
|
|
*
|
|
* sign is:
|
|
* (empty): for floats or 32 bit size
|
|
* u : unsigned
|
|
* s : signed
|
|
*
|
|
* size is:
|
|
* b: 8 bits
|
|
* w: 16 bits
|
|
* l: 32 bits
|
|
* q: 64 bits
|
|
*
|
|
* endian is:
|
|
* (empty): target cpu endianness or 8 bit access
|
|
* r : reversed target cpu endianness (not implemented yet)
|
|
* be : big endian (not implemented yet)
|
|
* le : little endian (not implemented yet)
|
|
*
|
|
* access_type is:
|
|
* raw : host memory access
|
|
* user : user mode access using soft MMU
|
|
* kernel : kernel mode access using soft MMU
|
|
*/
|
|
static inline int ldub_p(const void *ptr)
|
|
{
|
|
return *(uint8_t *)ptr;
|
|
}
|
|
|
|
static inline int ldsb_p(const void *ptr)
|
|
{
|
|
return *(int8_t *)ptr;
|
|
}
|
|
|
|
static inline void stb_p(void *ptr, int v)
|
|
{
|
|
*(uint8_t *)ptr = v;
|
|
}
|
|
|
|
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
|
|
kernel handles unaligned load/stores may give better results, but
|
|
it is a system wide setting : bad */
|
|
#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
|
|
|
|
/* conservative code for little endian unaligned accesses */
|
|
static inline int lduw_le_p(const void *ptr)
|
|
{
|
|
#ifdef _ARCH_PPC
|
|
int val;
|
|
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
|
|
return val;
|
|
#else
|
|
const uint8_t *p = ptr;
|
|
return p[0] | (p[1] << 8);
|
|
#endif
|
|
}
|
|
|
|
static inline int ldsw_le_p(const void *ptr)
|
|
{
|
|
#ifdef _ARCH_PPC
|
|
int val;
|
|
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
|
|
return (int16_t)val;
|
|
#else
|
|
const uint8_t *p = ptr;
|
|
return (int16_t)(p[0] | (p[1] << 8));
|
|
#endif
|
|
}
|
|
|
|
static inline int ldl_le_p(const void *ptr)
|
|
{
|
|
#ifdef _ARCH_PPC
|
|
int val;
|
|
__asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
|
|
return val;
|
|
#else
|
|
const uint8_t *p = ptr;
|
|
return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
|
|
#endif
|
|
}
|
|
|
|
static inline uint64_t ldq_le_p(const void *ptr)
|
|
{
|
|
const uint8_t *p = ptr;
|
|
uint32_t v1, v2;
|
|
v1 = ldl_le_p(p);
|
|
v2 = ldl_le_p(p + 4);
|
|
return v1 | ((uint64_t)v2 << 32);
|
|
}
|
|
|
|
static inline void stw_le_p(void *ptr, int v)
|
|
{
|
|
#ifdef _ARCH_PPC
|
|
__asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
|
|
#else
|
|
uint8_t *p = ptr;
|
|
p[0] = v;
|
|
p[1] = v >> 8;
|
|
#endif
|
|
}
|
|
|
|
static inline void stl_le_p(void *ptr, int v)
|
|
{
|
|
#ifdef _ARCH_PPC
|
|
__asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
|
|
#else
|
|
uint8_t *p = ptr;
|
|
p[0] = v;
|
|
p[1] = v >> 8;
|
|
p[2] = v >> 16;
|
|
p[3] = v >> 24;
|
|
#endif
|
|
}
|
|
|
|
static inline void stq_le_p(void *ptr, uint64_t v)
|
|
{
|
|
uint8_t *p = ptr;
|
|
stl_le_p(p, (uint32_t)v);
|
|
stl_le_p(p + 4, v >> 32);
|
|
}
|
|
|
|
/* float access */
|
|
|
|
static inline float32 ldfl_le_p(const void *ptr)
|
|
{
|
|
union {
|
|
float32 f;
|
|
uint32_t i;
|
|
} u;
|
|
u.i = ldl_le_p(ptr);
|
|
return u.f;
|
|
}
|
