qemu-e2k/target-i386/op_helper.c
Stefan Weil 727d6bff27 target-i386: Clean includes
Remove some include statements which are not needed.

Signed-off-by: Stefan Weil <sw@weilnetz.de>
2012-02-28 22:33:42 +01:00

5925 lines
167 KiB
C

/*
* i386 helpers
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include "cpu.h"
#include "dyngen-exec.h"
#include "host-utils.h"
#include "ioport.h"
#include "qemu-log.h"
#include "cpu-defs.h"
#include "helper.h"
#if !defined(CONFIG_USER_ONLY)
#include "softmmu_exec.h"
#endif /* !defined(CONFIG_USER_ONLY) */
//#define DEBUG_PCALL
#ifdef DEBUG_PCALL
# define LOG_PCALL(...) qemu_log_mask(CPU_LOG_PCALL, ## __VA_ARGS__)
# define LOG_PCALL_STATE(env) \
log_cpu_state_mask(CPU_LOG_PCALL, (env), X86_DUMP_CCOP)
#else
# define LOG_PCALL(...) do { } while (0)
# define LOG_PCALL_STATE(env) do { } while (0)
#endif
/* n must be a constant to be efficient */
static inline target_long lshift(target_long x, int n)
{
if (n >= 0) {
return x << n;
} else {
return x >> (-n);
}
}
#define FPU_RC_MASK 0xc00
#define FPU_RC_NEAR 0x000
#define FPU_RC_DOWN 0x400
#define FPU_RC_UP 0x800
#define FPU_RC_CHOP 0xc00
#define MAXTAN 9223372036854775808.0
/* the following deal with x86 long double-precision numbers */
#define MAXEXPD 0x7fff
#define EXPBIAS 16383
#define EXPD(fp) (fp.l.upper & 0x7fff)
#define SIGND(fp) ((fp.l.upper) & 0x8000)
#define MANTD(fp) (fp.l.lower)
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
static inline void fpush(void)
{
env->fpstt = (env->fpstt - 1) & 7;
env->fptags[env->fpstt] = 0; /* validate stack entry */
}
static inline void fpop(void)
{
env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
env->fpstt = (env->fpstt + 1) & 7;
}
static inline floatx80 helper_fldt(target_ulong ptr)
{
CPU_LDoubleU temp;
temp.l.lower = ldq(ptr);
temp.l.upper = lduw(ptr + 8);
return temp.d;
}
static inline void helper_fstt(floatx80 f, target_ulong ptr)
{
CPU_LDoubleU temp;
temp.d = f;
stq(ptr, temp.l.lower);
stw(ptr + 8, temp.l.upper);
}
#define FPUS_IE (1 << 0)
#define FPUS_DE (1 << 1)
#define FPUS_ZE (1 << 2)
#define FPUS_OE (1 << 3)
#define FPUS_UE (1 << 4)
#define FPUS_PE (1 << 5)
#define FPUS_SF (1 << 6)
#define FPUS_SE (1 << 7)
#define FPUS_B (1 << 15)
#define FPUC_EM 0x3f
static inline uint32_t compute_eflags(void)
{
return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
}
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
static inline void load_eflags(int eflags, int update_mask)
{
CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
DF = 1 - (2 * ((eflags >> 10) & 1));
env->eflags = (env->eflags & ~update_mask) |
(eflags & update_mask) | 0x2;
}
/* load efer and update the corresponding hflags. XXX: do consistency
checks with cpuid bits ? */
static inline void cpu_load_efer(CPUState *env, uint64_t val)
{
env->efer = val;
env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
if (env->efer & MSR_EFER_LMA) {
env->hflags |= HF_LMA_MASK;
}
if (env->efer & MSR_EFER_SVME) {
env->hflags |= HF_SVME_MASK;
}
}
#if 0
#define raise_exception_err(a, b)\
do {\
qemu_log("raise_exception line=%d\n", __LINE__);\
(raise_exception_err)(a, b);\
} while (0)
#endif
static void QEMU_NORETURN raise_exception_err(int exception_index,
int error_code);
static const uint8_t parity_table[256] = {
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
};
/* modulo 17 table */
static const uint8_t rclw_table[32] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9,10,11,12,13,14,15,
16, 0, 1, 2, 3, 4, 5, 6,
7, 8, 9,10,11,12,13,14,
};
/* modulo 9 table */
static const uint8_t rclb_table[32] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 0, 1, 2, 3, 4, 5, 6,
7, 8, 0, 1, 2, 3, 4, 5,
6, 7, 8, 0, 1, 2, 3, 4,
};
#define floatx80_lg2 make_floatx80( 0x3ffd, 0x9a209a84fbcff799LL )
#define floatx80_l2e make_floatx80( 0x3fff, 0xb8aa3b295c17f0bcLL )
#define floatx80_l2t make_floatx80( 0x4000, 0xd49a784bcd1b8afeLL )
/* broken thread support */
static spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
void helper_lock(void)
{
spin_lock(&global_cpu_lock);
}
void helper_unlock(void)
{
spin_unlock(&global_cpu_lock);
}
void helper_write_eflags(target_ulong t0, uint32_t update_mask)
{
load_eflags(t0, update_mask);
}
target_ulong helper_read_eflags(void)
{
uint32_t eflags;
eflags = helper_cc_compute_all(CC_OP);
eflags |= (DF & DF_MASK);
eflags |= env->eflags & ~(VM_MASK | RF_MASK);
return eflags;
}
/* return non zero if error */
static inline int load_segment(uint32_t *e1_ptr, uint32_t *e2_ptr,
int selector)
{
SegmentCache *dt;
int index;
target_ulong ptr;
if (selector & 0x4)
dt = &env->ldt;
else
dt = &env->gdt;
index = selector & ~7;
if ((index + 7) > dt->limit)
return -1;
ptr = dt->base + index;
*e1_ptr = ldl_kernel(ptr);
*e2_ptr = ldl_kernel(ptr + 4);
return 0;
}
static inline unsigned int get_seg_limit(uint32_t e1, uint32_t e2)
{
unsigned int limit;
limit = (e1 & 0xffff) | (e2 & 0x000f0000);
if (e2 & DESC_G_MASK)
limit = (limit << 12) | 0xfff;
return limit;
}
static inline uint32_t get_seg_base(uint32_t e1, uint32_t e2)
{
return ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
}
static inline void load_seg_cache_raw_dt(SegmentCache *sc, uint32_t e1, uint32_t e2)
{
sc->base = get_seg_base(e1, e2);
sc->limit = get_seg_limit(e1, e2);
sc->flags = e2;
}
/* init the segment cache in vm86 mode. */
static inline void load_seg_vm(int seg, int selector)
{
selector &= 0xffff;
cpu_x86_load_seg_cache(env, seg, selector,
(selector << 4), 0xffff, 0);
}
static inline void get_ss_esp_from_tss(uint32_t *ss_ptr,
uint32_t *esp_ptr, int dpl)
{
int type, index, shift;
#if 0
{
int i;
printf("TR: base=%p limit=%x\n", env->tr.base, env->tr.limit);
for(i=0;i<env->tr.limit;i++) {
printf("%02x ", env->tr.base[i]);
if ((i & 7) == 7) printf("\n");
}
printf("\n");
}
#endif
if (!(env->tr.flags & DESC_P_MASK))
cpu_abort(env, "invalid tss");
type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
if ((type & 7) != 1)
cpu_abort(env, "invalid tss type");
shift = type >> 3;
index = (dpl * 4 + 2) << shift;
if (index + (4 << shift) - 1 > env->tr.limit)
raise_exception_err(EXCP0A_TSS, env->tr.selector & 0xfffc);
if (shift == 0) {
*esp_ptr = lduw_kernel(env->tr.base + index);
*ss_ptr = lduw_kernel(env->tr.base + index + 2);
} else {
*esp_ptr = ldl_kernel(env->tr.base + index);
*ss_ptr = lduw_kernel(env->tr.base + index + 4);
}
}
/* XXX: merge with load_seg() */
static void tss_load_seg(int seg_reg, int selector)
{
uint32_t e1, e2;
int rpl, dpl, cpl;
if ((selector & 0xfffc) != 0) {
if (load_segment(&e1, &e2, selector) != 0)
raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
if (!(e2 & DESC_S_MASK))
raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
rpl = selector & 3;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
if (seg_reg == R_CS) {
if (!(e2 & DESC_CS_MASK))
raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
/* XXX: is it correct ? */
if (dpl != rpl)
raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
if ((e2 & DESC_C_MASK) && dpl > rpl)
raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
} else if (seg_reg == R_SS) {
/* SS must be writable data */
if ((e2 & DESC_CS_MASK) || !(e2 & DESC_W_MASK))
raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
if (dpl != cpl || dpl != rpl)
raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
} else {
/* not readable code */
if ((e2 & DESC_CS_MASK) && !(e2 & DESC_R_MASK))
raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
/* if data or non conforming code, checks the rights */
if (((e2 >> DESC_TYPE_SHIFT) & 0xf) < 12) {
if (dpl < cpl || dpl < rpl)
raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
}
}
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
cpu_x86_load_seg_cache(env, seg_reg, selector,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
} else {
if (seg_reg == R_SS || seg_reg == R_CS)
raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
}
}
#define SWITCH_TSS_JMP 0
#define SWITCH_TSS_IRET 1
#define SWITCH_TSS_CALL 2
/* XXX: restore CPU state in registers (PowerPC case) */
static void switch_tss(int tss_selector,
uint32_t e1, uint32_t e2, int source,
uint32_t next_eip)
{
int tss_limit, tss_limit_max, type, old_tss_limit_max, old_type, v1, v2, i;
target_ulong tss_base;
uint32_t new_regs[8], new_segs[6];
uint32_t new_eflags, new_eip, new_cr3, new_ldt, new_trap;
uint32_t old_eflags, eflags_mask;
SegmentCache *dt;
int index;
target_ulong ptr;
type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
LOG_PCALL("switch_tss: sel=0x%04x type=%d src=%d\n", tss_selector, type, source);
/* if task gate, we read the TSS segment and we load it */
if (type == 5) {
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, tss_selector & 0xfffc);
tss_selector = e1 >> 16;
if (tss_selector & 4)
raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
if (load_segment(&e1, &e2, tss_selector) != 0)
raise_exception_err(EXCP0D_GPF, tss_selector & 0xfffc);
if (e2 & DESC_S_MASK)
raise_exception_err(EXCP0D_GPF, tss_selector & 0xfffc);
type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
if ((type & 7) != 1)
raise_exception_err(EXCP0D_GPF, tss_selector & 0xfffc);
}
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, tss_selector & 0xfffc);
if (type & 8)
tss_limit_max = 103;
else
tss_limit_max = 43;
tss_limit = get_seg_limit(e1, e2);
tss_base = get_seg_base(e1, e2);
if ((tss_selector & 4) != 0 ||
tss_limit < tss_limit_max)
raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
old_type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
if (old_type & 8)
old_tss_limit_max = 103;
else
old_tss_limit_max = 43;
/* read all the registers from the new TSS */
if (type & 8) {
/* 32 bit */
new_cr3 = ldl_kernel(tss_base + 0x1c);
new_eip = ldl_kernel(tss_base + 0x20);
new_eflags = ldl_kernel(tss_base + 0x24);
for(i = 0; i < 8; i++)
new_regs[i] = ldl_kernel(tss_base + (0x28 + i * 4));
for(i = 0; i < 6; i++)
new_segs[i] = lduw_kernel(tss_base + (0x48 + i * 4));
new_ldt = lduw_kernel(tss_base + 0x60);
new_trap = ldl_kernel(tss_base + 0x64);
} else {
/* 16 bit */
new_cr3 = 0;
new_eip = lduw_kernel(tss_base + 0x0e);
new_eflags = lduw_kernel(tss_base + 0x10);
for(i = 0; i < 8; i++)
new_regs[i] = lduw_kernel(tss_base + (0x12 + i * 2)) | 0xffff0000;
for(i = 0; i < 4; i++)
new_segs[i] = lduw_kernel(tss_base + (0x22 + i * 4));
new_ldt = lduw_kernel(tss_base + 0x2a);
new_segs[R_FS] = 0;
new_segs[R_GS] = 0;
new_trap = 0;
}
/* XXX: avoid a compiler warning, see
http://support.amd.com/us/Processor_TechDocs/24593.pdf
chapters 12.2.5 and 13.2.4 on how to implement TSS Trap bit */
(void)new_trap;
/* NOTE: we must avoid memory exceptions during the task switch,
so we make dummy accesses before */
/* XXX: it can still fail in some cases, so a bigger hack is
necessary to valid the TLB after having done the accesses */
v1 = ldub_kernel(env->tr.base);
v2 = ldub_kernel(env->tr.base + old_tss_limit_max);
stb_kernel(env->tr.base, v1);
stb_kernel(env->tr.base + old_tss_limit_max, v2);
/* clear busy bit (it is restartable) */
if (source == SWITCH_TSS_JMP || source == SWITCH_TSS_IRET) {
target_ulong ptr;
uint32_t e2;
ptr = env->gdt.base + (env->tr.selector & ~7);
e2 = ldl_kernel(ptr + 4);
e2 &= ~DESC_TSS_BUSY_MASK;
stl_kernel(ptr + 4, e2);
}
old_eflags = compute_eflags();
if (source == SWITCH_TSS_IRET)
old_eflags &= ~NT_MASK;
/* save the current state in the old TSS */
if (type & 8) {
/* 32 bit */
stl_kernel(env->tr.base + 0x20, next_eip);
stl_kernel(env->tr.base + 0x24, old_eflags);
stl_kernel(env->tr.base + (0x28 + 0 * 4), EAX);
stl_kernel(env->tr.base + (0x28 + 1 * 4), ECX);
stl_kernel(env->tr.base + (0x28 + 2 * 4), EDX);
stl_kernel(env->tr.base + (0x28 + 3 * 4), EBX);
stl_kernel(env->tr.base + (0x28 + 4 * 4), ESP);
stl_kernel(env->tr.base + (0x28 + 5 * 4), EBP);
stl_kernel(env->tr.base + (0x28 + 6 * 4), ESI);
stl_kernel(env->tr.base + (0x28 + 7 * 4), EDI);
for(i = 0; i < 6; i++)
stw_kernel(env->tr.base + (0x48 + i * 4), env->segs[i].selector);
} else {
/* 16 bit */
stw_kernel(env->tr.base + 0x0e, next_eip);
stw_kernel(env->tr.base + 0x10, old_eflags);
stw_kernel(env->tr.base + (0x12 + 0 * 2), EAX);
stw_kernel(env->tr.base + (0x12 + 1 * 2), ECX);
stw_kernel(env->tr.base + (0x12 + 2 * 2), EDX);
stw_kernel(env->tr.base + (0x12 + 3 * 2), EBX);
stw_kernel(env->tr.base + (0x12 + 4 * 2), ESP);
stw_kernel(env->tr.base + (0x12 + 5 * 2), EBP);
stw_kernel(env->tr.base + (0x12 + 6 * 2), ESI);
stw_kernel(env->tr.base + (0x12 + 7 * 2), EDI);
for(i = 0; i < 4; i++)
stw_kernel(env->tr.base + (0x22 + i * 4), env->segs[i].selector);
}
/* now if an exception occurs, it will occurs in the next task
context */
if (source == SWITCH_TSS_CALL) {
stw_kernel(tss_base, env->tr.selector);
new_eflags |= NT_MASK;
}
/* set busy bit */
if (source == SWITCH_TSS_JMP || source == SWITCH_TSS_CALL) {
target_ulong ptr;
uint32_t e2;
ptr = env->gdt.base + (tss_selector & ~7);
e2 = ldl_kernel(ptr + 4);
e2 |= DESC_TSS_BUSY_MASK;
stl_kernel(ptr + 4, e2);
}
/* set the new CPU state */
/* from this point, any exception which occurs can give problems */
env->cr[0] |= CR0_TS_MASK;
env->hflags |= HF_TS_MASK;
env->tr.selector = tss_selector;
env->tr.base = tss_base;
env->tr.limit = tss_limit;
env->tr.flags = e2 & ~DESC_TSS_BUSY_MASK;
if ((type & 8) && (env->cr[0] & CR0_PG_MASK)) {
cpu_x86_update_cr3(env, new_cr3);
}
/* load all registers without an exception, then reload them with
possible exception */
env->eip = new_eip;
eflags_mask = TF_MASK | AC_MASK | ID_MASK |
IF_MASK | IOPL_MASK | VM_MASK | RF_MASK | NT_MASK;
if (!(type & 8))
eflags_mask &= 0xffff;
load_eflags(new_eflags, eflags_mask);
/* XXX: what to do in 16 bit case ? */
EAX = new_regs[0];
ECX = new_regs[1];
EDX = new_regs[2];
EBX = new_regs[3];
ESP = new_regs[4];
EBP = new_regs[5];
ESI = new_regs[6];
EDI = new_regs[7];
if (new_eflags & VM_MASK) {
for(i = 0; i < 6; i++)
load_seg_vm(i, new_segs[i]);
/* in vm86, CPL is always 3 */
cpu_x86_set_cpl(env, 3);
} else {
/* CPL is set the RPL of CS */
cpu_x86_set_cpl(env, new_segs[R_CS] & 3);
/* first just selectors as the rest may trigger exceptions */
for(i = 0; i < 6; i++)
cpu_x86_load_seg_cache(env, i, new_segs[i], 0, 0, 0);
}
env->ldt.selector = new_ldt & ~4;
env->ldt.base = 0;
env->ldt.limit = 0;
env->ldt.flags = 0;
/* load the LDT */
if (new_ldt & 4)
raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
if ((new_ldt & 0xfffc) != 0) {
dt = &env->gdt;
index = new_ldt & ~7;
if ((index + 7) > dt->limit)
raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
ptr = dt->base + index;
e1 = ldl_kernel(ptr);
e2 = ldl_kernel(ptr + 4);
if ((e2 & DESC_S_MASK) || ((e2 >> DESC_TYPE_SHIFT) & 0xf) != 2)
raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
load_seg_cache_raw_dt(&env->ldt, e1, e2);
}
/* load the segments */
if (!(new_eflags & VM_MASK)) {
tss_load_seg(R_CS, new_segs[R_CS]);
tss_load_seg(R_SS, new_segs[R_SS]);
tss_load_seg(R_ES, new_segs[R_ES]);
tss_load_seg(R_DS, new_segs[R_DS]);
tss_load_seg(R_FS, new_segs[R_FS]);
tss_load_seg(R_GS, new_segs[R_GS]);
}
/* check that EIP is in the CS segment limits */
if (new_eip > env->segs[R_CS].limit) {
/* XXX: different exception if CALL ? */
raise_exception_err(EXCP0D_GPF, 0);
}
#ifndef CONFIG_USER_ONLY
/* reset local breakpoints */
if (env->dr[7] & 0x55) {
for (i = 0; i < 4; i++) {
if (hw_breakpoint_enabled(env->dr[7], i) == 0x1)
hw_breakpoint_remove(env, i);
}
env->dr[7] &= ~0x55;
}
#endif
}
/* check if Port I/O is allowed in TSS */
static inline void check_io(int addr, int size)
{
int io_offset, val, mask;
/* TSS must be a valid 32 bit one */
if (!(env->tr.flags & DESC_P_MASK) ||
((env->tr.flags >> DESC_TYPE_SHIFT) & 0xf) != 9 ||
env->tr.limit < 103)
goto fail;
io_offset = lduw_kernel(env->tr.base + 0x66);
io_offset += (addr >> 3);
/* Note: the check needs two bytes */
if ((io_offset + 1) > env->tr.limit)
goto fail;
val = lduw_kernel(env->tr.base + io_offset);
val >>= (addr & 7);
mask = (1 << size) - 1;
/* all bits must be zero to allow the I/O */
if ((val & mask) != 0) {
fail:
raise_exception_err(EXCP0D_GPF, 0);
}
}
void helper_check_iob(uint32_t t0)
{
check_io(t0, 1);
}
void helper_check_iow(uint32_t t0)
{
check_io(t0, 2);
}
void helper_check_iol(uint32_t t0)
{
check_io(t0, 4);
}
void helper_outb(uint32_t port, uint32_t data)
{
cpu_outb(port, data & 0xff);
}
target_ulong helper_inb(uint32_t port)
{
return cpu_inb(port);
}
void helper_outw(uint32_t port, uint32_t data)
{
cpu_outw(port, data & 0xffff);
}
target_ulong helper_inw(uint32_t port)
{
return cpu_inw(port);
}
void helper_outl(uint32_t port, uint32_t data)
{
cpu_outl(port, data);
}
target_ulong helper_inl(uint32_t port)
{
return cpu_inl(port);
}
static inline unsigned int get_sp_mask(unsigned int e2)
{
if (e2 & DESC_B_MASK)
return 0xffffffff;
else
return 0xffff;
}
static int exeption_has_error_code(int intno)
{
switch(intno) {
case 8:
case 10:
case 11:
case 12:
case 13:
case 14:
case 17:
return 1;
}
return 0;
}
#ifdef TARGET_X86_64
#define SET_ESP(val, sp_mask)\
do {\
if ((sp_mask) == 0xffff)\
ESP = (ESP & ~0xffff) | ((val) & 0xffff);\
else if ((sp_mask) == 0xffffffffLL)\
ESP = (uint32_t)(val);\
