qemu-e2k/hw/intc/xive.c
Cédric Le Goater aaa450300e ppc/xive: Fix TM_PULL_POOL_CTX special operation
When a CPU is reseted, the hypervisor (Linux or OPAL) invalidates the
POOL interrupt context of a CPU with this special command. It returns
the POOL CAM line value and resets the VP bit.

Fixes: 4836b45510aa ("ppc/xive: activate HV support")
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20190630204601.30574-5-clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-07-02 09:43:58 +10:00

1736 lines
50 KiB
C

/*
* QEMU PowerPC XIVE interrupt controller model
*
* Copyright (c) 2017-2018, IBM Corporation.
*
* This code is licensed under the GPL version 2 or later. See the
* COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "target/ppc/cpu.h"
#include "sysemu/cpus.h"
#include "sysemu/dma.h"
#include "hw/qdev-properties.h"
#include "monitor/monitor.h"
#include "hw/ppc/xive.h"
#include "hw/ppc/xive_regs.h"
/*
* XIVE Thread Interrupt Management context
*/
/*
* Convert a priority number to an Interrupt Pending Buffer (IPB)
* register, which indicates a pending interrupt at the priority
* corresponding to the bit number
*/
static uint8_t priority_to_ipb(uint8_t priority)
{
return priority > XIVE_PRIORITY_MAX ?
0 : 1 << (XIVE_PRIORITY_MAX - priority);
}
/*
* Convert an Interrupt Pending Buffer (IPB) register to a Pending
* Interrupt Priority Register (PIPR), which contains the priority of
* the most favored pending notification.
*/
static uint8_t ipb_to_pipr(uint8_t ibp)
{
return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
}
static void ipb_update(uint8_t *regs, uint8_t priority)
{
regs[TM_IPB] |= priority_to_ipb(priority);
regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
}
static uint8_t exception_mask(uint8_t ring)
{
switch (ring) {
case TM_QW1_OS:
return TM_QW1_NSR_EO;
case TM_QW3_HV_PHYS:
return TM_QW3_NSR_HE;
default:
g_assert_not_reached();
}
}
static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
{
switch (ring) {
case TM_QW0_USER:
return 0; /* Not supported */
case TM_QW1_OS:
return tctx->os_output;
case TM_QW2_HV_POOL:
case TM_QW3_HV_PHYS:
return tctx->hv_output;
default:
return 0;
}
}
static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
{
uint8_t *regs = &tctx->regs[ring];
uint8_t nsr = regs[TM_NSR];
uint8_t mask = exception_mask(ring);
qemu_irq_lower(xive_tctx_output(tctx, ring));
if (regs[TM_NSR] & mask) {
uint8_t cppr = regs[TM_PIPR];
regs[TM_CPPR] = cppr;
/* Reset the pending buffer bit */
regs[TM_IPB] &= ~priority_to_ipb(cppr);
regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
/* Drop Exception bit */
regs[TM_NSR] &= ~mask;
}
return (nsr << 8) | regs[TM_CPPR];
}
static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
{
uint8_t *regs = &tctx->regs[ring];
if (regs[TM_PIPR] < regs[TM_CPPR]) {
switch (ring) {
case TM_QW1_OS:
regs[TM_NSR] |= TM_QW1_NSR_EO;
break;
case TM_QW3_HV_PHYS:
regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
break;
default:
g_assert_not_reached();
}
qemu_irq_raise(xive_tctx_output(tctx, ring));
}
}
static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
{
if (cppr > XIVE_PRIORITY_MAX) {
cppr = 0xff;
}
tctx->regs[ring + TM_CPPR] = cppr;
/* CPPR has changed, check if we need to raise a pending exception */
xive_tctx_notify(tctx, ring);
}
static inline uint32_t xive_tctx_word2(uint8_t *ring)
{
return *((uint32_t *) &ring[TM_WORD2]);
}
/*
* XIVE Thread Interrupt Management Area (TIMA)
*/
static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset,
uint64_t value, unsigned size)
{
xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
}
static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
{
return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
}
static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset,
unsigned size)
{
uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
uint32_t qw2w2;
qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
return qw2w2;
}
static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset,
uint64_t value, unsigned size)
{
tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
}
static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size)
{
return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
}
/*
* Define an access map for each page of the TIMA that we will use in
* the memory region ops to filter values when doing loads and stores
* of raw registers values
*
* Registers accessibility bits :
*
* 0x0 - no access
* 0x1 - write only
* 0x2 - read only
* 0x3 - read/write
*/
static const uint8_t xive_tm_hw_view[] = {
3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */
};
static const uint8_t xive_tm_hv_view[] = {
3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */
};
static const uint8_t xive_tm_os_view[] = {
3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
};
static const uint8_t xive_tm_user_view[] = {
3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
};