|
|
|
static inline void stfl_le_p(void *ptr, float32 v)
|
|
{
|
|
union {
|
|
float32 f;
|
|
uint32_t i;
|
|
} u;
|
|
u.f = v;
|
|
stl_le_p(ptr, u.i);
|
|
}
|
|
|
|
static inline float64 ldfq_le_p(const void *ptr)
|
|
{
|
|
CPU_DoubleU u;
|
|
u.l.lower = ldl_le_p(ptr);
|
|
u.l.upper = ldl_le_p(ptr + 4);
|
|
return u.d;
|
|
}
|
|
|
|
static inline void stfq_le_p(void *ptr, float64 v)
|
|
{
|
|
CPU_DoubleU u;
|
|
u.d = v;
|
|
stl_le_p(ptr, u.l.lower);
|
|
stl_le_p(ptr + 4, u.l.upper);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline int lduw_le_p(const void *ptr)
|
|
{
|
|
return *(uint16_t *)ptr;
|
|
}
|
|
|
|
static inline int ldsw_le_p(const void *ptr)
|
|
{
|
|
return *(int16_t *)ptr;
|
|
}
|
|
|
|
static inline int ldl_le_p(const void *ptr)
|
|
{
|
|
return *(uint32_t *)ptr;
|
|
}
|
|
|
|
static inline uint64_t ldq_le_p(const void *ptr)
|
|
{
|
|
return *(uint64_t *)ptr;
|
|
}
|
|
|
|
static inline void stw_le_p(void *ptr, int v)
|
|
{
|
|
*(uint16_t *)ptr = v;
|
|
}
|
|
|
|
static inline void stl_le_p(void *ptr, int v)
|
|
{
|
|
*(uint32_t *)ptr = v;
|
|
}
|
|
|
|
static inline void stq_le_p(void *ptr, uint64_t v)
|
|
{
|
|
*(uint64_t *)ptr = v;
|
|
}
|
|
|
|
/* float access */
|
|
|
|
static inline float32 ldfl_le_p(const void *ptr)
|
|
{
|
|
return *(float32 *)ptr;
|
|
}
|
|
|
|
static inline float64 ldfq_le_p(const void *ptr)
|
|
{
|
|
return *(float64 *)ptr;
|
|
}
|
|
|
|
static inline void stfl_le_p(void *ptr, float32 v)
|
|
{
|
|
*(float32 *)ptr = v;
|
|
}
|
|
|
|
static inline void stfq_le_p(void *ptr, float64 v)
|
|
{
|
|
*(float64 *)ptr = v;
|
|
}
|
|
#endif
|
|
|
|
#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
|
|
|
|
static inline int lduw_be_p(const void *ptr)
|
|
{
|
|
#if defined(__i386__)
|
|
int val;
|
|
asm volatile ("movzwl %1, %0\n"
|
|
"xchgb %b0, %h0\n"
|
|
: "=q" (val)
|
|
: "m" (*(uint16_t *)ptr));
|
|
return val;
|
|
#else
|
|
const uint8_t *b = ptr;
|
|
return ((b[0] << 8) | b[1]);
|
|
#endif
|
|
}
|
|
|
|
static inline int ldsw_be_p(const void *ptr)
|
|
{
|
|
#if defined(__i386__)
|
|
int val;
|
|
asm volatile ("movzwl %1, %0\n"
|
|
"xchgb %b0, %h0\n"
|
|
: "=q" (val)
|
|
: "m" (*(uint16_t *)ptr));
|
|
return (int16_t)val;
|
|
#else
|
|
const uint8_t *b = ptr;
|
|
return (int16_t)((b[0] << 8) | b[1]);
|
|
#endif
|
|
}
|
|
|
|
static inline int ldl_be_p(const void *ptr)
|
|
{
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
int val;
|
|
asm volatile ("movl %1, %0\n"
|
|
"bswap %0\n"
|
|
: "=r" (val)
|
|
: "m" (*(uint32_t *)ptr));
|
|
return val;
|
|
#else
|
|
const uint8_t *b = ptr;
|
|
return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
|
|
#endif
|
|
}
|
|
|
|
static inline uint64_t ldq_be_p(const void *ptr)
|
|
{
|
|
uint32_t a,b;
|
|
a = ldl_be_p(ptr);
|
|
b = ldl_be_p((uint8_t *)ptr + 4);
|
|
return (((uint64_t)a<<32)|b);
|
|
}
|
|
|
|
static inline void stw_be_p(void *ptr, int v)
|
|
{
|
|
#if defined(__i386__)
|
|
asm volatile ("xchgb %b0, %h0\n"
|
|
"movw %w0, %1\n"
|