else\
ESP = (val);\
} while (0)
#else
#define SET_ESP(val, sp_mask) ESP = (ESP & ~(sp_mask)) | ((val) & (sp_mask))
#endif
/* in 64-bit machines, this can overflow. So this segment addition macro
* can be used to trim the value to 32-bit whenever needed */
#define SEG_ADDL(ssp, sp, sp_mask) ((uint32_t)((ssp) + (sp & (sp_mask))))
/* XXX: add a is_user flag to have proper security support */
#define PUSHW(ssp, sp, sp_mask, val)\
{\
sp -= 2;\
stw_kernel((ssp) + (sp & (sp_mask)), (val));\
}
#define PUSHL(ssp, sp, sp_mask, val)\
{\
sp -= 4;\
stl_kernel(SEG_ADDL(ssp, sp, sp_mask), (uint32_t)(val));\
}
#define POPW(ssp, sp, sp_mask, val)\
{\
val = lduw_kernel((ssp) + (sp & (sp_mask)));\
sp += 2;\
}
#define POPL(ssp, sp, sp_mask, val)\
{\
val = (uint32_t)ldl_kernel(SEG_ADDL(ssp, sp, sp_mask));\
sp += 4;\
}
/* protected mode interrupt */
static void do_interrupt_protected(int intno, int is_int, int error_code,
unsigned int next_eip, int is_hw)
{
SegmentCache *dt;
target_ulong ptr, ssp;
int type, dpl, selector, ss_dpl, cpl;
int has_error_code, new_stack, shift;
uint32_t e1, e2, offset, ss = 0, esp, ss_e1 = 0, ss_e2 = 0;
uint32_t old_eip, sp_mask;
has_error_code = 0;
if (!is_int && !is_hw)
has_error_code = exeption_has_error_code(intno);
if (is_int)
old_eip = next_eip;
else
old_eip = env->eip;
dt = &env->idt;
if (intno * 8 + 7 > dt->limit)
raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
ptr = dt->base + intno * 8;
e1 = ldl_kernel(ptr);
e2 = ldl_kernel(ptr + 4);
/* check gate type */
type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
switch(type) {
case 5: /* task gate */
/* must do that check here to return the correct error code */
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, intno * 8 + 2);
switch_tss(intno * 8, e1, e2, SWITCH_TSS_CALL, old_eip);
if (has_error_code) {
int type;
uint32_t mask;
/* push the error code */
type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
shift = type >> 3;
if (env->segs[R_SS].flags & DESC_B_MASK)
mask = 0xffffffff;
else
mask = 0xffff;
esp = (ESP - (2 << shift)) & mask;
ssp = env->segs[R_SS].base + esp;
if (shift)
stl_kernel(ssp, error_code);
else
stw_kernel(ssp, error_code);
SET_ESP(esp, mask);
}
return;
case 6: /* 286 interrupt gate */
case 7: /* 286 trap gate */
case 14: /* 386 interrupt gate */
case 15: /* 386 trap gate */
break;
default:
raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
break;
}
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
/* check privilege if software int */
if (is_int && dpl < cpl)
raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
/* check valid bit */
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, intno * 8 + 2);
selector = e1 >> 16;
offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff);
if ((selector & 0xfffc) == 0)
raise_exception_err(EXCP0D_GPF, 0);
if (load_segment(&e1, &e2, selector) != 0)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK)))
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (dpl > cpl)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
if (!(e2 & DESC_C_MASK) && dpl < cpl) {
/* to inner privilege */
get_ss_esp_from_tss(&ss, &esp, dpl);
if ((ss & 0xfffc) == 0)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if ((ss & 3) != dpl)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if (load_segment(&ss_e1, &ss_e2, ss) != 0)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
if (ss_dpl != dpl)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if (!(ss_e2 & DESC_S_MASK) ||
(ss_e2 & DESC_CS_MASK) ||
!(ss_e2 & DESC_W_MASK))
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if (!(ss_e2 & DESC_P_MASK))
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
new_stack = 1;
sp_mask = get_sp_mask(ss_e2);
ssp = get_seg_base(ss_e1, ss_e2);
} else if ((e2 & DESC_C_MASK) || dpl == cpl) {
/* to same privilege */
if (env->eflags & VM_MASK)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
new_stack = 0;
sp_mask = get_sp_mask(env->segs[R_SS].flags);
ssp = env->segs[R_SS].base;
esp = ESP;
dpl = cpl;
} else {
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
new_stack = 0; /* avoid warning */
sp_mask = 0; /* avoid warning */
ssp = 0; /* avoid warning */
esp = 0; /* avoid warning */
}
shift = type >> 3;
#if 0
/* XXX: check that enough room is available */
push_size = 6 + (new_stack << 2) + (has_error_code << 1);
if (env->eflags & VM_MASK)
push_size += 8;
push_size <<= shift;
#endif
if (shift == 1) {
if (new_stack) {
if (env->eflags & VM_MASK) {
PUSHL(ssp, esp, sp_mask, env->segs[R_GS].selector);
PUSHL(ssp, esp, sp_mask, env->segs[R_FS].selector);
PUSHL(ssp, esp, sp_mask, env->segs[R_DS].selector);
PUSHL(ssp, esp, sp_mask, env->segs[R_ES].selector);
}
PUSHL(ssp, esp, sp_mask, env->segs[R_SS].selector);
PUSHL(ssp, esp, sp_mask, ESP);
}
PUSHL(ssp, esp, sp_mask, compute_eflags());
PUSHL(ssp, esp, sp_mask, env->segs[R_CS].selector);
PUSHL(ssp, esp, sp_mask, old_eip);
if (has_error_code) {
PUSHL(ssp, esp, sp_mask, error_code);
}
} else {
if (new_stack) {
if (env->eflags & VM_MASK) {
PUSHW(ssp, esp, sp_mask, env->segs[R_GS].selector);
PUSHW(ssp, esp, sp_mask, env->segs[R_FS].selector);
PUSHW(ssp, esp, sp_mask, env->segs[R_DS].selector);
PUSHW(ssp, esp, sp_mask, env->segs[R_ES].selector);
}
PUSHW(ssp, esp, sp_mask, env->segs[R_SS].selector);
PUSHW(ssp, esp, sp_mask, ESP);
}
PUSHW(ssp, esp, sp_mask, compute_eflags());
PUSHW(ssp, esp, sp_mask, env->segs[R_CS].selector);
PUSHW(ssp, esp, sp_mask, old_eip);
if (has_error_code) {
PUSHW(ssp, esp, sp_mask, error_code);
}
}
if (new_stack) {
if (env->eflags & VM_MASK) {
cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0, 0);
cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0, 0);
cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0, 0);
cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0, 0);
}
ss = (ss & ~3) | dpl;
cpu_x86_load_seg_cache(env, R_SS, ss,
ssp, get_seg_limit(ss_e1, ss_e2), ss_e2);
}
SET_ESP(esp, sp_mask);
selector = (selector & ~3) | dpl;
cpu_x86_load_seg_cache(env, R_CS, selector,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
cpu_x86_set_cpl(env, dpl);
env->eip = offset;
/* interrupt gate clear IF mask */
if ((type & 1) == 0) {
env->eflags &= ~IF_MASK;
}
env->eflags &= ~(TF_MASK | VM_MASK | RF_MASK | NT_MASK);
}
#ifdef TARGET_X86_64
#define PUSHQ(sp, val)\
{\
sp -= 8;\
stq_kernel(sp, (val));\
}
#define POPQ(sp, val)\
{\
val = ldq_kernel(sp);\
sp += 8;\
}
static inline target_ulong get_rsp_from_tss(int level)
{
int index;
#if 0
printf("TR: base=" TARGET_FMT_lx " limit=%x\n",
env->tr.base, env->tr.limit);
#endif
if (!(env->tr.flags & DESC_P_MASK))
cpu_abort(env, "invalid tss");
index = 8 * level + 4;
if ((index + 7) > env->tr.limit)
raise_exception_err(EXCP0A_TSS, env->tr.selector & 0xfffc);
return ldq_kernel(env->tr.base + index);
}
/* 64 bit interrupt */
static void do_interrupt64(int intno, int is_int, int error_code,
target_ulong next_eip, int is_hw)
{
SegmentCache *dt;
target_ulong ptr;
int type, dpl, selector, cpl, ist;
int has_error_code, new_stack;
uint32_t e1, e2, e3, ss;
target_ulong old_eip, esp, offset;
has_error_code = 0;
if (!is_int && !is_hw)
has_error_code = exeption_has_error_code(intno);
if (is_int)
old_eip = next_eip;
else
old_eip = env->eip;
dt = &env->idt;
if (intno * 16 + 15 > dt->limit)
raise_exception_err(EXCP0D_GPF, intno * 16 + 2);
ptr = dt->base + intno * 16;
e1 = ldl_kernel(ptr);
e2 = ldl_kernel(ptr + 4);
e3 = ldl_kernel(ptr + 8);
/* check gate type */
type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
switch(type) {
case 14: /* 386 interrupt gate */
case 15: /* 386 trap gate */
break;
default:
raise_exception_err(EXCP0D_GPF, intno * 16 + 2);
break;
}
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
/* check privilege if software int */
if (is_int && dpl < cpl)
raise_exception_err(EXCP0D_GPF, intno * 16 + 2);
/* check valid bit */
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, intno * 16 + 2);
selector = e1 >> 16;
offset = ((target_ulong)e3 << 32) | (e2 & 0xffff0000) | (e1 & 0x0000ffff);
ist = e2 & 7;
if ((selector & 0xfffc) == 0)
raise_exception_err(EXCP0D_GPF, 0);
if (load_segment(&e1, &e2, selector) != 0)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK)))
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (dpl > cpl)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
if (!(e2 & DESC_L_MASK) || (e2 & DESC_B_MASK))
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if ((!(e2 & DESC_C_MASK) && dpl < cpl) || ist != 0) {
/* to inner privilege */
if (ist != 0)
esp = get_rsp_from_tss(ist + 3);
else
esp = get_rsp_from_tss(dpl);
esp &= ~0xfLL; /* align stack */
ss = 0;
new_stack = 1;
} else if ((e2 & DESC_C_MASK) || dpl == cpl) {
/* to same privilege */
if (env->eflags & VM_MASK)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
new_stack = 0;
if (ist != 0)
esp = get_rsp_from_tss(ist + 3);
else
esp = ESP;
esp &= ~0xfLL; /* align stack */
dpl = cpl;
} else {
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
new_stack = 0; /* avoid warning */
esp = 0; /* avoid warning */
}
PUSHQ(esp, env->segs[R_SS].selector);
PUSHQ(esp, ESP);
PUSHQ(esp, compute_eflags());
PUSHQ(esp, env->segs[R_CS].selector);
PUSHQ(esp, old_eip);
if (has_error_code) {
PUSHQ(esp, error_code);
}
if (new_stack) {
ss = 0 | dpl;
cpu_x86_load_seg_cache(env, R_SS, ss, 0, 0, 0);
}
ESP = esp;
selector = (selector & ~3) | dpl;
cpu_x86_load_seg_cache(env, R_CS, selector,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
cpu_x86_set_cpl(env, dpl);
env->eip = offset;
/* interrupt gate clear IF mask */
if ((type & 1) == 0) {
env->eflags &= ~IF_MASK;
}
env->eflags &= ~(TF_MASK | VM_MASK | RF_MASK | NT_MASK);
}
#endif
#ifdef TARGET_X86_64
#if defined(CONFIG_USER_ONLY)
void helper_syscall(int next_eip_addend)
{
env->exception_index = EXCP_SYSCALL;
env->exception_next_eip = env->eip + next_eip_addend;
cpu_loop_exit(env);
}
#else
void helper_syscall(int next_eip_addend)
{
int selector;
if (!(env->efer & MSR_EFER_SCE)) {
raise_exception_err(EXCP06_ILLOP, 0);
}
selector = (env->star >> 32) & 0xffff;
if (env->hflags & HF_LMA_MASK) {
int code64;
ECX = env->eip + next_eip_addend;
env->regs[11] = compute_eflags();
code64 = env->hflags & HF_CS64_MASK;
cpu_x86_set_cpl(env, 0);
cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK);
env->eflags &= ~env->fmask;
load_eflags(env->eflags, 0);
if (code64)
env->eip = env->lstar;
else
env->eip = env->cstar;
} else {
ECX = (uint32_t)(env->eip + next_eip_addend);
cpu_x86_set_cpl(env, 0);
cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK);
env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
env->eip = (uint32_t)env->star;
}
}
#endif
#endif
#ifdef TARGET_X86_64
void helper_sysret(int dflag)
{
int cpl, selector;
if (!(env->efer & MSR_EFER_SCE)) {
raise_exception_err(EXCP06_ILLOP, 0);
}
cpl = env->hflags & HF_CPL_MASK;
if (!(env->cr[0] & CR0_PE_MASK) || cpl != 0) {
raise_exception_err(EXCP0D_GPF, 0);
}
selector = (env->star >> 48) & 0xffff;
if (env->hflags & HF_LMA_MASK) {
if (dflag == 2) {
cpu_x86_load_seg_cache(env, R_CS, (selector + 16) | 3,
0, 0xffffffff,
DESC_G_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK |
DESC_L_MASK);
env->eip = ECX;
} else {
cpu_x86_load_seg_cache(env, R_CS, selector | 3,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
env->eip = (uint32_t)ECX;
}
cpu_x86_load_seg_cache(env, R_SS, selector + 8,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_W_MASK | DESC_A_MASK);
load_eflags((uint32_t)(env->regs[11]), TF_MASK | AC_MASK | ID_MASK |
IF_MASK | IOPL_MASK | VM_MASK | RF_MASK | NT_MASK);
cpu_x86_set_cpl(env, 3);
} else {
cpu_x86_load_seg_cache(env, R_CS, selector | 3,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
env->eip = (uint32_t)ECX;
cpu_x86_load_seg_cache(env, R_SS, selector + 8,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_W_MASK | DESC_A_MASK);
env->eflags |= IF_MASK;
cpu_x86_set_cpl(env, 3);
}
}
#endif
/* real mode interrupt */
static void do_interrupt_real(int intno, int is_int, int error_code,
unsigned int next_eip)
{
SegmentCache *dt;
target_ulong ptr, ssp;
int selector;
uint32_t offset, esp;
uint32_t old_cs, old_eip;
/* real mode (simpler !) */
dt = &env->idt;
if (intno * 4 + 3 > dt->limit)
raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
ptr = dt->base + intno * 4;
offset = lduw_kernel(ptr);
selector = lduw_kernel(ptr + 2);
esp = ESP;
ssp = env->segs[R_SS].base;
if (is_int)
old_eip = next_eip;
else
old_eip = env->eip;
old_cs = env->segs[R_CS].selector;
/* XXX: use SS segment size ? */
PUSHW(ssp, esp, 0xffff, compute_eflags());
PUSHW(ssp, esp, 0xffff, old_cs);
PUSHW(ssp, esp, 0xffff, old_eip);
/* update processor state */
ESP = (ESP & ~0xffff) | (esp & 0xffff);
env->eip = offset;
env->segs[R_CS].selector = selector;
env->segs[R_CS].base = (selector << 4);
env->eflags &= ~(IF_MASK | TF_MASK | AC_MASK | RF_MASK);
}
#if defined(CONFIG_USER_ONLY)
/* fake user mode interrupt */
static void do_interrupt_user(int intno, int is_int, int error_code,
target_ulong next_eip)
{
SegmentCache *dt;
target_ulong ptr;
int dpl, cpl, shift;
uint32_t e2;
dt = &env->idt;
if (env->hflags & HF_LMA_MASK) {
shift = 4;
} else {
shift = 3;
}
ptr = dt->base + (intno << shift);
e2 = ldl_kernel(ptr + 4);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
/* check privilege if software int */
if (is_int && dpl < cpl)
raise_exception_err(EXCP0D_GPF, (intno << shift) + 2);
/* Since we emulate only user space, we cannot do more than
exiting the emulation with the suitable exception and error
code */
if (is_int)
EIP = next_eip;
}
#else
static void handle_even_inj(int intno, int is_int, int error_code,
int is_hw, int rm)
{
uint32_t event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj));
if (!(event_inj & SVM_EVTINJ_VALID)) {
int type;
if (is_int)
type = SVM_EVTINJ_TYPE_SOFT;
else
type = SVM_EVTINJ_TYPE_EXEPT;
event_inj = intno | type | SVM_EVTINJ_VALID;
if (!rm && exeption_has_error_code(intno)) {
event_inj |= SVM_EVTINJ_VALID_ERR;
stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err), error_code);
}
stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), event_inj);
}
}
#endif
/*
* Begin execution of an interruption. is_int is TRUE if coming from
* the int instruction. next_eip is the EIP value AFTER the interrupt
* instruction. It is only relevant if is_int is TRUE.
*/
static void do_interrupt_all(int intno, int is_int, int error_code,
target_ulong next_eip, int is_hw)
{
if (qemu_loglevel_mask(CPU_LOG_INT)) {
if ((env->cr[0] & CR0_PE_MASK)) {
static int count;
qemu_log("%6d: v=%02x e=%04x i=%d cpl=%d IP=%04x:" TARGET_FMT_lx " pc=" TARGET_FMT_lx " SP=%04x:" TARGET_FMT_lx,
count, intno, error_code, is_int,
env->hflags & HF_CPL_MASK,
env->segs[R_CS].selector, EIP,
(int)env->segs[R_CS].base + EIP,
env->segs[R_SS].selector, ESP);
if (intno == 0x0e) {
qemu_log(" CR2=" TARGET_FMT_lx, env->cr[2]);
} else {
qemu_log(" EAX=" TARGET_FMT_lx, EAX);
}
qemu_log("\n");
log_cpu_state(env, X86_DUMP_CCOP);
#if 0
{
int i;
target_ulong ptr;
qemu_log(" code=");
ptr = env->segs[R_CS].base + env->eip;
for(i = 0; i < 16; i++) {
qemu_log(" %02x", ldub(ptr + i));
}
qemu_log("\n");
}
#endif
count++;
}
}
if (env->cr[0] & CR0_PE_MASK) {
#if !defined(CONFIG_USER_ONLY)
if (env->hflags & HF_SVMI_MASK)
handle_even_inj(intno, is_int, error_code, is_hw, 0);
#endif
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
do_interrupt64(intno, is_int, error_code, next_eip, is_hw);
} else
#endif
{
do_interrupt_protected(intno, is_int, error_code, next_eip, is_hw);
}
} else {
#if !defined(CONFIG_USER_ONLY)
if (env->hflags & HF_SVMI_MASK)
handle_even_inj(intno, is_int, error_code, is_hw, 1);
#endif
do_interrupt_real(intno, is_int, error_code, next_eip);
}
#if !defined(CONFIG_USER_ONLY)
if (env->hflags & HF_SVMI_MASK) {
uint32_t event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj));
stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), event_inj & ~SVM_EVTINJ_VALID);
}
#endif
}
void do_interrupt(CPUState *env1)
{
CPUState *saved_env;
saved_env = env;
env = env1;
#if defined(CONFIG_USER_ONLY)
/* if user mode only, we simulate a fake exception
which will be handled outside the cpu execution
loop */
do_interrupt_user(env->exception_index,
env->exception_is_int,
env->error_code,
env->exception_next_eip);
/* successfully delivered */
env->old_exception = -1;
#else
/* simulate a real cpu exception. On i386, it can
trigger new exceptions, but we do not handle
double or triple faults yet. */
do_interrupt_all(env->exception_index,
env->exception_is_int,
env->error_code,
env->exception_next_eip, 0);
/* successfully delivered */
env->old_exception = -1;
#endif
env = saved_env;
}
void do_interrupt_x86_hardirq(CPUState *env1, int intno, int is_hw)
{
CPUState *saved_env;
saved_env = env;
env = env1;
do_interrupt_all(intno, 0, 0, 0, is_hw);
env = saved_env;
}
/* This should come from sysemu.h - if we could include it here... */
void qemu_system_reset_request(void);
/*
* Check nested exceptions and change to double or triple fault if
* needed. It should only be called, if this is not an interrupt.