/*
* Overall TIMA access map for the thread interrupt management context
* registers
*/
static const uint8_t *xive_tm_views[] = {
[XIVE_TM_HW_PAGE] = xive_tm_hw_view,
[XIVE_TM_HV_PAGE] = xive_tm_hv_view,
[XIVE_TM_OS_PAGE] = xive_tm_os_view,
[XIVE_TM_USER_PAGE] = xive_tm_user_view,
};
/*
* Computes a register access mask for a given offset in the TIMA
*/
static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
{
uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
uint8_t reg_offset = offset & 0x3F;
uint8_t reg_mask = write ? 0x1 : 0x2;
uint64_t mask = 0x0;
int i;
for (i = 0; i < size; i++) {
if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
mask |= (uint64_t) 0xff << (8 * (size - i - 1));
}
}
return mask;
}
static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
unsigned size)
{
uint8_t ring_offset = offset & 0x30;
uint8_t reg_offset = offset & 0x3F;
uint64_t mask = xive_tm_mask(offset, size, true);
int i;
/*
* Only 4 or 8 bytes stores are allowed and the User ring is
* excluded
*/
if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
HWADDR_PRIx"\n", offset);
return;
}
/*
* Use the register offset for the raw values and filter out
* reserved values
*/
for (i = 0; i < size; i++) {
uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
if (byte_mask) {
tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
byte_mask;
}
}
}
static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
{
uint8_t ring_offset = offset & 0x30;
uint8_t reg_offset = offset & 0x3F;
uint64_t mask = xive_tm_mask(offset, size, false);
uint64_t ret;
int i;
/*
* Only 4 or 8 bytes loads are allowed and the User ring is
* excluded
*/
if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
HWADDR_PRIx"\n", offset);
return -1;
}
/* Use the register offset for the raw values */
ret = 0;
for (i = 0; i < size; i++) {
ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
}
/* filter out reserved values */
return ret & mask;
}
/*
* The TM context is mapped twice within each page. Stores and loads
* to the first mapping below 2K write and read the specified values
* without modification. The second mapping above 2K performs specific
* state changes (side effects) in addition to setting/returning the
* interrupt management area context of the processor thread.
*/
static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
{
return xive_tctx_accept(tctx, TM_QW1_OS);
}
static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
uint64_t value, unsigned size)
{
xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
}
/*
* Adjust the IPB to allow a CPU to process event queues of other
* priorities during one physical interrupt cycle.
*/
static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
uint64_t value, unsigned size)
{
ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
xive_tctx_notify(tctx, TM_QW1_OS);
}
/*
* Define a mapping of "special" operations depending on the TIMA page
* offset and the size of the operation.
*/
typedef struct XiveTmOp {
uint8_t page_offset;
uint32_t op_offset;
unsigned size;
void (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
unsigned size);
uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
} XiveTmOp;
static const XiveTmOp xive_tm_operations[] = {
/*
* MMIOs below 2K : raw values and special operations without side
* effects
*/
{ XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
{ XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
{ XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
{ XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
/* MMIOs above 2K : special operations with side effects */
{ XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
{ XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
{ XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
{ XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
{ XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
};
static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
{
uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
uint32_t op_offset = offset & 0xFFF;
int i;
for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
const XiveTmOp *xto = &xive_tm_operations[i];
/* Accesses done from a more privileged TIMA page is allowed */
if (xto->page_offset >= page_offset &&
xto->op_offset == op_offset &&
xto->size == size &&
((write && xto->write_handler) || (!write && xto->read_handler))) {
return xto;
}
}
return NULL;
}
/*
* TIMA MMIO handlers
*/
void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
unsigned size)
{
const XiveTmOp *xto;
/*
* TODO: check V bit in Q[0-3]W2
*/
/*
* First, check for special operations in the 2K region
*/
if (offset & 0x800) {
xto = xive_tm_find_op(offset, size, true);
if (!xto) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA"
"@%"HWADDR_PRIx"\n", offset);
} else {
xto->write_handler(tctx, offset, value, size);
}
return;
}
/*
* Then, for special operations in the region below 2K.