|
: "=q" (v)
|
|
: "m" (*(uint16_t *)ptr), "0" (v));
|
|
#else
|
|
uint8_t *d = (uint8_t *) ptr;
|
|
d[0] = v >> 8;
|
|
d[1] = v;
|
|
#endif
|
|
}
|
|
|
|
static inline void stl_be_p(void *ptr, int v)
|
|
{
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
asm volatile ("bswap %0\n"
|
|
"movl %0, %1\n"
|
|
: "=r" (v)
|
|
: "m" (*(uint32_t *)ptr), "0" (v));
|
|
#else
|
|
uint8_t *d = (uint8_t *) ptr;
|
|
d[0] = v >> 24;
|
|
d[1] = v >> 16;
|
|
d[2] = v >> 8;
|
|
d[3] = v;
|
|
#endif
|
|
}
|
|
|
|
static inline void stq_be_p(void *ptr, uint64_t v)
|
|
{
|
|
stl_be_p(ptr, v >> 32);
|
|
stl_be_p((uint8_t *)ptr + 4, v);
|
|
}
|
|
|
|
/* float access */
|
|
|
|
static inline float32 ldfl_be_p(const void *ptr)
|
|
{
|
|
union {
|
|
float32 f;
|
|
uint32_t i;
|
|
} u;
|
|
u.i = ldl_be_p(ptr);
|
|
return u.f;
|
|
}
|
|
|
|
static inline void stfl_be_p(void *ptr, float32 v)
|
|
{
|
|
union {
|
|
float32 f;
|
|
uint32_t i;
|
|
} u;
|
|
u.f = v;
|
|
stl_be_p(ptr, u.i);
|
|
}
|
|
|
|
static inline float64 ldfq_be_p(const void *ptr)
|
|
{
|
|
CPU_DoubleU u;
|
|
u.l.upper = ldl_be_p(ptr);
|
|
u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
|
|
return u.d;
|
|
}
|
|
|
|
static inline void stfq_be_p(void *ptr, float64 v)
|
|
{
|
|
CPU_DoubleU u;
|
|
u.d = v;
|
|
stl_be_p(ptr, u.l.upper);
|
|
stl_be_p((uint8_t *)ptr + 4, u.l.lower);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline int lduw_be_p(const void *ptr)
|
|
{
|
|
return *(uint16_t *)ptr;
|
|
}
|
|
|
|
static inline int ldsw_be_p(const void *ptr)
|
|
{
|
|
return *(int16_t *)ptr;
|
|
}
|
|
|
|
static inline int ldl_be_p(const void *ptr)
|
|
{
|
|
return *(uint32_t *)ptr;
|
|
}
|
|
|
|
static inline uint64_t ldq_be_p(const void *ptr)
|
|
{
|
|
return *(uint64_t *)ptr;
|
|
}
|
|
|
|
static inline void stw_be_p(void *ptr, int v)
|
|
{
|
|
*(uint16_t *)ptr = v;
|
|
}
|
|
|
|
static inline void stl_be_p(void *ptr, int v)
|
|
{
|
|
*(uint32_t *)ptr = v;
|
|
}
|
|
|
|
static inline void stq_be_p(void *ptr, uint64_t v)
|
|
{
|
|
*(uint64_t *)ptr = v;
|
|
}
|
|
|
|
/* float access */
|
|
|
|
static inline float32 ldfl_be_p(const void *ptr)
|
|
{
|
|
return *(float32 *)ptr;
|
|
}
|
|
|
|
static inline float64 ldfq_be_p(const void *ptr)
|
|
{
|
|
return *(float64 *)ptr;
|
|
}
|
|
|
|
static inline void stfl_be_p(void *ptr, float32 v)
|
|
{
|
|
*(float32 *)ptr = v;
|
|
}
|
|
|
|
static inline void stfq_be_p(void *ptr, float64 v)
|
|
{
|
|
*(float64 *)ptr = v;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* target CPU memory access functions */
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
#define lduw_p(p) lduw_be_p(p)
|
|
#define ldsw_p(p) ldsw_be_p(p)
|
|
#define ldl_p(p) ldl_be_p(p)
|
|
#define ldq_p(p) ldq_be_p(p)
|
|
#define ldfl_p(p) ldfl_be_p(p)
|
|
#define ldfq_p(p) ldfq_be_p(p)
|
|
#define stw_p(p, v) stw_be_p(p, v)
|
|
#define stl_p(p, v) stl_be_p(p, v)
|
|
#define stq_p(p, v) stq_be_p(p, v)
|
|
#define stfl_p(p, v) stfl_be_p(p, v)
|
|
#define stfq_p(p, v) stfq_be_p(p, v)