* Returns the new exception number.
*/
static int check_exception(int intno, int *error_code)
{
int first_contributory = env->old_exception == 0 ||
(env->old_exception >= 10 &&
env->old_exception <= 13);
int second_contributory = intno == 0 ||
(intno >= 10 && intno <= 13);
qemu_log_mask(CPU_LOG_INT, "check_exception old: 0x%x new 0x%x\n",
env->old_exception, intno);
#if !defined(CONFIG_USER_ONLY)
if (env->old_exception == EXCP08_DBLE) {
if (env->hflags & HF_SVMI_MASK)
helper_vmexit(SVM_EXIT_SHUTDOWN, 0); /* does not return */
qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
qemu_system_reset_request();
return EXCP_HLT;
}
#endif
if ((first_contributory && second_contributory)
|| (env->old_exception == EXCP0E_PAGE &&
(second_contributory || (intno == EXCP0E_PAGE)))) {
intno = EXCP08_DBLE;
*error_code = 0;
}
if (second_contributory || (intno == EXCP0E_PAGE) ||
(intno == EXCP08_DBLE))
env->old_exception = intno;
return intno;
}
/*
* Signal an interruption. It is executed in the main CPU loop.
* is_int is TRUE if coming from the int instruction. next_eip is the
* EIP value AFTER the interrupt instruction. It is only relevant if
* is_int is TRUE.
*/
static void QEMU_NORETURN raise_interrupt(int intno, int is_int, int error_code,
int next_eip_addend)
{
if (!is_int) {
helper_svm_check_intercept_param(SVM_EXIT_EXCP_BASE + intno, error_code);
intno = check_exception(intno, &error_code);
} else {
helper_svm_check_intercept_param(SVM_EXIT_SWINT, 0);
}
env->exception_index = intno;
env->error_code = error_code;
env->exception_is_int = is_int;
env->exception_next_eip = env->eip + next_eip_addend;
cpu_loop_exit(env);
}
/* shortcuts to generate exceptions */
static void QEMU_NORETURN raise_exception_err(int exception_index,
int error_code)
{
raise_interrupt(exception_index, 0, error_code, 0);
}
void raise_exception_err_env(CPUState *nenv, int exception_index,
int error_code)
{
env = nenv;
raise_interrupt(exception_index, 0, error_code, 0);
}
static void QEMU_NORETURN raise_exception(int exception_index)
{
raise_interrupt(exception_index, 0, 0, 0);
}
void raise_exception_env(int exception_index, CPUState *nenv)
{
env = nenv;
raise_exception(exception_index);
}
/* SMM support */
#if defined(CONFIG_USER_ONLY)
void do_smm_enter(CPUState *env1)
{
}
void helper_rsm(void)
{
}
#else
#ifdef TARGET_X86_64
#define SMM_REVISION_ID 0x00020064
#else
#define SMM_REVISION_ID 0x00020000
#endif
void do_smm_enter(CPUState *env1)
{
target_ulong sm_state;
SegmentCache *dt;
int i, offset;
CPUState *saved_env;
saved_env = env;
env = env1;
qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
log_cpu_state_mask(CPU_LOG_INT, env, X86_DUMP_CCOP);
env->hflags |= HF_SMM_MASK;
cpu_smm_update(env);
sm_state = env->smbase + 0x8000;
#ifdef TARGET_X86_64
for(i = 0; i < 6; i++) {
dt = &env->segs[i];
offset = 0x7e00 + i * 16;
stw_phys(sm_state + offset, dt->selector);
stw_phys(sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff);
stl_phys(sm_state + offset + 4, dt->limit);
stq_phys(sm_state + offset + 8, dt->base);
}
stq_phys(sm_state + 0x7e68, env->gdt.base);
stl_phys(sm_state + 0x7e64, env->gdt.limit);
stw_phys(sm_state + 0x7e70, env->ldt.selector);
stq_phys(sm_state + 0x7e78, env->ldt.base);
stl_phys(sm_state + 0x7e74, env->ldt.limit);
stw_phys(sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff);
stq_phys(sm_state + 0x7e88, env->idt.base);
stl_phys(sm_state + 0x7e84, env->idt.limit);
stw_phys(sm_state + 0x7e90, env->tr.selector);
stq_phys(sm_state + 0x7e98, env->tr.base);
stl_phys(sm_state + 0x7e94, env->tr.limit);
stw_phys(sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff);
stq_phys(sm_state + 0x7ed0, env->efer);
stq_phys(sm_state + 0x7ff8, EAX);
stq_phys(sm_state + 0x7ff0, ECX);
stq_phys(sm_state + 0x7fe8, EDX);
stq_phys(sm_state + 0x7fe0, EBX);
stq_phys(sm_state + 0x7fd8, ESP);
stq_phys(sm_state + 0x7fd0, EBP);
stq_phys(sm_state + 0x7fc8, ESI);
stq_phys(sm_state + 0x7fc0, EDI);
for(i = 8; i < 16; i++)
stq_phys(sm_state + 0x7ff8 - i * 8, env->regs[i]);
stq_phys(sm_state + 0x7f78, env->eip);
stl_phys(sm_state + 0x7f70, compute_eflags());
stl_phys(sm_state + 0x7f68, env->dr[6]);
stl_phys(sm_state + 0x7f60, env->dr[7]);
stl_phys(sm_state + 0x7f48, env->cr[4]);
stl_phys(sm_state + 0x7f50, env->cr[3]);
stl_phys(sm_state + 0x7f58, env->cr[0]);
stl_phys(sm_state + 0x7efc, SMM_REVISION_ID);
stl_phys(sm_state + 0x7f00, env->smbase);
#else
stl_phys(sm_state + 0x7ffc, env->cr[0]);
stl_phys(sm_state + 0x7ff8, env->cr[3]);
stl_phys(sm_state + 0x7ff4, compute_eflags());
stl_phys(sm_state + 0x7ff0, env->eip);
stl_phys(sm_state + 0x7fec, EDI);
stl_phys(sm_state + 0x7fe8, ESI);
stl_phys(sm_state + 0x7fe4, EBP);
stl_phys(sm_state + 0x7fe0, ESP);
stl_phys(sm_state + 0x7fdc, EBX);
stl_phys(sm_state + 0x7fd8, EDX);
stl_phys(sm_state + 0x7fd4, ECX);
stl_phys(sm_state + 0x7fd0, EAX);
stl_phys(sm_state + 0x7fcc, env->dr[6]);
stl_phys(sm_state + 0x7fc8, env->dr[7]);
stl_phys(sm_state + 0x7fc4, env->tr.selector);
stl_phys(sm_state + 0x7f64, env->tr.base);
stl_phys(sm_state + 0x7f60, env->tr.limit);
stl_phys(sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff);
stl_phys(sm_state + 0x7fc0, env->ldt.selector);
stl_phys(sm_state + 0x7f80, env->ldt.base);
stl_phys(sm_state + 0x7f7c, env->ldt.limit);
stl_phys(sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff);
stl_phys(sm_state + 0x7f74, env->gdt.base);
stl_phys(sm_state + 0x7f70, env->gdt.limit);
stl_phys(sm_state + 0x7f58, env->idt.base);
stl_phys(sm_state + 0x7f54, env->idt.limit);
for(i = 0; i < 6; i++) {
dt = &env->segs[i];
if (i < 3)
offset = 0x7f84 + i * 12;
else
offset = 0x7f2c + (i - 3) * 12;
stl_phys(sm_state + 0x7fa8 + i * 4, dt->selector);
stl_phys(sm_state + offset + 8, dt->base);
stl_phys(sm_state + offset + 4, dt->limit);
stl_phys(sm_state + offset, (dt->flags >> 8) & 0xf0ff);
}
stl_phys(sm_state + 0x7f14, env->cr[4]);
stl_phys(sm_state + 0x7efc, SMM_REVISION_ID);
stl_phys(sm_state + 0x7ef8, env->smbase);
#endif
/* init SMM cpu state */
#ifdef TARGET_X86_64
cpu_load_efer(env, 0);
#endif
load_eflags(0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
env->eip = 0x00008000;
cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase,
0xffffffff, 0);
cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff, 0);
cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff, 0);
cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff, 0);
cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff, 0);
cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff, 0);
cpu_x86_update_cr0(env,
env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK | CR0_PG_MASK));
cpu_x86_update_cr4(env, 0);
env->dr[7] = 0x00000400;
CC_OP = CC_OP_EFLAGS;
env = saved_env;
}
void helper_rsm(void)
{
target_ulong sm_state;
int i, offset;
uint32_t val;
sm_state = env->smbase + 0x8000;
#ifdef TARGET_X86_64
cpu_load_efer(env, ldq_phys(sm_state + 0x7ed0));
for(i = 0; i < 6; i++) {
offset = 0x7e00 + i * 16;
cpu_x86_load_seg_cache(env, i,
lduw_phys(sm_state + offset),
ldq_phys(sm_state + offset + 8),
ldl_phys(sm_state + offset + 4),
(lduw_phys(sm_state + offset + 2) & 0xf0ff) << 8);
}
env->gdt.base = ldq_phys(sm_state + 0x7e68);
env->gdt.limit = ldl_phys(sm_state + 0x7e64);
env->ldt.selector = lduw_phys(sm_state + 0x7e70);
env->ldt.base = ldq_phys(sm_state + 0x7e78);
env->ldt.limit = ldl_phys(sm_state + 0x7e74);
env->ldt.flags = (lduw_phys(sm_state + 0x7e72) & 0xf0ff) << 8;
env->idt.base = ldq_phys(sm_state + 0x7e88);
env->idt.limit = ldl_phys(sm_state + 0x7e84);
env->tr.selector = lduw_phys(sm_state + 0x7e90);
env->tr.base = ldq_phys(sm_state + 0x7e98);
env->tr.limit = ldl_phys(sm_state + 0x7e94);
env->tr.flags = (lduw_phys(sm_state + 0x7e92) & 0xf0ff) << 8;
EAX = ldq_phys(sm_state + 0x7ff8);
ECX = ldq_phys(sm_state + 0x7ff0);
EDX = ldq_phys(sm_state + 0x7fe8);
EBX = ldq_phys(sm_state + 0x7fe0);
ESP = ldq_phys(sm_state + 0x7fd8);
EBP = ldq_phys(sm_state + 0x7fd0);
ESI = ldq_phys(sm_state + 0x7fc8);
EDI = ldq_phys(sm_state + 0x7fc0);
for(i = 8; i < 16; i++)
env->regs[i] = ldq_phys(sm_state + 0x7ff8 - i * 8);
env->eip = ldq_phys(sm_state + 0x7f78);
load_eflags(ldl_phys(sm_state + 0x7f70),
~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
env->dr[6] = ldl_phys(sm_state + 0x7f68);
env->dr[7] = ldl_phys(sm_state + 0x7f60);
cpu_x86_update_cr4(env, ldl_phys(sm_state + 0x7f48));
cpu_x86_update_cr3(env, ldl_phys(sm_state + 0x7f50));
cpu_x86_update_cr0(env, ldl_phys(sm_state + 0x7f58));
val = ldl_phys(sm_state + 0x7efc); /* revision ID */
if (val & 0x20000) {
env->smbase = ldl_phys(sm_state + 0x7f00) & ~0x7fff;
}
#else
cpu_x86_update_cr0(env, ldl_phys(sm_state + 0x7ffc));
cpu_x86_update_cr3(env, ldl_phys(sm_state + 0x7ff8));
load_eflags(ldl_phys(sm_state + 0x7ff4),
~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
env->eip = ldl_phys(sm_state + 0x7ff0);
EDI = ldl_phys(sm_state + 0x7fec);
ESI = ldl_phys(sm_state + 0x7fe8);
EBP = ldl_phys(sm_state + 0x7fe4);
ESP = ldl_phys(sm_state + 0x7fe0);
EBX = ldl_phys(sm_state + 0x7fdc);
EDX = ldl_phys(sm_state + 0x7fd8);
ECX = ldl_phys(sm_state + 0x7fd4);
EAX = ldl_phys(sm_state + 0x7fd0);
env->dr[6] = ldl_phys(sm_state + 0x7fcc);
env->dr[7] = ldl_phys(sm_state + 0x7fc8);
env->tr.selector = ldl_phys(sm_state + 0x7fc4) & 0xffff;
env->tr.base = ldl_phys(sm_state + 0x7f64);
env->tr.limit = ldl_phys(sm_state + 0x7f60);
env->tr.flags = (ldl_phys(sm_state + 0x7f5c) & 0xf0ff) << 8;
env->ldt.selector = ldl_phys(sm_state + 0x7fc0) & 0xffff;
env->ldt.base = ldl_phys(sm_state + 0x7f80);
env->ldt.limit = ldl_phys(sm_state + 0x7f7c);
env->ldt.flags = (ldl_phys(sm_state + 0x7f78) & 0xf0ff) << 8;
env->gdt.base = ldl_phys(sm_state + 0x7f74);
env->gdt.limit = ldl_phys(sm_state + 0x7f70);
env->idt.base = ldl_phys(sm_state + 0x7f58);
env->idt.limit = ldl_phys(sm_state + 0x7f54);
for(i = 0; i < 6; i++) {
if (i < 3)
offset = 0x7f84 + i * 12;
else
offset = 0x7f2c + (i - 3) * 12;
cpu_x86_load_seg_cache(env, i,
ldl_phys(sm_state + 0x7fa8 + i * 4) & 0xffff,
ldl_phys(sm_state + offset + 8),
ldl_phys(sm_state + offset + 4),
(ldl_phys(sm_state + offset) & 0xf0ff) << 8);
}
cpu_x86_update_cr4(env, ldl_phys(sm_state + 0x7f14));
val = ldl_phys(sm_state + 0x7efc); /* revision ID */
if (val & 0x20000) {
env->smbase = ldl_phys(sm_state + 0x7ef8) & ~0x7fff;
}
#endif
CC_OP = CC_OP_EFLAGS;
env->hflags &= ~HF_SMM_MASK;
cpu_smm_update(env);
qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
log_cpu_state_mask(CPU_LOG_INT, env, X86_DUMP_CCOP);
}
#endif /* !CONFIG_USER_ONLY */
/* division, flags are undefined */
void helper_divb_AL(target_ulong t0)
{
unsigned int num, den, q, r;
num = (EAX & 0xffff);
den = (t0 & 0xff);
if (den == 0) {
raise_exception(EXCP00_DIVZ);
}
q = (num / den);
if (q > 0xff)
raise_exception(EXCP00_DIVZ);
q &= 0xff;
r = (num % den) & 0xff;
EAX = (EAX & ~0xffff) | (r << 8) | q;
}
void helper_idivb_AL(target_ulong t0)
{
int num, den, q, r;
num = (int16_t)EAX;
den = (int8_t)t0;
if (den == 0) {
raise_exception(EXCP00_DIVZ);
}
q = (num / den);
if (q != (int8_t)q)
raise_exception(EXCP00_DIVZ);
q &= 0xff;
r = (num % den) & 0xff;
EAX = (EAX & ~0xffff) | (r << 8) | q;
}
void helper_divw_AX(target_ulong t0)
{
unsigned int num, den, q, r;
num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
den = (t0 & 0xffff);
if (den == 0) {
raise_exception(EXCP00_DIVZ);
}
q = (num / den);
if (q > 0xffff)
raise_exception(EXCP00_DIVZ);
q &= 0xffff;
r = (num % den) & 0xffff;
EAX = (EAX & ~0xffff) | q;
EDX = (EDX & ~0xffff) | r;
}
void helper_idivw_AX(target_ulong t0)
{
int num, den, q, r;
num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
den = (int16_t)t0;
if (den == 0) {
raise_exception(EXCP00_DIVZ);
}
q = (num / den);
if (q != (int16_t)q)
raise_exception(EXCP00_DIVZ);
q &= 0xffff;
r = (num % den) & 0xffff;
EAX = (EAX & ~0xffff) | q;
EDX = (EDX & ~0xffff) | r;
}
void helper_divl_EAX(target_ulong t0)
{
unsigned int den, r;
uint64_t num, q;
num = ((uint32_t)EAX) | ((uint64_t)((uint32_t)EDX) << 32);
den = t0;
if (den == 0) {
raise_exception(EXCP00_DIVZ);
}
q = (num / den);
r = (num % den);
if (q > 0xffffffff)
raise_exception(EXCP00_DIVZ);
EAX = (uint32_t)q;
EDX = (uint32_t)r;
}
void helper_idivl_EAX(target_ulong t0)
{
int den, r;
int64_t num, q;
num = ((uint32_t)EAX) | ((uint64_t)((uint32_t)EDX) << 32);
den = t0;
if (den == 0) {
raise_exception(EXCP00_DIVZ);
}
q = (num / den);
r = (num % den);
if (q != (int32_t)q)
raise_exception(EXCP00_DIVZ);
EAX = (uint32_t)q;
EDX = (uint32_t)r;
}
/* bcd */
/* XXX: exception */
void helper_aam(int base)
{
int al, ah;
al = EAX & 0xff;
ah = al / base;
al = al % base;
EAX = (EAX & ~0xffff) | al | (ah << 8);
CC_DST = al;
}
void helper_aad(int base)
{
int al, ah;
al = EAX & 0xff;
ah = (EAX >> 8) & 0xff;
al = ((ah * base) + al) & 0xff;
EAX = (EAX & ~0xffff) | al;
CC_DST = al;
}
void helper_aaa(void)
{
int icarry;
int al, ah, af;
int eflags;
eflags = helper_cc_compute_all(CC_OP);
af = eflags & CC_A;
al = EAX & 0xff;
ah = (EAX >> 8) & 0xff;
icarry = (al > 0xf9);
if (((al & 0x0f) > 9 ) || af) {
al = (al + 6) & 0x0f;
ah = (ah + 1 + icarry) & 0xff;
eflags |= CC_C | CC_A;
} else {
eflags &= ~(CC_C | CC_A);
al &= 0x0f;
}
EAX = (EAX & ~0xffff) | al | (ah << 8);
CC_SRC = eflags;
}
void helper_aas(void)
{
int icarry;
int al, ah, af;
int eflags;
eflags = helper_cc_compute_all(CC_OP);
af = eflags & CC_A;
al = EAX & 0xff;
ah = (EAX >> 8) & 0xff;
icarry = (al < 6);
if (((al & 0x0f) > 9 ) || af) {
al = (al - 6) & 0x0f;
ah = (ah - 1 - icarry) & 0xff;
eflags |= CC_C | CC_A;
} else {
eflags &= ~(CC_C | CC_A);
al &= 0x0f;
}
EAX = (EAX & ~0xffff) | al | (ah << 8);
CC_SRC = eflags;
}
void helper_daa(void)
{
int old_al, al, af, cf;
int eflags;
eflags = helper_cc_compute_all(CC_OP);
cf = eflags & CC_C;
af = eflags & CC_A;
old_al = al = EAX & 0xff;
eflags = 0;
if (((al & 0x0f) > 9 ) || af) {
al = (al + 6) & 0xff;
eflags |= CC_A;
}
if ((old_al > 0x99) || cf) {
al = (al + 0x60) & 0xff;
eflags |= CC_C;
}
EAX = (EAX & ~0xff) | al;
/* well, speed is not an issue here, so we compute the flags by hand */
eflags |= (al == 0) << 6; /* zf */
eflags |= parity_table[al]; /* pf */
eflags |= (al & 0x80); /* sf */
CC_SRC = eflags;
}
void helper_das(void)
{
int al, al1, af, cf;
int eflags;
eflags = helper_cc_compute_all(CC_OP);
cf = eflags & CC_C;
af = eflags & CC_A;
al = EAX & 0xff;
eflags = 0;
al1 = al;
if (((al & 0x0f) > 9 ) || af) {
eflags |= CC_A;
if (al < 6 || cf)
eflags |= CC_C;
al = (al - 6) & 0xff;
}
if ((al1 > 0x99) || cf) {
al = (al - 0x60) & 0xff;
eflags |= CC_C;
}
EAX = (EAX & ~0xff) | al;
/* well, speed is not an issue here, so we compute the flags by hand */
eflags |= (al == 0) << 6; /* zf */
eflags |= parity_table[al]; /* pf */
eflags |= (al & 0x80); /* sf */
CC_SRC = eflags;
}
void helper_into(int next_eip_addend)
{
int eflags;
eflags = helper_cc_compute_all(CC_OP);
if (eflags & CC_O) {
raise_interrupt(EXCP04_INTO, 1, 0, next_eip_addend);
}
}
void helper_cmpxchg8b(target_ulong a0)
{
uint64_t d;
int eflags;
eflags = helper_cc_compute_all(CC_OP);
d = ldq(a0);
if (d == (((uint64_t)EDX << 32) | (uint32_t)EAX)) {
stq(a0, ((uint64_t)ECX << 32) | (uint32_t)EBX);
eflags |= CC_Z;
} else {
/* always do the store */
stq(a0, d);
EDX = (uint32_t)(d >> 32);
EAX = (uint32_t)d;
eflags &= ~CC_Z;
}
CC_SRC = eflags;
}
#ifdef TARGET_X86_64
void helper_cmpxchg16b(target_ulong a0)
{
uint64_t d0, d1;
int eflags;
if ((a0 & 0xf) != 0)
raise_exception(EXCP0D_GPF);
eflags = helper_cc_compute_all(CC_OP);
d0 = ldq(a0);
d1 = ldq(a0 + 8);
if (d0 == EAX && d1 == EDX) {
stq(a0, EBX);
stq(a0 + 8, ECX);