*/
xto = xive_tm_find_op(offset, size, true);
if (xto) {
xto->write_handler(tctx, offset, value, size);
return;
}
/*
* Finish with raw access to the register values
*/
xive_tm_raw_write(tctx, offset, value, size);
}
uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
{
const XiveTmOp *xto;
/*
* TODO: check V bit in Q[0-3]W2
*/
/*
* First, check for special operations in the 2K region
*/
if (offset & 0x800) {
xto = xive_tm_find_op(offset, size, false);
if (!xto) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
"@%"HWADDR_PRIx"\n", offset);
return -1;
}
return xto->read_handler(tctx, offset, size);
}
/*
* Then, for special operations in the region below 2K.
*/
xto = xive_tm_find_op(offset, size, false);
if (xto) {
return xto->read_handler(tctx, offset, size);
}
/*
* Finish with raw access to the register values
*/
return xive_tm_raw_read(tctx, offset, size);
}
static void xive_tm_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
xive_tctx_tm_write(tctx, offset, value, size);
}
static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
{
XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
return xive_tctx_tm_read(tctx, offset, size);
}
const MemoryRegionOps xive_tm_ops = {
.read = xive_tm_read,
.write = xive_tm_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 8,
},
.impl = {
.min_access_size = 1,
.max_access_size = 8,
},
};
static char *xive_tctx_ring_print(uint8_t *ring)
{
uint32_t w2 = xive_tctx_word2(ring);
return g_strdup_printf("%02x %02x %02x %02x %02x "
"%02x %02x %02x %08x",
ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
be32_to_cpu(w2));
}
static const char * const xive_tctx_ring_names[] = {
"USER", "OS", "POOL", "PHYS",
};
void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
{
int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
int i;
if (kvm_irqchip_in_kernel()) {
Error *local_err = NULL;
kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
if (local_err) {
error_report_err(local_err);
return;
}
}
monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
" W2\n", cpu_index);
for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
xive_tctx_ring_names[i], s);
g_free(s);
}
}
static void xive_tctx_reset(void *dev)
{
XiveTCTX *tctx = XIVE_TCTX(dev);
memset(tctx->regs, 0, sizeof(tctx->regs));
/* Set some defaults */
tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
/*
* Initialize PIPR to 0xFF to avoid phantom interrupts when the
* CPPR is first set.
*/
tctx->regs[TM_QW1_OS + TM_PIPR] =
ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
}
static void xive_tctx_realize(DeviceState *dev, Error **errp)
{
XiveTCTX *tctx = XIVE_TCTX(dev);
PowerPCCPU *cpu;
CPUPPCState *env;
Object *obj;
Error *local_err = NULL;
obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
if (!obj) {
error_propagate(errp, local_err);
error_prepend(errp, "required link 'cpu' not found: ");
return;
}
cpu = POWERPC_CPU(obj);
tctx->cs = CPU(obj);
env = &cpu->env;
switch (PPC_INPUT(env)) {
case PPC_FLAGS_INPUT_POWER9:
tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
break;
default:
error_setg(errp, "XIVE interrupt controller does not support "
"this CPU bus model");
return;
}
/* Connect the presenter to the VCPU (required for CPU hotplug) */
if (kvm_irqchip_in_kernel()) {
kvmppc_xive_cpu_connect(tctx, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
}
qemu_register_reset(xive_tctx_reset, dev);
}
static void xive_tctx_unrealize(DeviceState *dev, Error **errp)