|
|
#else
|
|
#define lduw_p(p) lduw_le_p(p)
|
|
#define ldsw_p(p) ldsw_le_p(p)
|
|
#define ldl_p(p) ldl_le_p(p)
|
|
#define ldq_p(p) ldq_le_p(p)
|
|
#define ldfl_p(p) ldfl_le_p(p)
|
|
#define ldfq_p(p) ldfq_le_p(p)
|
|
#define stw_p(p, v) stw_le_p(p, v)
|
|
#define stl_p(p, v) stl_le_p(p, v)
|
|
#define stq_p(p, v) stq_le_p(p, v)
|
|
#define stfl_p(p, v) stfl_le_p(p, v)
|
|
#define stfq_p(p, v) stfq_le_p(p, v)
|
|
#endif
|
|
|
|
/* MMU memory access macros */
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
#include <assert.h>
|
|
#include "qemu-types.h"
|
|
|
|
/* On some host systems the guest address space is reserved on the host.
|
|
* This allows the guest address space to be offset to a convenient location.
|
|
*/
|
|
#if defined(CONFIG_USE_GUEST_BASE)
|
|
extern unsigned long guest_base;
|
|
extern int have_guest_base;
|
|
extern unsigned long reserved_va;
|
|
#define GUEST_BASE guest_base
|
|
#define RESERVED_VA reserved_va
|
|
#else
|
|
#define GUEST_BASE 0ul
|
|
#define RESERVED_VA 0ul
|
|
#endif
|
|
|
|
/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
|
|
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
|
|
|
|
#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
|
|
#define h2g_valid(x) 1
|
|
#else
|
|
#define h2g_valid(x) ({ \
|
|
unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
|
|
__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
|
|
})
|
|
#endif
|
|
|
|
#define h2g(x) ({ \
|
|
unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
|
|
/* Check if given address fits target address space */ \
|
|
assert(h2g_valid(x)); \
|
|
(abi_ulong)__ret; \
|
|
})
|
|
|
|
#define saddr(x) g2h(x)
|
|
#define laddr(x) g2h(x)
|
|
|
|
#else /* !CONFIG_USER_ONLY */
|
|
/* NOTE: we use double casts if pointers and target_ulong have
|
|
different sizes */
|
|
#define saddr(x) (uint8_t *)(long)(x)
|
|
#define laddr(x) (uint8_t *)(long)(x)
|
|
#endif
|
|
|
|
#define ldub_raw(p) ldub_p(laddr((p)))
|
|
#define ldsb_raw(p) ldsb_p(laddr((p)))
|
|
#define lduw_raw(p) lduw_p(laddr((p)))
|
|
#define ldsw_raw(p) ldsw_p(laddr((p)))
|
|
#define ldl_raw(p) ldl_p(laddr((p)))
|
|
#define ldq_raw(p) ldq_p(laddr((p)))
|
|
#define ldfl_raw(p) ldfl_p(laddr((p)))
|
|
#define ldfq_raw(p) ldfq_p(laddr((p)))
|
|
#define stb_raw(p, v) stb_p(saddr((p)), v)
|
|
#define stw_raw(p, v) stw_p(saddr((p)), v)
|
|
#define stl_raw(p, v) stl_p(saddr((p)), v)
|
|
#define stq_raw(p, v) stq_p(saddr((p)), v)
|
|
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
|
|
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
|
|
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
|
|
/* if user mode, no other memory access functions */
|
|
#define ldub(p) ldub_raw(p)
|
|
#define ldsb(p) ldsb_raw(p)
|
|
#define lduw(p) lduw_raw(p)
|
|
#define ldsw(p) ldsw_raw(p)
|
|
#define ldl(p) ldl_raw(p)
|
|
#define ldq(p) ldq_raw(p)
|
|
#define ldfl(p) ldfl_raw(p)
|
|
#define ldfq(p) ldfq_raw(p)
|
|
#define stb(p, v) stb_raw(p, v)
|
|
#define stw(p, v) stw_raw(p, v)