eflags |= CC_Z;
} else {
/* always do the store */
stq(a0, d0);
stq(a0 + 8, d1);
EDX = d1;
EAX = d0;
eflags &= ~CC_Z;
}
CC_SRC = eflags;
}
#endif
void helper_single_step(void)
{
#ifndef CONFIG_USER_ONLY
check_hw_breakpoints(env, 1);
env->dr[6] |= DR6_BS;
#endif
raise_exception(EXCP01_DB);
}
void helper_cpuid(void)
{
uint32_t eax, ebx, ecx, edx;
helper_svm_check_intercept_param(SVM_EXIT_CPUID, 0);
cpu_x86_cpuid(env, (uint32_t)EAX, (uint32_t)ECX, &eax, &ebx, &ecx, &edx);
EAX = eax;
EBX = ebx;
ECX = ecx;
EDX = edx;
}
void helper_enter_level(int level, int data32, target_ulong t1)
{
target_ulong ssp;
uint32_t esp_mask, esp, ebp;
esp_mask = get_sp_mask(env->segs[R_SS].flags);
ssp = env->segs[R_SS].base;
ebp = EBP;
esp = ESP;
if (data32) {
/* 32 bit */
esp -= 4;
while (--level) {
esp -= 4;
ebp -= 4;
stl(ssp + (esp & esp_mask), ldl(ssp + (ebp & esp_mask)));
}
esp -= 4;
stl(ssp + (esp & esp_mask), t1);
} else {
/* 16 bit */
esp -= 2;
while (--level) {
esp -= 2;
ebp -= 2;
stw(ssp + (esp & esp_mask), lduw(ssp + (ebp & esp_mask)));
}
esp -= 2;
stw(ssp + (esp & esp_mask), t1);
}
}
#ifdef TARGET_X86_64
void helper_enter64_level(int level, int data64, target_ulong t1)
{
target_ulong esp, ebp;
ebp = EBP;
esp = ESP;
if (data64) {
/* 64 bit */
esp -= 8;
while (--level) {
esp -= 8;
ebp -= 8;
stq(esp, ldq(ebp));
}
esp -= 8;
stq(esp, t1);
} else {
/* 16 bit */
esp -= 2;
while (--level) {
esp -= 2;
ebp -= 2;
stw(esp, lduw(ebp));
}
esp -= 2;
stw(esp, t1);
}
}
#endif
void helper_lldt(int selector)
{
SegmentCache *dt;
uint32_t e1, e2;
int index, entry_limit;
target_ulong ptr;
selector &= 0xffff;
if ((selector & 0xfffc) == 0) {
/* XXX: NULL selector case: invalid LDT */
env->ldt.base = 0;
env->ldt.limit = 0;
} else {
if (selector & 0x4)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
dt = &env->gdt;
index = selector & ~7;
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK)
entry_limit = 15;
else
#endif
entry_limit = 7;
if ((index + entry_limit) > dt->limit)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
ptr = dt->base + index;
e1 = ldl_kernel(ptr);
e2 = ldl_kernel(ptr + 4);
if ((e2 & DESC_S_MASK) || ((e2 >> DESC_TYPE_SHIFT) & 0xf) != 2)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
uint32_t e3;
e3 = ldl_kernel(ptr + 8);
load_seg_cache_raw_dt(&env->ldt, e1, e2);
env->ldt.base |= (target_ulong)e3 << 32;
} else
#endif
{
load_seg_cache_raw_dt(&env->ldt, e1, e2);
}
}
env->ldt.selector = selector;
}
void helper_ltr(int selector)
{
SegmentCache *dt;
uint32_t e1, e2;
int index, type, entry_limit;
target_ulong ptr;
selector &= 0xffff;
if ((selector & 0xfffc) == 0) {
/* NULL selector case: invalid TR */
env->tr.base = 0;
env->tr.limit = 0;
env->tr.flags = 0;
} else {
if (selector & 0x4)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
dt = &env->gdt;
index = selector & ~7;
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK)
entry_limit = 15;
else
#endif
entry_limit = 7;
if ((index + entry_limit) > dt->limit)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
ptr = dt->base + index;
e1 = ldl_kernel(ptr);
e2 = ldl_kernel(ptr + 4);
type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
if ((e2 & DESC_S_MASK) ||
(type != 1 && type != 9))
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
uint32_t e3, e4;
e3 = ldl_kernel(ptr + 8);
e4 = ldl_kernel(ptr + 12);
if ((e4 >> DESC_TYPE_SHIFT) & 0xf)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
load_seg_cache_raw_dt(&env->tr, e1, e2);
env->tr.base |= (target_ulong)e3 << 32;
} else
#endif
{
load_seg_cache_raw_dt(&env->tr, e1, e2);
}
e2 |= DESC_TSS_BUSY_MASK;
stl_kernel(ptr + 4, e2);
}
env->tr.selector = selector;
}
/* only works if protected mode and not VM86. seg_reg must be != R_CS */
void helper_load_seg(int seg_reg, int selector)
{
uint32_t e1, e2;
int cpl, dpl, rpl;
SegmentCache *dt;
int index;
target_ulong ptr;
selector &= 0xffff;
cpl = env->hflags & HF_CPL_MASK;
if ((selector & 0xfffc) == 0) {
/* null selector case */
if (seg_reg == R_SS
#ifdef TARGET_X86_64
&& (!(env->hflags & HF_CS64_MASK) || cpl == 3)
#endif
)
raise_exception_err(EXCP0D_GPF, 0);
cpu_x86_load_seg_cache(env, seg_reg, selector, 0, 0, 0);
} else {
if (selector & 0x4)
dt = &env->ldt;
else
dt = &env->gdt;
index = selector & ~7;
if ((index + 7) > dt->limit)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
ptr = dt->base + index;
e1 = ldl_kernel(ptr);
e2 = ldl_kernel(ptr + 4);
if (!(e2 & DESC_S_MASK))
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
rpl = selector & 3;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (seg_reg == R_SS) {
/* must be writable segment */
if ((e2 & DESC_CS_MASK) || !(e2 & DESC_W_MASK))
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (rpl != cpl || dpl != cpl)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
} else {
/* must be readable segment */
if ((e2 & (DESC_CS_MASK | DESC_R_MASK)) == DESC_CS_MASK)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (!(e2 & DESC_CS_MASK) || !(e2 & DESC_C_MASK)) {
/* if not conforming code, test rights */
if (dpl < cpl || dpl < rpl)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
}
}
if (!(e2 & DESC_P_MASK)) {
if (seg_reg == R_SS)
raise_exception_err(EXCP0C_STACK, selector & 0xfffc);
else
raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
}
/* set the access bit if not already set */
if (!(e2 & DESC_A_MASK)) {
e2 |= DESC_A_MASK;
stl_kernel(ptr + 4, e2);
}
cpu_x86_load_seg_cache(env, seg_reg, selector,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
#if 0
qemu_log("load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx flags=%08x\n",
selector, (unsigned long)sc->base, sc->limit, sc->flags);
#endif
}
}
/* protected mode jump */
void helper_ljmp_protected(int new_cs, target_ulong new_eip,
int next_eip_addend)
{
int gate_cs, type;
uint32_t e1, e2, cpl, dpl, rpl, limit;
target_ulong next_eip;
if ((new_cs & 0xfffc) == 0)
raise_exception_err(EXCP0D_GPF, 0);
if (load_segment(&e1, &e2, new_cs) != 0)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
cpl = env->hflags & HF_CPL_MASK;
if (e2 & DESC_S_MASK) {
if (!(e2 & DESC_CS_MASK))
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (e2 & DESC_C_MASK) {
/* conforming code segment */
if (dpl > cpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
} else {
/* non conforming code segment */
rpl = new_cs & 3;
if (rpl > cpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
if (dpl != cpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
}
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
limit = get_seg_limit(e1, e2);
if (new_eip > limit &&
!(env->hflags & HF_LMA_MASK) && !(e2 & DESC_L_MASK))
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
get_seg_base(e1, e2), limit, e2);
EIP = new_eip;
} else {
/* jump to call or task gate */
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
rpl = new_cs & 3;
cpl = env->hflags & HF_CPL_MASK;
type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
switch(type) {
case 1: /* 286 TSS */
case 9: /* 386 TSS */
case 5: /* task gate */
if (dpl < cpl || dpl < rpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
next_eip = env->eip + next_eip_addend;
switch_tss(new_cs, e1, e2, SWITCH_TSS_JMP, next_eip);
CC_OP = CC_OP_EFLAGS;
break;
case 4: /* 286 call gate */
case 12: /* 386 call gate */
if ((dpl < cpl) || (dpl < rpl))
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
gate_cs = e1 >> 16;
new_eip = (e1 & 0xffff);
if (type == 12)
new_eip |= (e2 & 0xffff0000);
if (load_segment(&e1, &e2, gate_cs) != 0)
raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
/* must be code segment */
if (((e2 & (DESC_S_MASK | DESC_CS_MASK)) !=
(DESC_S_MASK | DESC_CS_MASK)))
raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
if (((e2 & DESC_C_MASK) && (dpl > cpl)) ||
(!(e2 & DESC_C_MASK) && (dpl != cpl)))
raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
limit = get_seg_limit(e1, e2);
if (new_eip > limit)
raise_exception_err(EXCP0D_GPF, 0);
cpu_x86_load_seg_cache(env, R_CS, (gate_cs & 0xfffc) | cpl,
get_seg_base(e1, e2), limit, e2);
EIP = new_eip;
break;
default:
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
break;
}
}
}
/* real mode call */
void helper_lcall_real(int new_cs, target_ulong new_eip1,
int shift, int next_eip)
{
int new_eip;
uint32_t esp, esp_mask;
target_ulong ssp;
new_eip = new_eip1;
esp = ESP;
esp_mask = get_sp_mask(env->segs[R_SS].flags);
ssp = env->segs[R_SS].base;
if (shift) {
PUSHL(ssp, esp, esp_mask, env->segs[R_CS].selector);
PUSHL(ssp, esp, esp_mask, next_eip);
} else {
PUSHW(ssp, esp, esp_mask, env->segs[R_CS].selector);
PUSHW(ssp, esp, esp_mask, next_eip);
}
SET_ESP(esp, esp_mask);
env->eip = new_eip;
env->segs[R_CS].selector = new_cs;
env->segs[R_CS].base = (new_cs << 4);
}
/* protected mode call */
void helper_lcall_protected(int new_cs, target_ulong new_eip,
int shift, int next_eip_addend)
{
int new_stack, i;
uint32_t e1, e2, cpl, dpl, rpl, selector, offset, param_count;
uint32_t ss = 0, ss_e1 = 0, ss_e2 = 0, sp, type, ss_dpl, sp_mask;
uint32_t val, limit, old_sp_mask;
target_ulong ssp, old_ssp, next_eip;
next_eip = env->eip + next_eip_addend;
LOG_PCALL("lcall %04x:%08x s=%d\n", new_cs, (uint32_t)new_eip, shift);
LOG_PCALL_STATE(env);
if ((new_cs & 0xfffc) == 0)
raise_exception_err(EXCP0D_GPF, 0);
if (load_segment(&e1, &e2, new_cs) != 0)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
cpl = env->hflags & HF_CPL_MASK;
LOG_PCALL("desc=%08x:%08x\n", e1, e2);
if (e2 & DESC_S_MASK) {
if (!(e2 & DESC_CS_MASK))
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (e2 & DESC_C_MASK) {
/* conforming code segment */
if (dpl > cpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
} else {
/* non conforming code segment */
rpl = new_cs & 3;
if (rpl > cpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
if (dpl != cpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
}
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
#ifdef TARGET_X86_64
/* XXX: check 16/32 bit cases in long mode */
if (shift == 2) {
target_ulong rsp;
/* 64 bit case */
rsp = ESP;
PUSHQ(rsp, env->segs[R_CS].selector);
PUSHQ(rsp, next_eip);
/* from this point, not restartable */
ESP = rsp;
cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
get_seg_base(e1, e2),
get_seg_limit(e1, e2), e2);
EIP = new_eip;
} else
#endif
{
sp = ESP;
sp_mask = get_sp_mask(env->segs[R_SS].flags);
ssp = env->segs[R_SS].base;
if (shift) {
PUSHL(ssp, sp, sp_mask, env->segs[R_CS].selector);
PUSHL(ssp, sp, sp_mask, next_eip);
} else {
PUSHW(ssp, sp, sp_mask, env->segs[R_CS].selector);
PUSHW(ssp, sp, sp_mask, next_eip);
}
limit = get_seg_limit(e1, e2);
if (new_eip > limit)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
/* from this point, not restartable */
SET_ESP(sp, sp_mask);
cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
get_seg_base(e1, e2), limit, e2);
EIP = new_eip;
}
} else {
/* check gate type */
type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
rpl = new_cs & 3;
switch(type) {
case 1: /* available 286 TSS */
case 9: /* available 386 TSS */
case 5: /* task gate */
if (dpl < cpl || dpl < rpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
switch_tss(new_cs, e1, e2, SWITCH_TSS_CALL, next_eip);
CC_OP = CC_OP_EFLAGS;
return;
case 4: /* 286 call gate */
case 12: /* 386 call gate */
break;
default:
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
break;
}
shift = type >> 3;
if (dpl < cpl || dpl < rpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
/* check valid bit */
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
selector = e1 >> 16;
offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff);
param_count = e2 & 0x1f;
if ((selector & 0xfffc) == 0)
raise_exception_err(EXCP0D_GPF, 0);
if (load_segment(&e1, &e2, selector) != 0)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK)))
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (dpl > cpl)
raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
if (!(e2 & DESC_C_MASK) && dpl < cpl) {
/* to inner privilege */
get_ss_esp_from_tss(&ss, &sp, dpl);
LOG_PCALL("new ss:esp=%04x:%08x param_count=%d ESP=" TARGET_FMT_lx "\n",
ss, sp, param_count, ESP);
if ((ss & 0xfffc) == 0)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if ((ss & 3) != dpl)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if (load_segment(&ss_e1, &ss_e2, ss) != 0)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
if (ss_dpl != dpl)
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if (!(ss_e2 & DESC_S_MASK) ||
(ss_e2 & DESC_CS_MASK) ||
!(ss_e2 & DESC_W_MASK))
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
if (!(ss_e2 & DESC_P_MASK))
raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
// push_size = ((param_count * 2) + 8) << shift;
old_sp_mask = get_sp_mask(env->segs[R_SS].flags);
old_ssp = env->segs[R_SS].base;
sp_mask = get_sp_mask(ss_e2);
ssp = get_seg_base(ss_e1, ss_e2);
if (shift) {
PUSHL(ssp, sp, sp_mask, env->segs[R_SS].selector);
PUSHL(ssp, sp, sp_mask, ESP);
for(i = param_count - 1; i >= 0; i--) {
val = ldl_kernel(old_ssp + ((ESP + i * 4) & old_sp_mask));
PUSHL(ssp, sp, sp_mask, val);
}
} else {
PUSHW(ssp, sp, sp_mask, env->segs[R_SS].selector);
PUSHW(ssp, sp, sp_mask, ESP);
for(i = param_count - 1; i >= 0; i--) {
val = lduw_kernel(old_ssp + ((ESP + i * 2) & old_sp_mask));
PUSHW(ssp, sp, sp_mask, val);
}
}
new_stack = 1;
} else {
/* to same privilege */
sp = ESP;
sp_mask = get_sp_mask(env->segs[R_SS].flags);
ssp = env->segs[R_SS].base;
// push_size = (4 << shift);
new_stack = 0;
}
if (shift) {
PUSHL(ssp, sp, sp_mask, env->segs[R_CS].selector);
PUSHL(ssp, sp, sp_mask, next_eip);
} else {
PUSHW(ssp, sp, sp_mask, env->segs[R_CS].selector);
PUSHW(ssp, sp, sp_mask, next_eip);
}
/* from this point, not restartable */
if (new_stack) {
ss = (ss & ~3) | dpl;
cpu_x86_load_seg_cache(env, R_SS, ss,
ssp,
get_seg_limit(ss_e1, ss_e2),
ss_e2);
}
selector = (selector & ~3) | dpl;
cpu_x86_load_seg_cache(env, R_CS, selector,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
cpu_x86_set_cpl(env, dpl);
SET_ESP(sp, sp_mask);
EIP = offset;
}
}
/* real and vm86 mode iret */
void helper_iret_real(int shift)
{
uint32_t sp, new_cs, new_eip, new_eflags, sp_mask;
target_ulong ssp;
int eflags_mask;
sp_mask = 0xffff; /* XXXX: use SS segment size ? */
sp = ESP;
ssp = env->segs[R_SS].base;
if (shift == 1) {
/* 32 bits */
POPL(ssp, sp, sp_mask, new_eip);
POPL(ssp, sp, sp_mask, new_cs);
new_cs &= 0xffff;
POPL(ssp, sp, sp_mask, new_eflags);
} else {
/* 16 bits */
POPW(ssp, sp, sp_mask, new_eip);
POPW(ssp, sp, sp_mask, new_cs);
POPW(ssp, sp, sp_mask, new_eflags);
}
ESP = (ESP & ~sp_mask) | (sp & sp_mask);
env->segs[R_CS].selector = new_cs;
env->segs[R_CS].base = (new_cs << 4);
env->eip = new_eip;
if (env->eflags & VM_MASK)
eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | RF_MASK | NT_MASK;
else
eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | IOPL_MASK | RF_MASK | NT_MASK;
if (shift == 0)
eflags_mask &= 0xffff;
load_eflags(new_eflags, eflags_mask);
env->hflags2 &= ~HF2_NMI_MASK;
}
static inline void validate_seg(int seg_reg, int cpl)
{
int dpl;
uint32_t e2;
/* XXX: on x86_64, we do not want to nullify FS and GS because
they may still contain a valid base. I would be interested to
know how a real x86_64 CPU behaves */
if ((seg_reg == R_FS || seg_reg == R_GS) &&
(env->segs[seg_reg].selector & 0xfffc) == 0)
return;
e2 = env->segs[seg_reg].flags;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (!(e2 & DESC_CS_MASK) || !(e2 & DESC_C_MASK)) {
/* data or non conforming code segment */
if (dpl < cpl) {