{
qemu_unregister_reset(xive_tctx_reset, dev);
}
static int vmstate_xive_tctx_pre_save(void *opaque)
{
Error *local_err = NULL;
if (kvm_irqchip_in_kernel()) {
kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err);
if (local_err) {
error_report_err(local_err);
return -1;
}
}
return 0;
}
static const VMStateDescription vmstate_xive_tctx = {
.name = TYPE_XIVE_TCTX,
.version_id = 1,
.minimum_version_id = 1,
.pre_save = vmstate_xive_tctx_pre_save,
.post_load = NULL, /* handled by the sPAPRxive model */
.fields = (VMStateField[]) {
VMSTATE_BUFFER(regs, XiveTCTX),
VMSTATE_END_OF_LIST()
},
};
static void xive_tctx_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "XIVE Interrupt Thread Context";
dc->realize = xive_tctx_realize;
dc->unrealize = xive_tctx_unrealize;
dc->vmsd = &vmstate_xive_tctx;
}
static const TypeInfo xive_tctx_info = {
.name = TYPE_XIVE_TCTX,
.parent = TYPE_DEVICE,
.instance_size = sizeof(XiveTCTX),
.class_init = xive_tctx_class_init,
};
Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
{
Error *local_err = NULL;
Object *obj;
obj = object_new(TYPE_XIVE_TCTX);
object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
object_unref(obj);
object_property_add_const_link(obj, "cpu", cpu, &error_abort);
object_property_set_bool(obj, true, "realized", &local_err);
if (local_err) {
goto error;
}
return obj;
error:
object_unparent(obj);
error_propagate(errp, local_err);
return NULL;
}
/*
* XIVE ESB helpers
*/
static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
{
uint8_t old_pq = *pq & 0x3;
*pq &= ~0x3;
*pq |= value & 0x3;
return old_pq;
}
static bool xive_esb_trigger(uint8_t *pq)
{
uint8_t old_pq = *pq & 0x3;
switch (old_pq) {
case XIVE_ESB_RESET:
xive_esb_set(pq, XIVE_ESB_PENDING);
return true;
case XIVE_ESB_PENDING:
case XIVE_ESB_QUEUED:
xive_esb_set(pq, XIVE_ESB_QUEUED);
return false;
case XIVE_ESB_OFF:
xive_esb_set(pq, XIVE_ESB_OFF);
return false;
default:
g_assert_not_reached();
}
}
static bool xive_esb_eoi(uint8_t *pq)
{
uint8_t old_pq = *pq & 0x3;
switch (old_pq) {
case XIVE_ESB_RESET:
case XIVE_ESB_PENDING:
xive_esb_set(pq, XIVE_ESB_RESET);
return false;
case XIVE_ESB_QUEUED:
xive_esb_set(pq, XIVE_ESB_PENDING);
return true;
case XIVE_ESB_OFF:
xive_esb_set(pq, XIVE_ESB_OFF);
return false;
default:
g_assert_not_reached();
}
}
/*
* XIVE Interrupt Source (or IVSE)
*/
uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
{
assert(srcno < xsrc->nr_irqs);
return xsrc->status[srcno] & 0x3;
}
uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
{
assert(srcno < xsrc->nr_irqs);
return xive_esb_set(&xsrc->status[srcno], pq);
}
/*
* Returns whether the event notification should be forwarded.
*/
static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
{
uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
switch (old_pq) {
case XIVE_ESB_RESET:
xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
return true;
default:
return false;
}
}
/*
* Returns whether the event notification should be forwarded.
*/
static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
{
bool ret;
assert(srcno < xsrc->nr_irqs);
ret = xive_esb_trigger(&xsrc->status[srcno]);
if (xive_source_irq_is_lsi(xsrc, srcno) &&
xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
qemu_log_mask(LOG_GUEST_ERROR,
"XIVE: queued an event on LSI IRQ %d\n", srcno);
}
return ret;
}
/*
* Returns whether the event notification should be forwarded.