|
|
#define stl(p, v) stl_raw(p, v)
|
|
#define stq(p, v) stq_raw(p, v)
|
|
#define stfl(p, v) stfl_raw(p, v)
|
|
#define stfq(p, v) stfq_raw(p, v)
|
|
|
|
#define ldub_code(p) ldub_raw(p)
|
|
#define ldsb_code(p) ldsb_raw(p)
|
|
#define lduw_code(p) lduw_raw(p)
|
|
#define ldsw_code(p) ldsw_raw(p)
|
|
#define ldl_code(p) ldl_raw(p)
|
|
#define ldq_code(p) ldq_raw(p)
|
|
|
|
#define ldub_kernel(p) ldub_raw(p)
|
|
#define ldsb_kernel(p) ldsb_raw(p)
|
|
#define lduw_kernel(p) lduw_raw(p)
|
|
#define ldsw_kernel(p) ldsw_raw(p)
|
|
#define ldl_kernel(p) ldl_raw(p)
|
|
#define ldq_kernel(p) ldq_raw(p)
|
|
#define ldfl_kernel(p) ldfl_raw(p)
|
|
#define ldfq_kernel(p) ldfq_raw(p)
|
|
#define stb_kernel(p, v) stb_raw(p, v)
|
|
#define stw_kernel(p, v) stw_raw(p, v)
|
|
#define stl_kernel(p, v) stl_raw(p, v)
|
|
#define stq_kernel(p, v) stq_raw(p, v)
|
|
#define stfl_kernel(p, v) stfl_raw(p, v)
|
|
#define stfq_kernel(p, vt) stfq_raw(p, v)
|
|
|
|
#endif /* defined(CONFIG_USER_ONLY) */
|
|
|
|
/* page related stuff */
|
|
|
|
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
|
|
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
|
|
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
|
|
|
|
/* ??? These should be the larger of unsigned long and target_ulong. */
|
|
extern unsigned long qemu_real_host_page_size;
|
|
extern unsigned long qemu_host_page_bits;
|
|
extern unsigned long qemu_host_page_size;
|
|
extern unsigned long qemu_host_page_mask;
|
|
|
|
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
|
|
|
|
/* same as PROT_xxx */
|
|
#define PAGE_READ 0x0001
|
|
#define PAGE_WRITE 0x0002
|
|
#define PAGE_EXEC 0x0004
|
|
#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
|
|
#define PAGE_VALID 0x0008
|
|
/* original state of the write flag (used when tracking self-modifying
|
|
code */
|
|
#define PAGE_WRITE_ORG 0x0010
|
|
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
|
|
/* FIXME: Code that sets/uses this is broken and needs to go away. */
|
|
#define PAGE_RESERVED 0x0020
|
|
#endif
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
void page_dump(FILE *f);
|
|
|
|
typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
|
|
abi_ulong, unsigned long);
|
|
int walk_memory_regions(void *, walk_memory_regions_fn);
|
|
|
|
int page_get_flags(target_ulong address);
|
|
void page_set_flags(target_ulong start, target_ulong end, int flags);
|
|
int page_check_range(target_ulong start, target_ulong len, int flags);
|
|
#endif
|
|
|
|
CPUState *cpu_copy(CPUState *env);
|
|
CPUState *qemu_get_cpu(int cpu);
|
|
|
|
#define CPU_DUMP_CODE 0x00010000
|
|
|
|
void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
|
|
int flags);
|
|
void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
|
|
int flags);
|
|
|
|
void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
|
|
GCC_FMT_ATTR(2, 3);
|
|
extern CPUState *first_cpu;
|
|
extern CPUState *cpu_single_env;
|
|
|
|
/* Flags for use in ENV->INTERRUPT_PENDING.