cpu_x86_load_seg_cache(env, seg_reg, 0, 0, 0, 0);
}
}
}
/* protected mode iret */
static inline void helper_ret_protected(int shift, int is_iret, int addend)
{
uint32_t new_cs, new_eflags, new_ss;
uint32_t new_es, new_ds, new_fs, new_gs;
uint32_t e1, e2, ss_e1, ss_e2;
int cpl, dpl, rpl, eflags_mask, iopl;
target_ulong ssp, sp, new_eip, new_esp, sp_mask;
#ifdef TARGET_X86_64
if (shift == 2)
sp_mask = -1;
else
#endif
sp_mask = get_sp_mask(env->segs[R_SS].flags);
sp = ESP;
ssp = env->segs[R_SS].base;
new_eflags = 0; /* avoid warning */
#ifdef TARGET_X86_64
if (shift == 2) {
POPQ(sp, new_eip);
POPQ(sp, new_cs);
new_cs &= 0xffff;
if (is_iret) {
POPQ(sp, new_eflags);
}
} else
#endif
if (shift == 1) {
/* 32 bits */
POPL(ssp, sp, sp_mask, new_eip);
POPL(ssp, sp, sp_mask, new_cs);
new_cs &= 0xffff;
if (is_iret) {
POPL(ssp, sp, sp_mask, new_eflags);
if (new_eflags & VM_MASK)
goto return_to_vm86;
}
} else {
/* 16 bits */
POPW(ssp, sp, sp_mask, new_eip);
POPW(ssp, sp, sp_mask, new_cs);
if (is_iret)
POPW(ssp, sp, sp_mask, new_eflags);
}
LOG_PCALL("lret new %04x:" TARGET_FMT_lx " s=%d addend=0x%x\n",
new_cs, new_eip, shift, addend);
LOG_PCALL_STATE(env);
if ((new_cs & 0xfffc) == 0)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
if (load_segment(&e1, &e2, new_cs) != 0)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
if (!(e2 & DESC_S_MASK) ||
!(e2 & DESC_CS_MASK))
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
cpl = env->hflags & HF_CPL_MASK;
rpl = new_cs & 3;
if (rpl < cpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
if (e2 & DESC_C_MASK) {
if (dpl > rpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
} else {
if (dpl != rpl)
raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
}
if (!(e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
sp += addend;
if (rpl == cpl && (!(env->hflags & HF_CS64_MASK) ||
((env->hflags & HF_CS64_MASK) && !is_iret))) {
/* return to same privilege level */
cpu_x86_load_seg_cache(env, R_CS, new_cs,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
} else {
/* return to different privilege level */
#ifdef TARGET_X86_64
if (shift == 2) {
POPQ(sp, new_esp);
POPQ(sp, new_ss);
new_ss &= 0xffff;
} else
#endif
if (shift == 1) {
/* 32 bits */
POPL(ssp, sp, sp_mask, new_esp);
POPL(ssp, sp, sp_mask, new_ss);
new_ss &= 0xffff;
} else {
/* 16 bits */
POPW(ssp, sp, sp_mask, new_esp);
POPW(ssp, sp, sp_mask, new_ss);
}
LOG_PCALL("new ss:esp=%04x:" TARGET_FMT_lx "\n",
new_ss, new_esp);
if ((new_ss & 0xfffc) == 0) {
#ifdef TARGET_X86_64
/* NULL ss is allowed in long mode if cpl != 3*/
/* XXX: test CS64 ? */
if ((env->hflags & HF_LMA_MASK) && rpl != 3) {
cpu_x86_load_seg_cache(env, R_SS, new_ss,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (rpl << DESC_DPL_SHIFT) |
DESC_W_MASK | DESC_A_MASK);
ss_e2 = DESC_B_MASK; /* XXX: should not be needed ? */
} else
#endif
{
raise_exception_err(EXCP0D_GPF, 0);
}
} else {
if ((new_ss & 3) != rpl)
raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
if (load_segment(&ss_e1, &ss_e2, new_ss) != 0)
raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
if (!(ss_e2 & DESC_S_MASK) ||
(ss_e2 & DESC_CS_MASK) ||
!(ss_e2 & DESC_W_MASK))
raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
if (dpl != rpl)
raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
if (!(ss_e2 & DESC_P_MASK))
raise_exception_err(EXCP0B_NOSEG, new_ss & 0xfffc);
cpu_x86_load_seg_cache(env, R_SS, new_ss,
get_seg_base(ss_e1, ss_e2),
get_seg_limit(ss_e1, ss_e2),
ss_e2);
}
cpu_x86_load_seg_cache(env, R_CS, new_cs,
get_seg_base(e1, e2),
get_seg_limit(e1, e2),
e2);
cpu_x86_set_cpl(env, rpl);
sp = new_esp;
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK)
sp_mask = -1;
else
#endif
sp_mask = get_sp_mask(ss_e2);
/* validate data segments */
validate_seg(R_ES, rpl);
validate_seg(R_DS, rpl);
validate_seg(R_FS, rpl);
validate_seg(R_GS, rpl);
sp += addend;
}
SET_ESP(sp, sp_mask);
env->eip = new_eip;
if (is_iret) {
/* NOTE: 'cpl' is the _old_ CPL */
eflags_mask = TF_MASK | AC_MASK | ID_MASK | RF_MASK | NT_MASK;
if (cpl == 0)
eflags_mask |= IOPL_MASK;
iopl = (env->eflags >> IOPL_SHIFT) & 3;
if (cpl <= iopl)
eflags_mask |= IF_MASK;
if (shift == 0)
eflags_mask &= 0xffff;
load_eflags(new_eflags, eflags_mask);
}
return;
return_to_vm86:
POPL(ssp, sp, sp_mask, new_esp);
POPL(ssp, sp, sp_mask, new_ss);
POPL(ssp, sp, sp_mask, new_es);
POPL(ssp, sp, sp_mask, new_ds);
POPL(ssp, sp, sp_mask, new_fs);
POPL(ssp, sp, sp_mask, new_gs);
/* modify processor state */
load_eflags(new_eflags, TF_MASK | AC_MASK | ID_MASK |
IF_MASK | IOPL_MASK | VM_MASK | NT_MASK | VIF_MASK | VIP_MASK);
load_seg_vm(R_CS, new_cs & 0xffff);
cpu_x86_set_cpl(env, 3);
load_seg_vm(R_SS, new_ss & 0xffff);
load_seg_vm(R_ES, new_es & 0xffff);
load_seg_vm(R_DS, new_ds & 0xffff);
load_seg_vm(R_FS, new_fs & 0xffff);
load_seg_vm(R_GS, new_gs & 0xffff);
env->eip = new_eip & 0xffff;
ESP = new_esp;
}
void helper_iret_protected(int shift, int next_eip)
{
int tss_selector, type;
uint32_t e1, e2;
/* specific case for TSS */
if (env->eflags & NT_MASK) {
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK)
raise_exception_err(EXCP0D_GPF, 0);
#endif
tss_selector = lduw_kernel(env->tr.base + 0);
if (tss_selector & 4)
raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
if (load_segment(&e1, &e2, tss_selector) != 0)
raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
type = (e2 >> DESC_TYPE_SHIFT) & 0x17;
/* NOTE: we check both segment and busy TSS */
if (type != 3)
raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
switch_tss(tss_selector, e1, e2, SWITCH_TSS_IRET, next_eip);
} else {
helper_ret_protected(shift, 1, 0);
}
env->hflags2 &= ~HF2_NMI_MASK;
}
void helper_lret_protected(int shift, int addend)
{
helper_ret_protected(shift, 0, addend);
}
void helper_sysenter(void)
{
if (env->sysenter_cs == 0) {
raise_exception_err(EXCP0D_GPF, 0);
}
env->eflags &= ~(VM_MASK | IF_MASK | RF_MASK);
cpu_x86_set_cpl(env, 0);
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
} else
#endif
{
cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
}
cpu_x86_load_seg_cache(env, R_SS, (env->sysenter_cs + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK);
ESP = env->sysenter_esp;
EIP = env->sysenter_eip;
}
void helper_sysexit(int dflag)
{
int cpl;
cpl = env->hflags & HF_CPL_MASK;
if (env->sysenter_cs == 0 || cpl != 0) {
raise_exception_err(EXCP0D_GPF, 0);
}
cpu_x86_set_cpl(env, 3);
#ifdef TARGET_X86_64
if (dflag == 2) {
cpu_x86_load_seg_cache(env, R_CS, ((env->sysenter_cs + 32) & 0xfffc) | 3,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
cpu_x86_load_seg_cache(env, R_SS, ((env->sysenter_cs + 40) & 0xfffc) | 3,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_W_MASK | DESC_A_MASK);
} else
#endif
{
cpu_x86_load_seg_cache(env, R_CS, ((env->sysenter_cs + 16) & 0xfffc) | 3,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, ((env->sysenter_cs + 24) & 0xfffc) | 3,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
DESC_W_MASK | DESC_A_MASK);
}
ESP = ECX;
EIP = EDX;
}
#if defined(CONFIG_USER_ONLY)
target_ulong helper_read_crN(int reg)
{
return 0;
}
void helper_write_crN(int reg, target_ulong t0)
{
}
void helper_movl_drN_T0(int reg, target_ulong t0)
{
}
#else
target_ulong helper_read_crN(int reg)
{
target_ulong val;
helper_svm_check_intercept_param(SVM_EXIT_READ_CR0 + reg, 0);
switch(reg) {
default:
val = env->cr[reg];
break;
case 8:
if (!(env->hflags2 & HF2_VINTR_MASK)) {
val = cpu_get_apic_tpr(env->apic_state);
} else {
val = env->v_tpr;
}
break;
}
return val;
}
void helper_write_crN(int reg, target_ulong t0)
{
helper_svm_check_intercept_param(SVM_EXIT_WRITE_CR0 + reg, 0);
switch(reg) {
case 0:
cpu_x86_update_cr0(env, t0);
break;
case 3:
cpu_x86_update_cr3(env, t0);
break;
case 4:
cpu_x86_update_cr4(env, t0);
break;
case 8:
if (!(env->hflags2 & HF2_VINTR_MASK)) {
cpu_set_apic_tpr(env->apic_state, t0);
}
env->v_tpr = t0 & 0x0f;
break;
default:
env->cr[reg] = t0;
break;
}
}
void helper_movl_drN_T0(int reg, target_ulong t0)
{
int i;
if (reg < 4) {
hw_breakpoint_remove(env, reg);
env->dr[reg] = t0;
hw_breakpoint_insert(env, reg);
} else if (reg == 7) {
for (i = 0; i < 4; i++)
hw_breakpoint_remove(env, i);
env->dr[7] = t0;
for (i = 0; i < 4; i++)
hw_breakpoint_insert(env, i);
} else
env->dr[reg] = t0;
}
#endif
void helper_lmsw(target_ulong t0)
{
/* only 4 lower bits of CR0 are modified. PE cannot be set to zero
if already set to one. */
t0 = (env->cr[0] & ~0xe) | (t0 & 0xf);
helper_write_crN(0, t0);
}
void helper_clts(void)
{
env->cr[0] &= ~CR0_TS_MASK;
env->hflags &= ~HF_TS_MASK;
}
void helper_invlpg(target_ulong addr)
{
helper_svm_check_intercept_param(SVM_EXIT_INVLPG, 0);
tlb_flush_page(env, addr);
}
void helper_rdtsc(void)
{
uint64_t val;
if ((env->cr[4] & CR4_TSD_MASK) && ((env->hflags & HF_CPL_MASK) != 0)) {
raise_exception(EXCP0D_GPF);
}
helper_svm_check_intercept_param(SVM_EXIT_RDTSC, 0);
val = cpu_get_tsc(env) + env->tsc_offset;
EAX = (uint32_t)(val);
EDX = (uint32_t)(val >> 32);
}
void helper_rdtscp(void)
{
helper_rdtsc();
ECX = (uint32_t)(env->tsc_aux);
}
void helper_rdpmc(void)
{
if ((env->cr[4] & CR4_PCE_MASK) && ((env->hflags & HF_CPL_MASK) != 0)) {
raise_exception(EXCP0D_GPF);
}
helper_svm_check_intercept_param(SVM_EXIT_RDPMC, 0);
/* currently unimplemented */
raise_exception_err(EXCP06_ILLOP, 0);
}
#if defined(CONFIG_USER_ONLY)
void helper_wrmsr(void)
{
}
void helper_rdmsr(void)
{
}
#else
void helper_wrmsr(void)
{
uint64_t val;
helper_svm_check_intercept_param(SVM_EXIT_MSR, 1);
val = ((uint32_t)EAX) | ((uint64_t)((uint32_t)EDX) << 32);
switch((uint32_t)ECX) {
case MSR_IA32_SYSENTER_CS:
env->sysenter_cs = val & 0xffff;
break;
case MSR_IA32_SYSENTER_ESP:
env->sysenter_esp = val;
break;
case MSR_IA32_SYSENTER_EIP:
env->sysenter_eip = val;
break;
case MSR_IA32_APICBASE:
cpu_set_apic_base(env->apic_state, val);
break;
case MSR_EFER:
{
uint64_t update_mask;
update_mask = 0;
if (env->cpuid_ext2_features & CPUID_EXT2_SYSCALL)
update_mask |= MSR_EFER_SCE;
if (env->cpuid_ext2_features & CPUID_EXT2_LM)
update_mask |= MSR_EFER_LME;
if (env->cpuid_ext2_features & CPUID_EXT2_FFXSR)
update_mask |= MSR_EFER_FFXSR;
if (env->cpuid_ext2_features & CPUID_EXT2_NX)
update_mask |= MSR_EFER_NXE;
if (env->cpuid_ext3_features & CPUID_EXT3_SVM)
update_mask |= MSR_EFER_SVME;
if (env->cpuid_ext2_features & CPUID_EXT2_FFXSR)
update_mask |= MSR_EFER_FFXSR;
cpu_load_efer(env, (env->efer & ~update_mask) |
(val & update_mask));
}
break;
case MSR_STAR:
env->star = val;
break;
case MSR_PAT:
env->pat = val;
break;
case MSR_VM_HSAVE_PA:
env->vm_hsave = val;
break;
#ifdef TARGET_X86_64
case MSR_LSTAR:
env->lstar = val;
break;
case MSR_CSTAR:
env->cstar = val;
break;
case MSR_FMASK:
env->fmask = val;
break;
case MSR_FSBASE:
env->segs[R_FS].base = val;
break;
case MSR_GSBASE:
env->segs[R_GS].base = val;
break;
case MSR_KERNELGSBASE:
env->kernelgsbase = val;
break;
#endif
case MSR_MTRRphysBase(0):
case MSR_MTRRphysBase(1):
case MSR_MTRRphysBase(2):
case MSR_MTRRphysBase(3):
case MSR_MTRRphysBase(4):
case MSR_MTRRphysBase(5):
case MSR_MTRRphysBase(6):
case MSR_MTRRphysBase(7):
env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysBase(0)) / 2].base = val;
break;
case MSR_MTRRphysMask(0):
case MSR_MTRRphysMask(1):
case MSR_MTRRphysMask(2):
case MSR_MTRRphysMask(3):
case MSR_MTRRphysMask(4):
case MSR_MTRRphysMask(5):
case MSR_MTRRphysMask(6):
case MSR_MTRRphysMask(7):
env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysMask(0)) / 2].mask = val;
break;
case MSR_MTRRfix64K_00000:
env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix64K_00000] = val;
break;
case MSR_MTRRfix16K_80000:
case MSR_MTRRfix16K_A0000:
env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix16K_80000 + 1] = val;
break;
case MSR_MTRRfix4K_C0000:
case MSR_MTRRfix4K_C8000:
case MSR_MTRRfix4K_D0000:
case MSR_MTRRfix4K_D8000:
case MSR_MTRRfix4K_E0000:
case MSR_MTRRfix4K_E8000:
case MSR_MTRRfix4K_F0000:
case MSR_MTRRfix4K_F8000:
env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix4K_C0000 + 3] = val;
break;
case MSR_MTRRdefType:
env->mtrr_deftype = val;
break;
case MSR_MCG_STATUS:
env->mcg_status = val;
break;
case MSR_MCG_CTL:
if ((env->mcg_cap & MCG_CTL_P)
&& (val == 0 || val == ~(uint64_t)0))
env->mcg_ctl = val;
break;
case MSR_TSC_AUX:
env->tsc_aux = val;
break;
case MSR_IA32_MISC_ENABLE:
env->msr_ia32_misc_enable = val;
break;
default:
if ((uint32_t)ECX >= MSR_MC0_CTL
&& (uint32_t)ECX < MSR_MC0_CTL + (4 * env->mcg_cap & 0xff)) {
uint32_t offset = (uint32_t)ECX - MSR_MC0_CTL;
if ((offset & 0x3) != 0
|| (val == 0 || val == ~(uint64_t)0))
env->mce_banks[offset] = val;
break;
}
/* XXX: exception ? */
break;
}
}
void helper_rdmsr(void)
{
uint64_t val;
helper_svm_check_intercept_param(SVM_EXIT_MSR, 0);
switch((uint32_t)ECX) {
case MSR_IA32_SYSENTER_CS:
val = env->sysenter_cs;
break;
case MSR_IA32_SYSENTER_ESP:
val = env->sysenter_esp;
break;
case MSR_IA32_SYSENTER_EIP:
val = env->sysenter_eip;
break;
case MSR_IA32_APICBASE:
val = cpu_get_apic_base(env->apic_state);
break;
case MSR_EFER:
val = env->efer;
break;
case MSR_STAR:
val = env->star;
break;
case MSR_PAT:
val = env->pat;
break;
case MSR_VM_HSAVE_PA:
val = env->vm_hsave;
break;
case MSR_IA32_PERF_STATUS:
/* tsc_increment_by_tick */
val = 1000ULL;
/* CPU multiplier */
val |= (((uint64_t)4ULL) << 40);
break;
#ifdef TARGET_X86_64
case MSR_LSTAR:
val = env->lstar;
break;
case MSR_CSTAR:
val = env->cstar;
break;
case MSR_FMASK:
val = env->fmask;
break;
case MSR_FSBASE:
val = env->segs[R_FS].base;
break;
case MSR_GSBASE:
val = env->segs[R_GS].base;
break;
case MSR_KERNELGSBASE:
val = env->kernelgsbase;
break;
case MSR_TSC_AUX:
val = env->tsc_aux;
break;
#endif
case MSR_MTRRphysBase(0):
case MSR_MTRRphysBase(1):
case MSR_MTRRphysBase(2):
case MSR_MTRRphysBase(3):
case MSR_MTRRphysBase(4):
case MSR_MTRRphysBase(5):
case MSR_MTRRphysBase(6):
case MSR_MTRRphysBase(7):
val = env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysBase(0)) / 2].base;
break;
case MSR_MTRRphysMask(0):
case MSR_MTRRphysMask(1):
case MSR_MTRRphysMask(2):
case MSR_MTRRphysMask(3):
case MSR_MTRRphysMask(4):
case MSR_MTRRphysMask(5):
case MSR_MTRRphysMask(6):
case MSR_MTRRphysMask(7):
val = env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysMask(0)) / 2].mask;
break;
case MSR_MTRRfix64K_00000:
val = env->mtrr_fixed[0];
break;
case MSR_MTRRfix16K_80000:
case MSR_MTRRfix16K_A0000:
val = env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix16K_80000 + 1];
break;
case MSR_MTRRfix4K_C0000:
case MSR_MTRRfix4K_C8000:
case MSR_MTRRfix4K_D0000:
case MSR_MTRRfix4K_D8000:
case MSR_MTRRfix4K_E0000:
case MSR_MTRRfix4K_E8000:
case MSR_MTRRfix4K_F0000:
case MSR_MTRRfix4K_F8000:
val = env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix4K_C0000 + 3];
break;
case MSR_MTRRdefType:
val = env->mtrr_deftype;
break;
case MSR_MTRRcap:
if (env->cpuid_features & CPUID_MTRR)
val = MSR_MTRRcap_VCNT | MSR_MTRRcap_FIXRANGE_SUPPORT | MSR_MTRRcap_WC_SUPPORTED;
else
/* XXX: exception ? */
val = 0;
break;
case MSR_MCG_CAP:
val = env->mcg_cap;
break;
case MSR_MCG_CTL:
if (env->mcg_cap & MCG_CTL_P)
val = env->mcg_ctl;
else
val = 0;
break;
case MSR_MCG_STATUS:
val = env->mcg_status;
break;
case MSR_IA32_MISC_ENABLE:
val = env->msr_ia32_misc_enable;
break;
default:
if ((uint32_t)ECX >= MSR_MC0_CTL
&& (uint32_t)ECX < MSR_MC0_CTL + (4 * env->mcg_cap & 0xff)) {
uint32_t offset = (uint32_t)ECX - MSR_MC0_CTL;
val = env->mce_banks[offset];
break;
}
/* XXX: exception ? */
val = 0;
break;
}
EAX = (uint32_t)(val);
EDX = (uint32_t)(val >> 32);
}