*/
static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
{
bool ret;
assert(srcno < xsrc->nr_irqs);
ret = xive_esb_eoi(&xsrc->status[srcno]);
/*
* LSI sources do not set the Q bit but they can still be
* asserted, in which case we should forward a new event
* notification
*/
if (xive_source_irq_is_lsi(xsrc, srcno) &&
xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
ret = xive_source_lsi_trigger(xsrc, srcno);
}
return ret;
}
/*
* Forward the source event notification to the Router
*/
static void xive_source_notify(XiveSource *xsrc, int srcno)
{
XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
if (xnc->notify) {
xnc->notify(xsrc->xive, srcno);
}
}
/*
* In a two pages ESB MMIO setting, even page is the trigger page, odd
* page is for management
*/
static inline bool addr_is_even(hwaddr addr, uint32_t shift)
{
return !((addr >> shift) & 1);
}
static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
{
return xive_source_esb_has_2page(xsrc) &&
addr_is_even(addr, xsrc->esb_shift - 1);
}
/*
* ESB MMIO loads
* Trigger page Management/EOI page
*
* ESB MMIO setting 2 pages 1 or 2 pages
*
* 0x000 .. 0x3FF -1 EOI and return 0|1
* 0x400 .. 0x7FF -1 EOI and return 0|1
* 0x800 .. 0xBFF -1 return PQ
* 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
* 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
* 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
* 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
*/
static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
{
XiveSource *xsrc = XIVE_SOURCE(opaque);
uint32_t offset = addr & 0xFFF;
uint32_t srcno = addr >> xsrc->esb_shift;
uint64_t ret = -1;
/* In a two pages ESB MMIO setting, trigger page should not be read */
if (xive_source_is_trigger_page(xsrc, addr)) {
qemu_log_mask(LOG_GUEST_ERROR,
"XIVE: invalid load on IRQ %d trigger page at "
"0x%"HWADDR_PRIx"\n", srcno, addr);
return -1;
}
switch (offset) {
case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
ret = xive_source_esb_eoi(xsrc, srcno);
/* Forward the source event notification for routing */
if (ret) {
xive_source_notify(xsrc, srcno);
}
break;
case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
ret = xive_source_esb_get(xsrc, srcno);
break;
case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
offset);
}
return ret;
}
/*
* ESB MMIO stores
* Trigger page Management/EOI page
*
* ESB MMIO setting 2 pages 1 or 2 pages
*
* 0x000 .. 0x3FF Trigger Trigger
* 0x400 .. 0x7FF Trigger EOI
* 0x800 .. 0xBFF Trigger undefined
* 0xC00 .. 0xCFF Trigger PQ=00
* 0xD00 .. 0xDFF Trigger PQ=01
* 0xE00 .. 0xDFF Trigger PQ=10
* 0xF00 .. 0xDFF Trigger PQ=11
*/
static void xive_source_esb_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
XiveSource *xsrc = XIVE_SOURCE(opaque);
uint32_t offset = addr & 0xFFF;
uint32_t srcno = addr >> xsrc->esb_shift;
bool notify = false;
/* In a two pages ESB MMIO setting, trigger page only triggers */
if (xive_source_is_trigger_page(xsrc, addr)) {
notify = xive_source_esb_trigger(xsrc, srcno);
goto out;
}
switch (offset) {
case 0 ... 0x3FF:
notify = xive_source_esb_trigger(xsrc, srcno);
break;
case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
qemu_log_mask(LOG_GUEST_ERROR,
"XIVE: invalid Store EOI for IRQ %d\n", srcno);
return;
}
notify = xive_source_esb_eoi(xsrc, srcno);
break;
case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
offset);
return;
}
out:
/* Forward the source event notification for routing */
if (notify) {
xive_source_notify(xsrc, srcno);
}
}
static const MemoryRegionOps xive_source_esb_ops = {
.read = xive_source_esb_read,
.write = xive_source_esb_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
void xive_source_set_irq(void *opaque, int srcno, int val)
{
XiveSource *xsrc = XIVE_SOURCE(opaque);
bool notify = false;
if (xive_source_irq_is_lsi(xsrc, srcno)) {
if (val) {
notify = xive_source_lsi_trigger(xsrc, srcno);
} else {
xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
}
} else {
if (val) {
notify = xive_source_esb_trigger(xsrc, srcno);
}
}
/* Forward the source event notification for routing */
if (notify) {
xive_source_notify(xsrc, srcno);
}
}
void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