|
|
|
|
The numbers assigned here are non-sequential in order to preserve
|
|
binary compatibility with the vmstate dump. Bit 0 (0x0001) was
|
|
previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
|
|
the vmstate dump. */
|
|
|
|
/* External hardware interrupt pending. This is typically used for
|
|
interrupts from devices. */
|
|
#define CPU_INTERRUPT_HARD 0x0002
|
|
|
|
/* Exit the current TB. This is typically used when some system-level device
|
|
makes some change to the memory mapping. E.g. the a20 line change. */
|
|
#define CPU_INTERRUPT_EXITTB 0x0004
|
|
|
|
/* Halt the CPU. */
|
|
#define CPU_INTERRUPT_HALT 0x0020
|
|
|
|
/* Debug event pending. */
|
|
#define CPU_INTERRUPT_DEBUG 0x0080
|
|
|
|
/* Several target-specific external hardware interrupts. Each target/cpu.h
|
|
should define proper names based on these defines. */
|
|
#define CPU_INTERRUPT_TGT_EXT_0 0x0008
|
|
#define CPU_INTERRUPT_TGT_EXT_1 0x0010
|
|
#define CPU_INTERRUPT_TGT_EXT_2 0x0040
|
|
#define CPU_INTERRUPT_TGT_EXT_3 0x0200
|
|
#define CPU_INTERRUPT_TGT_EXT_4 0x1000
|
|
|
|
/* Several target-specific internal interrupts. These differ from the
|
|
preceeding target-specific interrupts in that they are intended to
|
|
originate from within the cpu itself, typically in response to some
|
|
instruction being executed. These, therefore, are not masked while
|
|
single-stepping within the debugger. */
|
|
#define CPU_INTERRUPT_TGT_INT_0 0x0100
|
|
#define CPU_INTERRUPT_TGT_INT_1 0x0400
|
|
#define CPU_INTERRUPT_TGT_INT_2 0x0800
|
|
|
|
/* First unused bit: 0x2000. */
|
|
|
|
/* The set of all bits that should be masked when single-stepping. */
|
|
#define CPU_INTERRUPT_SSTEP_MASK \
|
|
(CPU_INTERRUPT_HARD \
|
|
| CPU_INTERRUPT_TGT_EXT_0 \
|
|
| CPU_INTERRUPT_TGT_EXT_1 \
|
|
| CPU_INTERRUPT_TGT_EXT_2 \
|
|
| CPU_INTERRUPT_TGT_EXT_3 \
|
|
| CPU_INTERRUPT_TGT_EXT_4)
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
typedef void (*CPUInterruptHandler)(CPUState *, int);
|
|
|
|
extern CPUInterruptHandler cpu_interrupt_handler;
|
|
|
|
static inline void cpu_interrupt(CPUState *s, int mask)
|
|
{
|
|
cpu_interrupt_handler(s, mask);
|
|
}
|
|
#else /* USER_ONLY */
|
|
void cpu_interrupt(CPUState *env, int mask);
|
|
#endif /* USER_ONLY */
|
|
|
|
void cpu_reset_interrupt(CPUState *env, int mask);
|
|
|
|
void cpu_exit(CPUState *s);
|
|
|
|
bool qemu_cpu_has_work(CPUState *env);
|
|
|
|
/* Breakpoint/watchpoint flags */
|
|
#define BP_MEM_READ 0x01
|
|
#define BP_MEM_WRITE 0x02
|
|
#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
|
|
#define BP_STOP_BEFORE_ACCESS 0x04
|
|
#define BP_WATCHPOINT_HIT 0x08
|
|
#define BP_GDB 0x10
|
|
#define BP_CPU 0x20
|
|
|
|
int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
|
|
CPUBreakpoint **breakpoint);
|
|
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
|
|
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
|
|
void cpu_breakpoint_remove_all(CPUState *env, int mask);
|
|
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
|
|
int flags, CPUWatchpoint **watchpoint);
|
|
int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
|
|
target_ulong len, int flags);
|
|
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
|
|
void cpu_watchpoint_remove_all(CPUState *env, int mask);
|
|
|
|
#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
|
|
#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
|
|
#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
|
|
|
|
void cpu_single_step(CPUState *env, int enabled);
|
|
void cpu_reset(CPUState *s);
|
|
int cpu_is_stopped(CPUState *env);
|
|
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
|
|
|
|
#define CPU_LOG_TB_OUT_ASM (1 << 0)
|
|
#define CPU_LOG_TB_IN_ASM (1 << 1)
|
|
#define CPU_LOG_TB_OP (1 << 2)
|
|
#define CPU_LOG_TB_OP_OPT (1 << 3)
|
|
#define CPU_LOG_INT (1 << 4)
|
|
#define CPU_LOG_EXEC (1 << 5)
|
|
#define CPU_LOG_PCALL (1 << 6)
|
|
#define CPU_LOG_IOPORT (1 << 7)
|
|
#define CPU_LOG_TB_CPU (1 << 8)
|
|