#endif
target_ulong helper_lsl(target_ulong selector1)
{
unsigned int limit;
uint32_t e1, e2, eflags, selector;
int rpl, dpl, cpl, type;
selector = selector1 & 0xffff;
eflags = helper_cc_compute_all(CC_OP);
if ((selector & 0xfffc) == 0)
goto fail;
if (load_segment(&e1, &e2, selector) != 0)
goto fail;
rpl = selector & 3;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
if (e2 & DESC_S_MASK) {
if ((e2 & DESC_CS_MASK) && (e2 & DESC_C_MASK)) {
/* conforming */
} else {
if (dpl < cpl || dpl < rpl)
goto fail;
}
} else {
type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
switch(type) {
case 1:
case 2:
case 3:
case 9:
case 11:
break;
default:
goto fail;
}
if (dpl < cpl || dpl < rpl) {
fail:
CC_SRC = eflags & ~CC_Z;
return 0;
}
}
limit = get_seg_limit(e1, e2);
CC_SRC = eflags | CC_Z;
return limit;
}
target_ulong helper_lar(target_ulong selector1)
{
uint32_t e1, e2, eflags, selector;
int rpl, dpl, cpl, type;
selector = selector1 & 0xffff;
eflags = helper_cc_compute_all(CC_OP);
if ((selector & 0xfffc) == 0)
goto fail;
if (load_segment(&e1, &e2, selector) != 0)
goto fail;
rpl = selector & 3;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
if (e2 & DESC_S_MASK) {
if ((e2 & DESC_CS_MASK) && (e2 & DESC_C_MASK)) {
/* conforming */
} else {
if (dpl < cpl || dpl < rpl)
goto fail;
}
} else {
type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
switch(type) {
case 1:
case 2:
case 3:
case 4:
case 5:
case 9:
case 11:
case 12:
break;
default:
goto fail;
}
if (dpl < cpl || dpl < rpl) {
fail:
CC_SRC = eflags & ~CC_Z;
return 0;
}
}
CC_SRC = eflags | CC_Z;
return e2 & 0x00f0ff00;
}
void helper_verr(target_ulong selector1)
{
uint32_t e1, e2, eflags, selector;
int rpl, dpl, cpl;
selector = selector1 & 0xffff;
eflags = helper_cc_compute_all(CC_OP);
if ((selector & 0xfffc) == 0)
goto fail;
if (load_segment(&e1, &e2, selector) != 0)
goto fail;
if (!(e2 & DESC_S_MASK))
goto fail;
rpl = selector & 3;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
if (e2 & DESC_CS_MASK) {
if (!(e2 & DESC_R_MASK))
goto fail;
if (!(e2 & DESC_C_MASK)) {
if (dpl < cpl || dpl < rpl)
goto fail;
}
} else {
if (dpl < cpl || dpl < rpl) {
fail:
CC_SRC = eflags & ~CC_Z;
return;
}
}
CC_SRC = eflags | CC_Z;
}
void helper_verw(target_ulong selector1)
{
uint32_t e1, e2, eflags, selector;
int rpl, dpl, cpl;
selector = selector1 & 0xffff;
eflags = helper_cc_compute_all(CC_OP);
if ((selector & 0xfffc) == 0)
goto fail;
if (load_segment(&e1, &e2, selector) != 0)
goto fail;
if (!(e2 & DESC_S_MASK))
goto fail;
rpl = selector & 3;
dpl = (e2 >> DESC_DPL_SHIFT) & 3;
cpl = env->hflags & HF_CPL_MASK;
if (e2 & DESC_CS_MASK) {
goto fail;
} else {
if (dpl < cpl || dpl < rpl)
goto fail;
if (!(e2 & DESC_W_MASK)) {
fail:
CC_SRC = eflags & ~CC_Z;
return;
}
}
CC_SRC = eflags | CC_Z;
}
/* x87 FPU helpers */
static inline double floatx80_to_double(floatx80 a)
{
union {
float64 f64;
double d;
} u;
u.f64 = floatx80_to_float64(a, &env->fp_status);
return u.d;
}
static inline floatx80 double_to_floatx80(double a)
{
union {
float64 f64;
double d;
} u;
u.d = a;
return float64_to_floatx80(u.f64, &env->fp_status);
}
static void fpu_set_exception(int mask)
{
env->fpus |= mask;
if (env->fpus & (~env->fpuc & FPUC_EM))
env->fpus |= FPUS_SE | FPUS_B;
}
static inline floatx80 helper_fdiv(floatx80 a, floatx80 b)
{
if (floatx80_is_zero(b)) {
fpu_set_exception(FPUS_ZE);
}
return floatx80_div(a, b, &env->fp_status);
}
static void fpu_raise_exception(void)
{
if (env->cr[0] & CR0_NE_MASK) {
raise_exception(EXCP10_COPR);
}
#if !defined(CONFIG_USER_ONLY)
else {
cpu_set_ferr(env);
}
#endif
}
void helper_flds_FT0(uint32_t val)
{
union {
float32 f;
uint32_t i;
} u;
u.i = val;
FT0 = float32_to_floatx80(u.f, &env->fp_status);
}
void helper_fldl_FT0(uint64_t val)
{
union {
float64 f;
uint64_t i;
} u;
u.i = val;
FT0 = float64_to_floatx80(u.f, &env->fp_status);
}
void helper_fildl_FT0(int32_t val)
{
FT0 = int32_to_floatx80(val, &env->fp_status);
}
void helper_flds_ST0(uint32_t val)
{
int new_fpstt;
union {
float32 f;
uint32_t i;
} u;
new_fpstt = (env->fpstt - 1) & 7;
u.i = val;
env->fpregs[new_fpstt].d = float32_to_floatx80(u.f, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void helper_fldl_ST0(uint64_t val)
{
int new_fpstt;
union {
float64 f;
uint64_t i;
} u;
new_fpstt = (env->fpstt - 1) & 7;
u.i = val;
env->fpregs[new_fpstt].d = float64_to_floatx80(u.f, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void helper_fildl_ST0(int32_t val)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
env->fpregs[new_fpstt].d = int32_to_floatx80(val, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void helper_fildll_ST0(int64_t val)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
env->fpregs[new_fpstt].d = int64_to_floatx80(val, &env->fp_status);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
uint32_t helper_fsts_ST0(void)
{
union {
float32 f;
uint32_t i;
} u;
u.f = floatx80_to_float32(ST0, &env->fp_status);
return u.i;
}
uint64_t helper_fstl_ST0(void)
{
union {
float64 f;
uint64_t i;
} u;
u.f = floatx80_to_float64(ST0, &env->fp_status);
return u.i;
}
int32_t helper_fist_ST0(void)
{
int32_t val;
val = floatx80_to_int32(ST0, &env->fp_status);
if (val != (int16_t)val)
val = -32768;
return val;
}
int32_t helper_fistl_ST0(void)
{
int32_t val;
val = floatx80_to_int32(ST0, &env->fp_status);
return val;
}
int64_t helper_fistll_ST0(void)
{
int64_t val;
val = floatx80_to_int64(ST0, &env->fp_status);
return val;
}
int32_t helper_fistt_ST0(void)
{
int32_t val;
val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
if (val != (int16_t)val)
val = -32768;
return val;
}
int32_t helper_fisttl_ST0(void)
{
int32_t val;
val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
return val;
}
int64_t helper_fisttll_ST0(void)
{
int64_t val;
val = floatx80_to_int64_round_to_zero(ST0, &env->fp_status);
return val;
}
void helper_fldt_ST0(target_ulong ptr)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
env->fpregs[new_fpstt].d = helper_fldt(ptr);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void helper_fstt_ST0(target_ulong ptr)
{
helper_fstt(ST0, ptr);
}
void helper_fpush(void)
{
fpush();
}
void helper_fpop(void)
{
fpop();
}
void helper_fdecstp(void)
{
env->fpstt = (env->fpstt - 1) & 7;
env->fpus &= (~0x4700);
}
void helper_fincstp(void)
{
env->fpstt = (env->fpstt + 1) & 7;
env->fpus &= (~0x4700);
}
/* FPU move */
void helper_ffree_STN(int st_index)
{
env->fptags[(env->fpstt + st_index) & 7] = 1;
}
void helper_fmov_ST0_FT0(void)
{
ST0 = FT0;
}
void helper_fmov_FT0_STN(int st_index)
{
FT0 = ST(st_index);
}
void helper_fmov_ST0_STN(int st_index)
{
ST0 = ST(st_index);
}
void helper_fmov_STN_ST0(int st_index)
{
ST(st_index) = ST0;
}
void helper_fxchg_ST0_STN(int st_index)
{
floatx80 tmp;
tmp = ST(st_index);
ST(st_index) = ST0;
ST0 = tmp;
}
/* FPU operations */
static const int fcom_ccval[4] = {0x0100, 0x4000, 0x0000, 0x4500};
void helper_fcom_ST0_FT0(void)
{
int ret;
ret = floatx80_compare(ST0, FT0, &env->fp_status);
env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
}
void helper_fucom_ST0_FT0(void)
{
int ret;
ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret+ 1];
}
static const int fcomi_ccval[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
void helper_fcomi_ST0_FT0(void)
{
int eflags;
int ret;
ret = floatx80_compare(ST0, FT0, &env->fp_status);
eflags = helper_cc_compute_all(CC_OP);
eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
CC_SRC = eflags;
}
void helper_fucomi_ST0_FT0(void)
{
int eflags;
int ret;
ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
eflags = helper_cc_compute_all(CC_OP);
eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
CC_SRC = eflags;
}
void helper_fadd_ST0_FT0(void)
{
ST0 = floatx80_add(ST0, FT0, &env->fp_status);
}
void helper_fmul_ST0_FT0(void)
{
ST0 = floatx80_mul(ST0, FT0, &env->fp_status);
}
void helper_fsub_ST0_FT0(void)
{
ST0 = floatx80_sub(ST0, FT0, &env->fp_status);
}
void helper_fsubr_ST0_FT0(void)
{
ST0 = floatx80_sub(FT0, ST0, &env->fp_status);
}
void helper_fdiv_ST0_FT0(void)
{
ST0 = helper_fdiv(ST0, FT0);
}
void helper_fdivr_ST0_FT0(void)
{
ST0 = helper_fdiv(FT0, ST0);
}
/* fp operations between STN and ST0 */
void helper_fadd_STN_ST0(int st_index)
{
ST(st_index) = floatx80_add(ST(st_index), ST0, &env->fp_status);
}
void helper_fmul_STN_ST0(int st_index)
{
ST(st_index) = floatx80_mul(ST(st_index), ST0, &env->fp_status);
}
void helper_fsub_STN_ST0(int st_index)
{
ST(st_index) = floatx80_sub(ST(st_index), ST0, &env->fp_status);
}
void helper_fsubr_STN_ST0(int st_index)
{
ST(st_index) = floatx80_sub(ST0, ST(st_index), &env->fp_status);
}
void helper_fdiv_STN_ST0(int st_index)
{
floatx80 *p;
p = &ST(st_index);
*p = helper_fdiv(*p, ST0);
}
void helper_fdivr_STN_ST0(int st_index)
{
floatx80 *p;
p = &ST(st_index);
*p = helper_fdiv(ST0, *p);
}
/* misc FPU operations */
void helper_fchs_ST0(void)
{
ST0 = floatx80_chs(ST0);
}
void helper_fabs_ST0(void)
{
ST0 = floatx80_abs(ST0);
}
void helper_fld1_ST0(void)
{
ST0 = floatx80_one;
}
void helper_fldl2t_ST0(void)
{
ST0 = floatx80_l2t;
}
void helper_fldl2e_ST0(void)
{
ST0 = floatx80_l2e;
}
void helper_fldpi_ST0(void)
{
ST0 = floatx80_pi;
}
void helper_fldlg2_ST0(void)
{
ST0 = floatx80_lg2;
}
void helper_fldln2_ST0(void)
{
ST0 = floatx80_ln2;
}
void helper_fldz_ST0(void)
{
ST0 = floatx80_zero;
}
void helper_fldz_FT0(void)
{
FT0 = floatx80_zero;
}
uint32_t helper_fnstsw(void)
{
return (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
}
uint32_t helper_fnstcw(void)
{
return env->fpuc;
}
static void update_fp_status(void)
{
int rnd_type;
/* set rounding mode */
switch(env->fpuc & FPU_RC_MASK) {
default:
case FPU_RC_NEAR:
rnd_type = float_round_nearest_even;
break;
case FPU_RC_DOWN:
rnd_type = float_round_down;
break;
case FPU_RC_UP:
rnd_type = float_round_up;
break;
case FPU_RC_CHOP:
rnd_type = float_round_to_zero;
break;
}
set_float_rounding_mode(rnd_type, &env->fp_status);
switch((env->fpuc >> 8) & 3) {
case 0:
rnd_type = 32;
break;
case 2:
rnd_type = 64;
break;
case 3:
default:
rnd_type = 80;
break;
}
set_floatx80_rounding_precision(rnd_type, &env->fp_status);
}
void helper_fldcw(uint32_t val)
{
env->fpuc = val;
update_fp_status();
}
void helper_fclex(void)
{
env->fpus &= 0x7f00;
}
void helper_fwait(void)
{
if (env->fpus & FPUS_SE)
fpu_raise_exception();
}
void helper_fninit(void)
{
env->fpus = 0;
env->fpstt = 0;
env->fpuc = 0x37f;
env->fptags[0] = 1;
env->fptags[1] = 1;
env->fptags[2] = 1;
env->fptags[3] = 1;
env->fptags[4] = 1;
env->fptags[5] = 1;
env->fptags[6] = 1;
env->fptags[7] = 1;
}
/* BCD ops */
void helper_fbld_ST0(target_ulong ptr)
{
floatx80 tmp;
uint64_t val;
unsigned int v;
int i;
val = 0;
for(i = 8; i >= 0; i--) {
v = ldub(ptr + i);
val = (val * 100) + ((v >> 4) * 10) + (v & 0xf);
}
tmp = int64_to_floatx80(val, &env->fp_status);
if (ldub(ptr + 9) & 0x80) {
floatx80_chs(tmp);
}
fpush();
ST0 = tmp;
}
void helper_fbst_ST0(target_ulong ptr)
{
int v;
target_ulong mem_ref, mem_end;
int64_t val;
val = floatx80_to_int64(ST0, &env->fp_status);
mem_ref = ptr;
mem_end = mem_ref + 9;
if (val < 0) {
stb(mem_end, 0x80);
val = -val;
} else {
stb(mem_end, 0x00);
}
while (mem_ref < mem_end) {
if (val == 0)
break;
v = val % 100;
val = val / 100;
v = ((v / 10) << 4) | (v % 10);
stb(mem_ref++, v);
}
while (mem_ref < mem_end) {
stb(mem_ref++, 0);
}
}
void helper_f2xm1(void)
{
double val = floatx80_to_double(ST0);
val = pow(2.0, val) - 1.0;
ST0 = double_to_floatx80(val);
}
void helper_fyl2x(void)
{
double fptemp = floatx80_to_double(ST0);
if (fptemp>0.0){
fptemp = log(fptemp)/log(2.0); /* log2(ST) */
fptemp *= floatx80_to_double(ST1);
ST1 = double_to_floatx80(fptemp);
fpop();
} else {
env->fpus &= (~0x4700);
env->fpus |= 0x400;
}
}
void helper_fptan(void)
{
double fptemp = floatx80_to_double(ST0);
if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
fptemp = tan(fptemp);
ST0 = double_to_floatx80(fptemp);
fpush();
ST0 = floatx80_one;
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg| < 2**52 only */
}
}
void helper_fpatan(void)
{
double fptemp, fpsrcop;
fpsrcop = floatx80_to_double(ST1);
fptemp = floatx80_to_double(ST0);
ST1 = double_to_floatx80(atan2(fpsrcop, fptemp));
fpop();
}
void helper_fxtract(void)
{
CPU_LDoubleU temp;
temp.d = ST0;
if (floatx80_is_zero(ST0)) {
/* Easy way to generate -inf and raising division by 0 exception */
ST0 = floatx80_div(floatx80_chs(floatx80_one), floatx80_zero, &env->fp_status);
fpush();
ST0 = temp.d;
} else {
int expdif;
expdif = EXPD(temp) - EXPBIAS;
/*DP exponent bias*/
ST0 = int32_to_floatx80(expdif, &env->fp_status);
fpush();
BIASEXPONENT(temp);
ST0 = temp.d;
}
}
void helper_fprem1(void)
{
double st0, st1, dblq, fpsrcop, fptemp;
CPU_LDoubleU fpsrcop1, fptemp1;
int expdif;
signed long long int q;
st0 = floatx80_to_double(ST0);
st1 = floatx80_to_double(ST1);
if (isinf(st0) || isnan(st0) || isnan(st1) || (st1 == 0.0)) {
ST0 = double_to_floatx80(0.0 / 0.0); /* NaN */
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
return;
}
fpsrcop = st0;
fptemp = st1;
fpsrcop1.d = ST0;
fptemp1.d = ST1;
expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
if (expdif < 0) {
/* optimisation? taken from the AMD docs */
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
/* ST0 is unchanged */
return;
}
if (expdif < 53) {
dblq = fpsrcop / fptemp;
/* round dblq towards nearest integer */
dblq = rint(dblq);
st0 = fpsrcop - fptemp * dblq;
/* convert dblq to q by truncating towards zero */
if (dblq < 0.0)
q = (signed long long int)(-dblq);
else
q = (signed long long int)dblq;
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
/* (C0,C3,C1) <-- (q2,q1,q0) */
env->fpus |= (q & 0x4) << (8 - 2); /* (C0) <-- q2 */
env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */
env->fpus |= (q & 0x1) << (9 - 0); /* (C1) <-- q0 */
} else {
env->fpus |= 0x400; /* C2 <-- 1 */
fptemp = pow(2.0, expdif - 50);
fpsrcop = (st0 / st1) / fptemp;
/* fpsrcop = integer obtained by chopping */
fpsrcop = (fpsrcop < 0.0) ?
-(floor(fabs(fpsrcop))) : floor(fpsrcop);
st0 -= (st1 * fpsrcop * fptemp);
}
ST0 = double_to_floatx80(st0);
}
void helper_fprem(void)
{
double st0, st1, dblq, fpsrcop, fptemp;
CPU_LDoubleU fpsrcop1, fptemp1;
int expdif;
signed long long int q;
st0 = floatx80_to_double(ST0);
st1 = floatx80_to_double(ST1);
if (isinf(st0) || isnan(st0) || isnan(st1) || (st1 == 0.0)) {
ST0 = double_to_floatx80(0.0 / 0.0); /* NaN */
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
return;
}
fpsrcop = st0;
fptemp = st1;
fpsrcop1.d = ST0;
fptemp1.d = ST1;
expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
if (expdif < 0) {
/* optimisation? taken from the AMD docs */
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
/* ST0 is unchanged */
return;
}
if ( expdif < 53 ) {
dblq = fpsrcop/*ST0*/ / fptemp/*ST1*/;
/* round dblq towards zero */
dblq = (dblq < 0.0) ? ceil(dblq) : floor(dblq);
st0 = fpsrcop/*ST0*/ - fptemp * dblq;
/* convert dblq to q by truncating towards zero */
if (dblq < 0.0)
q = (signed long long int)(-dblq);
else
q = (signed long long int)dblq;
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
/* (C0,C3,C1) <-- (q2,q1,q0) */
env->fpus |= (q & 0x4) << (8 - 2); /* (C0) <-- q2 */
env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */
env->fpus |= (q & 0x1) << (9 - 0); /* (C1) <-- q0 */
} else {
int N = 32 + (expdif % 32); /* as per AMD docs */
env->fpus |= 0x400; /* C2 <-- 1 */
fptemp = pow(2.0, (double)(expdif - N));
fpsrcop = (st0 / st1) / fptemp;
/* fpsrcop = integer obtained by chopping */
fpsrcop = (fpsrcop < 0.0) ?