#define CPU_LOG_RESET (1 << 9)
|
|
|
|
/* define log items */
|
|
typedef struct CPULogItem {
|
|
int mask;
|
|
const char *name;
|
|
const char *help;
|
|
} CPULogItem;
|
|
|
|
extern const CPULogItem cpu_log_items[];
|
|
|
|
void cpu_set_log(int log_flags);
|
|
void cpu_set_log_filename(const char *filename);
|
|
int cpu_str_to_log_mask(const char *str);
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
/* Return the physical page corresponding to a virtual one. Use it
|
|
only for debugging because no protection checks are done. Return -1
|
|
if no page found. */
|
|
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
|
|
|
|
/* memory API */
|
|
|
|
extern int phys_ram_fd;
|
|
extern ram_addr_t ram_size;
|
|
|
|
/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
|
|
#define RAM_PREALLOC_MASK (1 << 0)
|
|
|
|
typedef struct RAMBlock {
|
|
uint8_t *host;
|
|
ram_addr_t offset;
|
|
ram_addr_t length;
|
|
uint32_t flags;
|
|
char idstr[256];
|
|
QLIST_ENTRY(RAMBlock) next;
|
|
#if defined(__linux__) && !defined(TARGET_S390X)
|
|
int fd;
|
|
#endif
|
|
} RAMBlock;
|
|
|
|
typedef struct RAMList {
|
|
uint8_t *phys_dirty;
|
|
QLIST_HEAD(ram, RAMBlock) blocks;
|
|
} RAMList;
|
|
extern RAMList ram_list;
|
|
|
|
extern const char *mem_path;
|
|
extern int mem_prealloc;
|
|
|
|
/* physical memory access */
|
|
|
|
/* MMIO pages are identified by a combination of an IO device index and
|
|
3 flags. The ROMD code stores the page ram offset in iotlb entry,
|
|
so only a limited number of ids are avaiable. */
|
|
|
|
#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
|
|
|
|
/* Flags stored in the low bits of the TLB virtual address. These are
|
|
defined so that fast path ram access is all zeros. */
|
|
/* Zero if TLB entry is valid. */
|
|
#define TLB_INVALID_MASK (1 << 3)
|
|
/* Set if TLB entry references a clean RAM page. The iotlb entry will
|
|
contain the page physical address. */
|
|
#define TLB_NOTDIRTY (1 << 4)
|
|
/* Set if TLB entry is an IO callback. */
|
|
#define TLB_MMIO (1 << 5)
|
|
|
|
#define VGA_DIRTY_FLAG 0x01
|
|
#define CODE_DIRTY_FLAG 0x02
|
|
#define MIGRATION_DIRTY_FLAG 0x08
|
|
|
|
/* read dirty bit (return 0 or 1) */
|
|
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
|
|
{
|
|
return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
|
|
}
|
|
|
|
static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
|
|
{
|
|
return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
|
|
}
|
|
|
|
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
|
|
int dirty_flags)
|
|
{
|
|
return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
|
|
}
|
|
|
|
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
|
|
{
|
|
ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
|
|
}
|
|
|
|
static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
|
|
int dirty_flags)
|
|
{
|
|
return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
|
|
}
|
|
|
|
static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
|
|
int length,
|
|
int dirty_flags)
|
|
{
|
|
int i, mask, len;
|
|
uint8_t *p;
|
|
|
|
len = length >> TARGET_PAGE_BITS;
|
|
mask = ~dirty_flags;
|
|
p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
|
|
for (i = 0; i < len; i++) {
|
|
p[i] &= mask;
|
|
}
|
|
}
|
|
|
|
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
|
|
int dirty_flags);
|
|
void cpu_tlb_update_dirty(CPUState *env);
|
|
|
|
int cpu_physical_memory_set_dirty_tracking(int enable);
|
|
|
|
int cpu_physical_memory_get_dirty_tracking(void);
|
|
|
|
int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
|
|
target_phys_addr_t end_addr);
|
|
|
|
int cpu_physical_log_start(target_phys_addr_t start_addr,
|
|
ram_addr_t size);
|
|
|
|
int cpu_physical_log_stop(target_phys_addr_t start_addr,
|
|
ram_addr_t size);
|
|
|
|
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
|
|
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
|
|
uint8_t *buf, int len, int is_write);
|
|
|
|
#endif /* CPU_ALL_H */
|