-(floor(fabs(fpsrcop))) : floor(fpsrcop);
st0 -= (st1 * fpsrcop * fptemp);
}
ST0 = double_to_floatx80(st0);
}
void helper_fyl2xp1(void)
{
double fptemp = floatx80_to_double(ST0);
if ((fptemp+1.0)>0.0) {
fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
fptemp *= floatx80_to_double(ST1);
ST1 = double_to_floatx80(fptemp);
fpop();
} else {
env->fpus &= (~0x4700);
env->fpus |= 0x400;
}
}
void helper_fsqrt(void)
{
if (floatx80_is_neg(ST0)) {
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
env->fpus |= 0x400;
}
ST0 = floatx80_sqrt(ST0, &env->fp_status);
}
void helper_fsincos(void)
{
double fptemp = floatx80_to_double(ST0);
if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = double_to_floatx80(sin(fptemp));
fpush();
ST0 = double_to_floatx80(cos(fptemp));
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg| < 2**63 only */
}
}
void helper_frndint(void)
{
ST0 = floatx80_round_to_int(ST0, &env->fp_status);
}
void helper_fscale(void)
{
if (floatx80_is_any_nan(ST1)) {
ST0 = ST1;
} else {
int n = floatx80_to_int32_round_to_zero(ST1, &env->fp_status);
ST0 = floatx80_scalbn(ST0, n, &env->fp_status);
}
}
void helper_fsin(void)
{
double fptemp = floatx80_to_double(ST0);
if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = double_to_floatx80(sin(fptemp));
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg| < 2**53 only */
}
}
void helper_fcos(void)
{
double fptemp = floatx80_to_double(ST0);
if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
env->fpus |= 0x400;
} else {
ST0 = double_to_floatx80(cos(fptemp));
env->fpus &= (~0x400); /* C2 <-- 0 */
/* the above code is for |arg5 < 2**63 only */
}
}
void helper_fxam_ST0(void)
{
CPU_LDoubleU temp;
int expdif;
temp.d = ST0;
env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
if (SIGND(temp))
env->fpus |= 0x200; /* C1 <-- 1 */
/* XXX: test fptags too */
expdif = EXPD(temp);
if (expdif == MAXEXPD) {
if (MANTD(temp) == 0x8000000000000000ULL)
env->fpus |= 0x500 /*Infinity*/;
else
env->fpus |= 0x100 /*NaN*/;
} else if (expdif == 0) {
if (MANTD(temp) == 0)
env->fpus |= 0x4000 /*Zero*/;
else
env->fpus |= 0x4400 /*Denormal*/;
} else {
env->fpus |= 0x400;
}
}
void helper_fstenv(target_ulong ptr, int data32)
{
int fpus, fptag, exp, i;
uint64_t mant;
CPU_LDoubleU tmp;
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
for (i=7; i>=0; i--) {
fptag <<= 2;
if (env->fptags[i]) {
fptag |= 3;
} else {
tmp.d = env->fpregs[i].d;
exp = EXPD(tmp);
mant = MANTD(tmp);
if (exp == 0 && mant == 0) {
/* zero */
fptag |= 1;
} else if (exp == 0 || exp == MAXEXPD
|| (mant & (1LL << 63)) == 0
) {
/* NaNs, infinity, denormal */
fptag |= 2;
}
}
}
if (data32) {
/* 32 bit */
stl(ptr, env->fpuc);
stl(ptr + 4, fpus);
stl(ptr + 8, fptag);
stl(ptr + 12, 0); /* fpip */
stl(ptr + 16, 0); /* fpcs */
stl(ptr + 20, 0); /* fpoo */
stl(ptr + 24, 0); /* fpos */
} else {
/* 16 bit */
stw(ptr, env->fpuc);
stw(ptr + 2, fpus);
stw(ptr + 4, fptag);
stw(ptr + 6, 0);
stw(ptr + 8, 0);
stw(ptr + 10, 0);
stw(ptr + 12, 0);
}
}
void helper_fldenv(target_ulong ptr, int data32)
{
int i, fpus, fptag;
if (data32) {
env->fpuc = lduw(ptr);
fpus = lduw(ptr + 4);
fptag = lduw(ptr + 8);
}
else {
env->fpuc = lduw(ptr);
fpus = lduw(ptr + 2);
fptag = lduw(ptr + 4);
}
env->fpstt = (fpus >> 11) & 7;
env->fpus = fpus & ~0x3800;
for(i = 0;i < 8; i++) {
env->fptags[i] = ((fptag & 3) == 3);
fptag >>= 2;
}
}
void helper_fsave(target_ulong ptr, int data32)
{
floatx80 tmp;
int i;
helper_fstenv(ptr, data32);
ptr += (14 << data32);
for(i = 0;i < 8; i++) {
tmp = ST(i);
helper_fstt(tmp, ptr);
ptr += 10;
}
/* fninit */
env->fpus = 0;
env->fpstt = 0;
env->fpuc = 0x37f;
env->fptags[0] = 1;
env->fptags[1] = 1;
env->fptags[2] = 1;
env->fptags[3] = 1;
env->fptags[4] = 1;
env->fptags[5] = 1;
env->fptags[6] = 1;
env->fptags[7] = 1;
}
void helper_frstor(target_ulong ptr, int data32)
{
floatx80 tmp;
int i;
helper_fldenv(ptr, data32);
ptr += (14 << data32);
for(i = 0;i < 8; i++) {
tmp = helper_fldt(ptr);
ST(i) = tmp;
ptr += 10;
}
}
#if defined(CONFIG_USER_ONLY)
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
{
CPUX86State *saved_env;
saved_env = env;
env = s;
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
selector &= 0xffff;
cpu_x86_load_seg_cache(env, seg_reg, selector,
(selector << 4), 0xffff, 0);
} else {
helper_load_seg(seg_reg, selector);
}
env = saved_env;
}
void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
{
CPUX86State *saved_env;
saved_env = env;
env = s;
helper_fsave(ptr, data32);
env = saved_env;
}
void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
{
CPUX86State *saved_env;
saved_env = env;
env = s;
helper_frstor(ptr, data32);
env = saved_env;
}
#endif
void helper_fxsave(target_ulong ptr, int data64)
{
int fpus, fptag, i, nb_xmm_regs;
floatx80 tmp;
target_ulong addr;
/* The operand must be 16 byte aligned */
if (ptr & 0xf) {
raise_exception(EXCP0D_GPF);
}
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
for(i = 0; i < 8; i++) {
fptag |= (env->fptags[i] << i);
}
stw(ptr, env->fpuc);
stw(ptr + 2, fpus);
stw(ptr + 4, fptag ^ 0xff);
#ifdef TARGET_X86_64
if (data64) {
stq(ptr + 0x08, 0); /* rip */
stq(ptr + 0x10, 0); /* rdp */
} else
#endif
{
stl(ptr + 0x08, 0); /* eip */
stl(ptr + 0x0c, 0); /* sel */
stl(ptr + 0x10, 0); /* dp */
stl(ptr + 0x14, 0); /* sel */
}
addr = ptr + 0x20;
for(i = 0;i < 8; i++) {
tmp = ST(i);
helper_fstt(tmp, addr);
addr += 16;
}
if (env->cr[4] & CR4_OSFXSR_MASK) {
/* XXX: finish it */
stl(ptr + 0x18, env->mxcsr); /* mxcsr */
stl(ptr + 0x1c, 0x0000ffff); /* mxcsr_mask */
if (env->hflags & HF_CS64_MASK)
nb_xmm_regs = 16;
else
nb_xmm_regs = 8;
addr = ptr + 0xa0;
/* Fast FXSAVE leaves out the XMM registers */
if (!(env->efer & MSR_EFER_FFXSR)
|| (env->hflags & HF_CPL_MASK)
|| !(env->hflags & HF_LMA_MASK)) {
for(i = 0; i < nb_xmm_regs; i++) {
stq(addr, env->xmm_regs[i].XMM_Q(0));
stq(addr + 8, env->xmm_regs[i].XMM_Q(1));
addr += 16;
}
}
}
}
void helper_fxrstor(target_ulong ptr, int data64)
{
int i, fpus, fptag, nb_xmm_regs;
floatx80 tmp;
target_ulong addr;
/* The operand must be 16 byte aligned */
if (ptr & 0xf) {
raise_exception(EXCP0D_GPF);
}
env->fpuc = lduw(ptr);
fpus = lduw(ptr + 2);
fptag = lduw(ptr + 4);
env->fpstt = (fpus >> 11) & 7;
env->fpus = fpus & ~0x3800;
fptag ^= 0xff;
for(i = 0;i < 8; i++) {
env->fptags[i] = ((fptag >> i) & 1);
}
addr = ptr + 0x20;
for(i = 0;i < 8; i++) {
tmp = helper_fldt(addr);
ST(i) = tmp;
addr += 16;
}
if (env->cr[4] & CR4_OSFXSR_MASK) {
/* XXX: finish it */
env->mxcsr = ldl(ptr + 0x18);
//ldl(ptr + 0x1c);
if (env->hflags & HF_CS64_MASK)
nb_xmm_regs = 16;
else
nb_xmm_regs = 8;
addr = ptr + 0xa0;
/* Fast FXRESTORE leaves out the XMM registers */
if (!(env->efer & MSR_EFER_FFXSR)
|| (env->hflags & HF_CPL_MASK)
|| !(env->hflags & HF_LMA_MASK)) {
for(i = 0; i < nb_xmm_regs; i++) {
env->xmm_regs[i].XMM_Q(0) = ldq(addr);
env->xmm_regs[i].XMM_Q(1) = ldq(addr + 8);
addr += 16;
}
}
}
}
void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, floatx80 f)
{
CPU_LDoubleU temp;
temp.d = f;
*pmant = temp.l.lower;
*pexp = temp.l.upper;
}
floatx80 cpu_set_fp80(uint64_t mant, uint16_t upper)
{
CPU_LDoubleU temp;
temp.l.upper = upper;
temp.l.lower = mant;
return temp.d;
}
#ifdef TARGET_X86_64
//#define DEBUG_MULDIV
static void add128(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
{
*plow += a;
/* carry test */
if (*plow < a)
(*phigh)++;
*phigh += b;
}
static void neg128(uint64_t *plow, uint64_t *phigh)
{
*plow = ~ *plow;
*phigh = ~ *phigh;
add128(plow, phigh, 1, 0);
}
/* return TRUE if overflow */
static int div64(uint64_t *plow, uint64_t *phigh, uint64_t b)
{
uint64_t q, r, a1, a0;
int i, qb, ab;
a0 = *plow;
a1 = *phigh;
if (a1 == 0) {
q = a0 / b;
r = a0 % b;
*plow = q;
*phigh = r;
} else {
if (a1 >= b)
return 1;
/* XXX: use a better algorithm */
for(i = 0; i < 64; i++) {
ab = a1 >> 63;
a1 = (a1 << 1) | (a0 >> 63);
if (ab || a1 >= b) {
a1 -= b;
qb = 1;
} else {
qb = 0;
}
a0 = (a0 << 1) | qb;
}
#if defined(DEBUG_MULDIV)
printf("div: 0x%016" PRIx64 "%016" PRIx64 " / 0x%016" PRIx64 ": q=0x%016" PRIx64 " r=0x%016" PRIx64 "\n",
*phigh, *plow, b, a0, a1);
#endif
*plow = a0;
*phigh = a1;
}
return 0;
}
/* return TRUE if overflow */
static int idiv64(uint64_t *plow, uint64_t *phigh, int64_t b)
{
int sa, sb;
sa = ((int64_t)*phigh < 0);
if (sa)
neg128(plow, phigh);
sb = (b < 0);
if (sb)
b = -b;
if (div64(plow, phigh, b) != 0)
return 1;
if (sa ^ sb) {
if (*plow > (1ULL << 63))
return 1;
*plow = - *plow;
} else {
if (*plow >= (1ULL << 63))
return 1;
}
if (sa)
*phigh = - *phigh;
return 0;
}
void helper_mulq_EAX_T0(target_ulong t0)
{
uint64_t r0, r1;
mulu64(&r0, &r1, EAX, t0);
EAX = r0;
EDX = r1;
CC_DST = r0;
CC_SRC = r1;
}
void helper_imulq_EAX_T0(target_ulong t0)
{
uint64_t r0, r1;
muls64(&r0, &r1, EAX, t0);
EAX = r0;
EDX = r1;
CC_DST = r0;
CC_SRC = ((int64_t)r1 != ((int64_t)r0 >> 63));
}
target_ulong helper_imulq_T0_T1(target_ulong t0, target_ulong t1)
{
uint64_t r0, r1;
muls64(&r0, &r1, t0, t1);
CC_DST = r0;
CC_SRC = ((int64_t)r1 != ((int64_t)r0 >> 63));
return r0;
}
void helper_divq_EAX(target_ulong t0)
{
uint64_t r0, r1;
if (t0 == 0) {
raise_exception(EXCP00_DIVZ);
}
r0 = EAX;
r1 = EDX;
if (div64(&r0, &r1, t0))
raise_exception(EXCP00_DIVZ);
EAX = r0;
EDX = r1;
}
void helper_idivq_EAX(target_ulong t0)
{
uint64_t r0, r1;
if (t0 == 0) {
raise_exception(EXCP00_DIVZ);
}
r0 = EAX;
r1 = EDX;
if (idiv64(&r0, &r1, t0))
raise_exception(EXCP00_DIVZ);
EAX = r0;
EDX = r1;
}
#endif
static void do_hlt(void)
{
env->hflags &= ~HF_INHIBIT_IRQ_MASK; /* needed if sti is just before */
env->halted = 1;
env->exception_index = EXCP_HLT;
cpu_loop_exit(env);
}
void helper_hlt(int next_eip_addend)
{
helper_svm_check_intercept_param(SVM_EXIT_HLT, 0);
EIP += next_eip_addend;
do_hlt();
}
void helper_monitor(target_ulong ptr)
{
if ((uint32_t)ECX != 0)
raise_exception(EXCP0D_GPF);
/* XXX: store address ? */
helper_svm_check_intercept_param(SVM_EXIT_MONITOR, 0);
}
void helper_mwait(int next_eip_addend)
{
if ((uint32_t)ECX != 0)
raise_exception(EXCP0D_GPF);
helper_svm_check_intercept_param(SVM_EXIT_MWAIT, 0);
EIP += next_eip_addend;
/* XXX: not complete but not completely erroneous */
if (env->cpu_index != 0 || env->next_cpu != NULL) {
/* more than one CPU: do not sleep because another CPU may
wake this one */
} else {
do_hlt();
}
}
void helper_debug(void)
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit(env);
}
void helper_reset_rf(void)
{
env->eflags &= ~RF_MASK;
}
void helper_raise_interrupt(int intno, int next_eip_addend)
{
raise_interrupt(intno, 1, 0, next_eip_addend);
}
void helper_raise_exception(int exception_index)
{
raise_exception(exception_index);
}
void helper_cli(void)
{
env->eflags &= ~IF_MASK;
}
void helper_sti(void)
{
env->eflags |= IF_MASK;
}
#if 0
/* vm86plus instructions */
void helper_cli_vm(void)
{
env->eflags &= ~VIF_MASK;
}
void helper_sti_vm(void)
{
env->eflags |= VIF_MASK;
if (env->eflags & VIP_MASK) {
raise_exception(EXCP0D_GPF);
}
}
#endif
void helper_set_inhibit_irq(void)
{
env->hflags |= HF_INHIBIT_IRQ_MASK;
}
void helper_reset_inhibit_irq(void)
{
env->hflags &= ~HF_INHIBIT_IRQ_MASK;
}
void helper_boundw(target_ulong a0, int v)
{
int low, high;
low = ldsw(a0);
high = ldsw(a0 + 2);
v = (int16_t)v;
if (v < low || v > high) {
raise_exception(EXCP05_BOUND);
}
}
void helper_boundl(target_ulong a0, int v)
{
int low, high;
low = ldl(a0);
high = ldl(a0 + 4);
if (v < low || v > high) {
raise_exception(EXCP05_BOUND);
}
}
#if !defined(CONFIG_USER_ONLY)
#define MMUSUFFIX _mmu
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
#endif
#if !defined(CONFIG_USER_ONLY)
/* try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill(CPUState *env1, target_ulong addr, int is_write, int mmu_idx,
void *retaddr)
{
TranslationBlock *tb;
int ret;
unsigned long pc;
CPUX86State *saved_env;
saved_env = env;
env = env1;
ret = cpu_x86_handle_mmu_fault(env, addr, is_write, mmu_idx);
if (ret) {
if (retaddr) {
/* now we have a real cpu fault */
pc = (unsigned long)retaddr;
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc);
}
}
raise_exception_err(env->exception_index, env->error_code);
}
env = saved_env;
}
#endif
/* Secure Virtual Machine helpers */
#if defined(CONFIG_USER_ONLY)
void helper_vmrun(int aflag, int next_eip_addend)
{
}
void helper_vmmcall(void)
{
}
void helper_vmload(int aflag)
{
}
void helper_vmsave(int aflag)
{
}
void helper_stgi(void)
{
}
void helper_clgi(void)
{
}
void helper_skinit(void)
{
}
void helper_invlpga(int aflag)
{
}
void helper_vmexit(uint32_t exit_code, uint64_t exit_info_1)
{
}
void helper_svm_check_intercept_param(uint32_t type, uint64_t param)
{
}
void svm_check_intercept(CPUState *env1, uint32_t type)
{
}
void helper_svm_check_io(uint32_t port, uint32_t param,
uint32_t next_eip_addend)
{
}
#else
static inline void svm_save_seg(target_phys_addr_t addr,
const SegmentCache *sc)
{
stw_phys(addr + offsetof(struct vmcb_seg, selector),
sc->selector);
stq_phys(addr + offsetof(struct vmcb_seg, base),
sc->base);
stl_phys(addr + offsetof(struct vmcb_seg, limit),
sc->limit);
stw_phys(addr + offsetof(struct vmcb_seg, attrib),
((sc->flags >> 8) & 0xff) | ((sc->flags >> 12) & 0x0f00));
}
static inline void svm_load_seg(target_phys_addr_t addr, SegmentCache *sc)
{
unsigned int flags;
sc->selector = lduw_phys(addr + offsetof(struct vmcb_seg, selector));
sc->base = ldq_phys(addr + offsetof(struct vmcb_seg, base));
sc->limit = ldl_phys(addr + offsetof(struct vmcb_seg, limit));
flags = lduw_phys(addr + offsetof(struct vmcb_seg, attrib));
sc->flags = ((flags & 0xff) << 8) | ((flags & 0x0f00) << 12);
}
static inline void svm_load_seg_cache(target_phys_addr_t addr,
CPUState *env, int seg_reg)
{
SegmentCache sc1, *sc = &sc1;
svm_load_seg(addr, sc);
cpu_x86_load_seg_cache(env, seg_reg, sc->selector,
sc->base, sc->limit, sc->flags);
}
void helper_vmrun(int aflag, int next_eip_addend)
{
target_ulong addr;
uint32_t event_inj;
uint32_t int_ctl;
helper_svm_check_intercept_param(SVM_EXIT_VMRUN, 0);
if (aflag == 2)
addr = EAX;
else
addr = (uint32_t)EAX;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr);
env->vm_vmcb = addr;
/* save the current CPU state in the hsave page */
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.base), env->gdt.base);
stl_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit), env->gdt.limit);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.base), env->idt.base);
stl_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.limit), env->idt.limit);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rflags), compute_eflags());
svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.es),
&env->segs[R_ES]);
svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.cs),
&env->segs[R_CS]);
svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.ss),
&env->segs[R_SS]);
svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.ds),
&env->segs[R_DS]);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rip),
EIP + next_eip_addend);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rsp), ESP);
stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rax), EAX);
/* load the interception bitmaps so we do not need to access the
vmcb in svm mode */
env->intercept = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept));
env->intercept_cr_read = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_read));
env->intercept_cr_write = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_write));
env->intercept_dr_read = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_read));
env->intercept_dr_write = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_write));
env->intercept_exceptions = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_exceptions));
/* enable intercepts */
env->hflags |= HF_SVMI_MASK;
env->tsc_offset = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.tsc_offset));
env->gdt.base = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base));
env->gdt.limit = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit));
env->idt.base = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.base));
env->idt.limit = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit));
/* clear exit_info_2 so we behave like the real hardware */
stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0);
cpu_x86_update_cr0(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr0)));
cpu_x86_update_cr4(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr4)));
cpu_x86_update_cr3(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr3)));
env->cr[2] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr2));
int_ctl = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl));
env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK);
if (int_ctl & V_INTR_MASKING_MASK) {
env->v_tpr = int_ctl & V_TPR_MASK;
env->hflags2 |= HF2_VINTR_MASK;
if (env->eflags & IF_MASK)
env->hflags2 |= HF2_HIF_MASK;
}
cpu_load_efer(env,
ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.efer)));
env->eflags = 0;
load_eflags(ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rflags)),
~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
CC_OP = CC_OP_EFLAGS;
svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.es),
env, R_ES);
svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.cs),
env, R_CS);
svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.ss),
env, R_SS);
svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.ds),
env, R_DS);
EIP = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rip));
env->eip = EIP;
ESP = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rsp));
EAX = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rax));
env->dr[7] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr7));
env->dr[6] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr6));
cpu_x86_set_cpl(env, ldub_phys(env->vm_vmcb + offsetof(struct vmcb, save.cpl)));
/* FIXME: guest state consistency checks */
switch(ldub_phys(env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) {
case TLB_CONTROL_DO_NOTHING:
break;
case TLB_CONTROL_FLUSH_ALL_ASID:
/* FIXME: this is not 100% correct but should work for now */
tlb_flush(env, 1);
break;
}
env->hflags2 |= HF2_GIF_MASK;
if (int_ctl & V_IRQ_MASK) {
env->interrupt_request |= CPU_INTERRUPT_VIRQ;
}
/* maybe we need to inject an event */
event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj));
if (event_inj & SVM_EVTINJ_VALID) {
uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK;
uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR;
uint32_t event_inj_err = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err));
qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err);
/* FIXME: need to implement valid_err */
switch (event_inj & SVM_EVTINJ_TYPE_MASK) {
case SVM_EVTINJ_TYPE_INTR:
env->exception_index = vector;
env->error_code = event_inj_err;
env->exception_is_int = 0;
env->exception_next_eip = -1;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "INTR");
/* XXX: is it always correct ? */
do_interrupt_all(vector, 0, 0, 0, 1);
break;
case SVM_EVTINJ_TYPE_NMI:
env->exception_index = EXCP02_NMI;
env->error_code = event_inj_err;
env->exception_is_int = 0;
env->exception_next_eip = EIP;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "NMI");
cpu_loop_exit(env);
break;
case SVM_EVTINJ_TYPE_EXEPT:
env->exception_index = vector;
env->error_code = event_inj_err;
env->exception_is_int = 0;
env->exception_next_eip = -1;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "EXEPT");
cpu_loop_exit(env);
break;
case SVM_EVTINJ_TYPE_SOFT:
env->exception_index = vector;
env->error_code = event_inj_err;
env->exception_is_int = 1;
env->exception_next_eip = EIP;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "SOFT");
cpu_loop_exit(env);
break;
}
qemu_log_mask(CPU_LOG_TB_IN_ASM, " %#x %#x\n", env->exception_index, env->error_code);
}
}
void helper_vmmcall(void)
{
helper_svm_check_intercept_param(SVM_EXIT_VMMCALL, 0);
raise_exception(EXCP06_ILLOP);
}
void helper_vmload(int aflag)
{
target_ulong addr;
helper_svm_check_intercept_param(SVM_EXIT_VMLOAD, 0);
if (aflag == 2)
addr = EAX;
else
addr = (uint32_t)EAX;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmload! " TARGET_FMT_lx "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
addr, ldq_phys(addr + offsetof(struct vmcb, save.fs.base)),
env->segs[R_FS].base);
svm_load_seg_cache(addr + offsetof(struct vmcb, save.fs),
env, R_FS);
svm_load_seg_cache(addr + offsetof(struct vmcb, save.gs),
env, R_GS);
svm_load_seg(addr + offsetof(struct vmcb, save.tr),
&env->tr);
svm_load_seg(addr + offsetof(struct vmcb, save.ldtr),
&env->ldt);
#ifdef TARGET_X86_64
env->kernelgsbase = ldq_phys(addr + offsetof(struct vmcb, save.kernel_gs_base));
env->lstar = ldq_phys(addr + offsetof(struct vmcb, save.lstar));
env->cstar = ldq_phys(addr + offsetof(struct vmcb, save.cstar));
env->fmask = ldq_phys(addr + offsetof(struct vmcb, save.sfmask));
#endif
env->star = ldq_phys(addr + offsetof(struct vmcb, save.star));
env->sysenter_cs = ldq_phys(addr + offsetof(struct vmcb, save.sysenter_cs));
env->sysenter_esp = ldq_phys(addr + offsetof(struct vmcb, save.sysenter_esp));
env->sysenter_eip = ldq_phys(addr + offsetof(struct vmcb, save.sysenter_eip));
}
void helper_vmsave(int aflag)
{
target_ulong addr;
helper_svm_check_intercept_param(SVM_EXIT_VMSAVE, 0);
if (aflag == 2)
addr = EAX;
else
addr = (uint32_t)EAX;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmsave! " TARGET_FMT_lx "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
addr, ldq_phys(addr + offsetof(struct vmcb, save.fs.base)),
env->segs[R_FS].base);
svm_save_seg(addr + offsetof(struct vmcb, save.fs),
&env->segs[R_FS]);
svm_save_seg(addr + offsetof(struct vmcb, save.gs),
&env->segs[R_GS]);
svm_save_seg(addr + offsetof(struct vmcb, save.tr),
&env->tr);
svm_save_seg(addr + offsetof(struct vmcb, save.ldtr),
&env->ldt);
#ifdef TARGET_X86_64
stq_phys(addr + offsetof(struct vmcb, save.kernel_gs_base), env->kernelgsbase);
stq_phys(addr + offsetof(struct vmcb, save.lstar), env->lstar);
stq_phys(addr + offsetof(struct vmcb, save.cstar), env->cstar);
stq_phys(addr + offsetof(struct vmcb, save.sfmask), env->fmask);
#endif
stq_phys(addr + offsetof(struct vmcb, save.star), env->star);
stq_phys(addr + offsetof(struct vmcb, save.sysenter_cs), env->sysenter_cs);
stq_phys(addr + offsetof(struct vmcb, save.sysenter_esp), env->sysenter_esp);
stq_phys(addr + offsetof(struct vmcb, save.sysenter_eip), env->sysenter_eip);
}
void helper_stgi(void)
{
helper_svm_check_intercept_param(SVM_EXIT_STGI, 0);
env->hflags2 |= HF2_GIF_MASK;
}
void helper_clgi(void)
{
helper_svm_check_intercept_param(SVM_EXIT_CLGI, 0);
env->hflags2 &= ~HF2_GIF_MASK;
}
void helper_skinit(void)
{
helper_svm_check_intercept_param(SVM_EXIT_SKINIT, 0);
/* XXX: not implemented */
raise_exception(EXCP06_ILLOP);
}
void helper_invlpga(int aflag)
{
target_ulong addr;
helper_svm_check_intercept_param(SVM_EXIT_INVLPGA, 0);
if (aflag == 2)
addr = EAX;
else
addr = (uint32_t)EAX;
/* XXX: could use the ASID to see if it is needed to do the
flush */
tlb_flush_page(env, addr);
}
void helper_svm_check_intercept_param(uint32_t type, uint64_t param)
{
if (likely(!(env->hflags & HF_SVMI_MASK)))
return;
switch(type) {
case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR0 + 8:
if (env->intercept_cr_read & (1 << (type - SVM_EXIT_READ_CR0))) {
helper_vmexit(type, param);
}
break;
case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR0 + 8:
if (env->intercept_cr_write & (1 << (type - SVM_EXIT_WRITE_CR0))) {
helper_vmexit(type, param);
}
break;
case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR0 + 7:
if (env->intercept_dr_read & (1 << (type - SVM_EXIT_READ_DR0))) {
helper_vmexit(type, param);
}
break;
case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR0 + 7:
if (env->intercept_dr_write & (1 << (type - SVM_EXIT_WRITE_DR0))) {
helper_vmexit(type, param);
}
break;
case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 31:
if (env->intercept_exceptions & (1 << (type - SVM_EXIT_EXCP_BASE))) {
helper_vmexit(type, param);
}
break;
case SVM_EXIT_MSR:
if (env->intercept & (1ULL << (SVM_EXIT_MSR - SVM_EXIT_INTR))) {
/* FIXME: this should be read in at vmrun (faster this way?) */
uint64_t addr = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.msrpm_base_pa));
uint32_t t0, t1;
switch((uint32_t)ECX) {
case 0 ... 0x1fff:
t0 = (ECX * 2) % 8;
t1 = (ECX * 2) / 8;
break;
case 0xc0000000 ... 0xc0001fff:
t0 = (8192 + ECX - 0xc0000000) * 2;
t1 = (t0 / 8);
t0 %= 8;
break;
case 0xc0010000 ... 0xc0011fff:
t0 = (16384 + ECX - 0xc0010000) * 2;
t1 = (t0 / 8);
t0 %= 8;
break;
default:
helper_vmexit(type, param);
t0 = 0;
t1 = 0;
break;
}
if (ldub_phys(addr + t1) & ((1 << param) << t0))
helper_vmexit(type, param);
}
break;
default:
if (env->intercept & (1ULL << (type - SVM_EXIT_INTR))) {
helper_vmexit(type, param);
}
break;
}
}
void svm_check_intercept(CPUState *env1, uint32_t type)
{
CPUState *saved_env;
saved_env = env;
env = env1;
helper_svm_check_intercept_param(type, 0);
env = saved_env;
}
void helper_svm_check_io(uint32_t port, uint32_t param,
uint32_t next_eip_addend)
{
if (env->intercept & (1ULL << (SVM_EXIT_IOIO - SVM_EXIT_INTR))) {
/* FIXME: this should be read in at vmrun (faster this way?) */
uint64_t addr = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.iopm_base_pa));
uint16_t mask = (1 << ((param >> 4) & 7)) - 1;
if(lduw_phys(addr + port / 8) & (mask << (port & 7))) {
/* next EIP */
stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
env->eip + next_eip_addend);
helper_vmexit(SVM_EXIT_IOIO, param | (port << 16));
}
}
}
/* Note: currently only 32 bits of exit_code are used */
void helper_vmexit(uint32_t exit_code, uint64_t exit_info_1)
{
uint32_t int_ctl;
qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmexit(%08x, %016" PRIx64 ", %016" PRIx64 ", " TARGET_FMT_lx ")!\n",
exit_code, exit_info_1,
ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2)),
EIP);
if(env->hflags & HF_INHIBIT_IRQ_MASK) {
stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_state), SVM_INTERRUPT_SHADOW_MASK);
env->hflags &= ~HF_INHIBIT_IRQ_MASK;
} else {
stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_state), 0);
}
/* Save the VM state in the vmcb */
svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.es),
&env->segs[R_ES]);
svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.cs),
&env->segs[R_CS]);
svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.ss),
&env->segs[R_SS]);
svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.ds),
&env->segs[R_DS]);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base), env->gdt.base);
stl_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit), env->gdt.limit);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.base), env->idt.base);
stl_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit), env->idt.limit);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.efer), env->efer);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr0), env->cr[0]);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr2), env->cr[2]);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr3), env->cr[3]);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr4), env->cr[4]);
int_ctl = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl));
int_ctl &= ~(V_TPR_MASK | V_IRQ_MASK);
int_ctl |= env->v_tpr & V_TPR_MASK;
if (env->interrupt_request & CPU_INTERRUPT_VIRQ)
int_ctl |= V_IRQ_MASK;
stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl), int_ctl);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rflags), compute_eflags());
stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rip), env->eip);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rsp), ESP);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rax), EAX);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr7), env->dr[7]);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr6), env->dr[6]);
stb_phys(env->vm_vmcb + offsetof(struct vmcb, save.cpl), env->hflags & HF_CPL_MASK);
/* Reload the host state from vm_hsave */
env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK);
env->hflags &= ~HF_SVMI_MASK;
env->intercept = 0;
env->intercept_exceptions = 0;
env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
env->tsc_offset = 0;
env->gdt.base = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.base));
env->gdt.limit = ldl_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit));
env->idt.base = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.base));
env->idt.limit = ldl_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.limit));
cpu_x86_update_cr0(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr0)) | CR0_PE_MASK);
cpu_x86_update_cr4(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr4)));
cpu_x86_update_cr3(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr3)));
/* we need to set the efer after the crs so the hidden flags get
set properly */
cpu_load_efer(env,
ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.efer)));
env->eflags = 0;
load_eflags(ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rflags)),
~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
CC_OP = CC_OP_EFLAGS;
svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.es),
env, R_ES);
svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.cs),
env, R_CS);
svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.ss),
env, R_SS);
svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.ds),
env, R_DS);
EIP = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rip));
ESP = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rsp));
EAX = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rax));
env->dr[6] = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr6));
env->dr[7] = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr7));
/* other setups */
cpu_x86_set_cpl(env, 0);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_code), exit_code);
stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_1), exit_info_1);
stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info),
ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj)));
stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info_err),
ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err)));
stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), 0);
env->hflags2 &= ~HF2_GIF_MASK;
/* FIXME: Resets the current ASID register to zero (host ASID). */
/* Clears the V_IRQ and V_INTR_MASKING bits inside the processor. */
/* Clears the TSC_OFFSET inside the processor. */
/* If the host is in PAE mode, the processor reloads the host's PDPEs
from the page table indicated the host's CR3. If the PDPEs contain
illegal state, the processor causes a shutdown. */
/* Forces CR0.PE = 1, RFLAGS.VM = 0. */
env->cr[0] |= CR0_PE_MASK;
env->eflags &= ~VM_MASK;
/* Disables all breakpoints in the host DR7 register. */
/* Checks the reloaded host state for consistency. */
/* If the host's rIP reloaded by #VMEXIT is outside the limit of the
host's code segment or non-canonical (in the case of long mode), a
#GP fault is delivered inside the host.) */
/* remove any pending exception */
env->exception_index = -1;
env->error_code = 0;
env->old_exception = -1;
cpu_loop_exit(env);
}
#endif
/* MMX/SSE */
/* XXX: optimize by storing fptt and fptags in the static cpu state */
#define SSE_DAZ 0x0040
#define SSE_RC_MASK 0x6000
#define SSE_RC_NEAR 0x0000
#define SSE_RC_DOWN 0x2000
#define SSE_RC_UP 0x4000
#define SSE_RC_CHOP 0x6000
#define SSE_FZ 0x8000
static void update_sse_status(void)
{
int rnd_type;
/* set rounding mode */
switch(env->mxcsr & SSE_RC_MASK) {
default:
case SSE_RC_NEAR:
rnd_type = float_round_nearest_even;
break;
case SSE_RC_DOWN:
rnd_type = float_round_down;
break;
case SSE_RC_UP:
rnd_type = float_round_up;
break;
case SSE_RC_CHOP:
rnd_type = float_round_to_zero;
break;
}
set_float_rounding_mode(rnd_type, &env->sse_status);
/* set denormals are zero */
set_flush_inputs_to_zero((env->mxcsr & SSE_DAZ) ? 1 : 0, &env->sse_status);
/* set flush to zero */
set_flush_to_zero((env->mxcsr & SSE_FZ) ? 1 : 0, &env->fp_status);
}
void helper_ldmxcsr(uint32_t val)
{
env->mxcsr = val;
update_sse_status();
}
void helper_enter_mmx(void)
{
env->fpstt = 0;
*(uint32_t *)(env->fptags) = 0;
*(uint32_t *)(env->fptags + 4) = 0;
}
void helper_emms(void)
{
/* set to empty state */
*(uint32_t *)(env->fptags) = 0x01010101;
*(uint32_t *)(env->fptags + 4) = 0x01010101;
}
/* XXX: suppress */
void helper_movq(void *d, void *s)
{
*(uint64_t *)d = *(uint64_t *)s;
}
#define SHIFT 0
#include "ops_sse.h"
#define SHIFT 1
#include "ops_sse.h"
#define SHIFT 0
#include "helper_template.h"
#undef SHIFT
#define SHIFT 1
#include "helper_template.h"
#undef SHIFT
#define SHIFT 2
#include "helper_template.h"
#undef SHIFT
#ifdef TARGET_X86_64
#define SHIFT 3
#include "helper_template.h"
#undef SHIFT
#endif
/* bit operations */
target_ulong helper_bsf(target_ulong t0)
{
int count;
target_ulong res;
res = t0;
count = 0;
while ((res & 1) == 0) {
count++;
res >>= 1;
}
return count;
}
target_ulong helper_lzcnt(target_ulong t0, int wordsize)
{
int count;
target_ulong res, mask;
if (wordsize > 0 && t0 == 0) {
return wordsize;
}
res = t0;
count = TARGET_LONG_BITS - 1;
mask = (target_ulong)1 << (TARGET_LONG_BITS - 1);
while ((res & mask) == 0) {
count--;
res <<= 1;
}
if (wordsize > 0) {
return wordsize - 1 - count;
}
return count;
}
target_ulong helper_bsr(target_ulong t0)
{
return helper_lzcnt(t0, 0);
}
static int compute_all_eflags(void)
{
return CC_SRC;
}
static int compute_c_eflags(void)
{
return CC_SRC & CC_C;
}
uint32_t helper_cc_compute_all(int op)
{
switch (op) {
default: /* should never happen */ return 0;
case CC_OP_EFLAGS: return compute_all_eflags();
case CC_OP_MULB: return compute_all_mulb();
case CC_OP_MULW: return compute_all_mulw();
case CC_OP_MULL: return compute_all_mull();
case CC_OP_ADDB: return compute_all_addb();
case CC_OP_ADDW: return compute_all_addw();
case CC_OP_ADDL: return compute_all_addl();
case CC_OP_ADCB: return compute_all_adcb();
case CC_OP_ADCW: return compute_all_adcw();
case CC_OP_ADCL: return compute_all_adcl();
case CC_OP_SUBB: return compute_all_subb();
case CC_OP_SUBW: return compute_all_subw();
case CC_OP_SUBL: return compute_all_subl();
case CC_OP_SBBB: return compute_all_sbbb();
case CC_OP_SBBW: return compute_all_sbbw();
case CC_OP_SBBL: return compute_all_sbbl();
case CC_OP_LOGICB: return compute_all_logicb();
case CC_OP_LOGICW: return compute_all_logicw();
case CC_OP_LOGICL: return compute_all_logicl();
case CC_OP_INCB: return compute_all_incb();
case CC_OP_INCW: return compute_all_incw();
case CC_OP_INCL: return compute_all_incl();
case CC_OP_DECB: return compute_all_decb();
case CC_OP_DECW: return compute_all_decw();
case CC_OP_DECL: return compute_all_decl();
case CC_OP_SHLB: return compute_all_shlb();
case CC_OP_SHLW: return compute_all_shlw();
case CC_OP_SHLL: return compute_all_shll();
case CC_OP_SARB: return compute_all_sarb();
case CC_OP_SARW: return compute_all_sarw();
case CC_OP_SARL: return compute_all_sarl();
#ifdef TARGET_X86_64
case CC_OP_MULQ: return compute_all_mulq();
case CC_OP_ADDQ: return compute_all_addq();
case CC_OP_ADCQ: return compute_all_adcq();
case CC_OP_SUBQ: return compute_all_subq();
case CC_OP_SBBQ: return compute_all_sbbq();
case CC_OP_LOGICQ: return compute_all_logicq();
case CC_OP_INCQ: return compute_all_incq();
case CC_OP_DECQ: return compute_all_decq();
case CC_OP_SHLQ: return compute_all_shlq();
case CC_OP_SARQ: return compute_all_sarq();
#endif
}
}
uint32_t cpu_cc_compute_all(CPUState *env1, int op)
{
CPUState *saved_env;
uint32_t ret;
saved_env = env;
env = env1;
ret = helper_cc_compute_all(op);
env = saved_env;
return ret;
}
uint32_t helper_cc_compute_c(int op)
{
switch (op) {
default: /* should never happen */ return 0;
case CC_OP_EFLAGS: return compute_c_eflags();
case CC_OP_MULB: return compute_c_mull();
case CC_OP_MULW: return compute_c_mull();
case CC_OP_MULL: return compute_c_mull();
case CC_OP_ADDB: return compute_c_addb();
case CC_OP_ADDW: return compute_c_addw();
case CC_OP_ADDL: return compute_c_addl();
case CC_OP_ADCB: return compute_c_adcb();
case CC_OP_ADCW: return compute_c_adcw();
case CC_OP_ADCL: return compute_c_adcl();
case CC_OP_SUBB: return compute_c_subb();
case CC_OP_SUBW: return compute_c_subw();
case CC_OP_SUBL: return compute_c_subl();
case CC_OP_SBBB: return compute_c_sbbb();
case CC_OP_SBBW: return compute_c_sbbw();
case CC_OP_SBBL: return compute_c_sbbl();
case CC_OP_LOGICB: return compute_c_logicb();
case CC_OP_LOGICW: return compute_c_logicw();
case CC_OP_LOGICL: return compute_c_logicl();
case CC_OP_INCB: return compute_c_incl();
case CC_OP_INCW: return compute_c_incl();
case CC_OP_INCL: return compute_c_incl();
case CC_OP_DECB: return compute_c_incl();
case CC_OP_DECW: return compute_c_incl();
case CC_OP_DECL: return compute_c_incl();
case CC_OP_SHLB: return compute_c_shlb();
case CC_OP_SHLW: return compute_c_shlw();
case CC_OP_SHLL: return compute_c_shll();
case CC_OP_SARB: return compute_c_sarl();
case CC_OP_SARW: return compute_c_sarl();
case CC_OP_SARL: return compute_c_sarl();
#ifdef TARGET_X86_64
case CC_OP_MULQ: return compute_c_mull();
case CC_OP_ADDQ: return compute_c_addq();
case CC_OP_ADCQ: return compute_c_adcq();
case CC_OP_SUBQ: return compute_c_subq();
case CC_OP_SBBQ: return compute_c_sbbq();
case CC_OP_LOGICQ: return compute_c_logicq();
case CC_OP_INCQ: return compute_c_incl();
case CC_OP_DECQ: return compute_c_incl();
case CC_OP_SHLQ: return compute_c_shlq();
case CC_OP_SARQ: return compute_c_sarl();
#endif
}
}