{
int i;
for (i = 0; i < xsrc->nr_irqs; i++) {
uint8_t pq = xive_source_esb_get(xsrc, i);
if (pq == XIVE_ESB_OFF) {
continue;
}
monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
pq & XIVE_ESB_VAL_P ? 'P' : '-',
pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
}
}
static void xive_source_reset(void *dev)
{
XiveSource *xsrc = XIVE_SOURCE(dev);
/* Do not clear the LSI bitmap */
/* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
}
static void xive_source_realize(DeviceState *dev, Error **errp)
{
XiveSource *xsrc = XIVE_SOURCE(dev);
Object *obj;
Error *local_err = NULL;
obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
if (!obj) {
error_propagate(errp, local_err);
error_prepend(errp, "required link 'xive' not found: ");
return;
}
xsrc->xive = XIVE_NOTIFIER(obj);
if (!xsrc->nr_irqs) {
error_setg(errp, "Number of interrupt needs to be greater than 0");
return;
}
if (xsrc->esb_shift != XIVE_ESB_4K &&
xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
xsrc->esb_shift != XIVE_ESB_64K &&
xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
error_setg(errp, "Invalid ESB shift setting");
return;
}
xsrc->status = g_malloc0(xsrc->nr_irqs);
xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
if (!kvm_irqchip_in_kernel()) {
memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
&xive_source_esb_ops, xsrc, "xive.esb",
(1ull << xsrc->esb_shift) * xsrc->nr_irqs);
}
qemu_register_reset(xive_source_reset, dev);
}
static const VMStateDescription vmstate_xive_source = {
.name = TYPE_XIVE_SOURCE,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
VMSTATE_END_OF_LIST()
},
};
/*
* The default XIVE interrupt source setting for the ESB MMIOs is two
* 64k pages without Store EOI, to be in sync with KVM.
*/
static Property xive_source_properties[] = {
DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
DEFINE_PROP_END_OF_LIST(),
};
static void xive_source_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "XIVE Interrupt Source";
dc->props = xive_source_properties;
dc->realize = xive_source_realize;
dc->vmsd = &vmstate_xive_source;
}
static const TypeInfo xive_source_info = {
.name = TYPE_XIVE_SOURCE,
.parent = TYPE_DEVICE,
.instance_size = sizeof(XiveSource),
.class_init = xive_source_class_init,
};
/*
* XiveEND helpers
*/
void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
{
uint64_t qaddr_base = xive_end_qaddr(end);
uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
uint32_t qentries = 1 << (qsize + 10);
int i;
/*
* print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
*/
monitor_printf(mon, " [ ");
qindex = (qindex - (width - 1)) & (qentries - 1);
for (i = 0; i < width; i++) {
uint64_t qaddr = qaddr_base + (qindex << 2);
uint32_t qdata = -1;
if (dma_memory_read(&address_space_memory, qaddr, &qdata,
sizeof(qdata))) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
HWADDR_PRIx "\n", qaddr);
return;
}
monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
be32_to_cpu(qdata));
qindex = (qindex + 1) & (qentries - 1);
}
}
void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
{
uint64_t qaddr_base = xive_end_qaddr(end);
uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
uint32_t qentries = 1 << (qsize + 10);
uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
if (!xive_end_is_valid(end)) {
return;
}
monitor_printf(mon, " %08x %c%c%c%c%c prio:%d nvt:%04x eq:@%08"PRIx64
"% 6d/%5d ^%d", end_idx,
xive_end_is_valid(end) ? 'v' : '-',
xive_end_is_enqueue(end) ? 'q' : '-',
xive_end_is_notify(end) ? 'n' : '-',
xive_end_is_backlog(end) ? 'b' : '-',
xive_end_is_escalate(end) ? 'e' : '-',
priority, nvt, qaddr_base, qindex, qentries, qgen);
xive_end_queue_pic_print_info(end, 6, mon);
monitor_printf(mon, "]\n");
}
static void xive_end_enqueue(XiveEND *end, uint32_t data)
{
uint64_t qaddr_base = xive_end_qaddr(end);
uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
uint64_t qaddr = qaddr_base + (qindex << 2);
uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
uint32_t qentries = 1 << (qsize + 10);
if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
HWADDR_PRIx "\n", qaddr);
return;
}
qindex = (qindex + 1) & (qentries - 1);
if (qindex == 0) {
qgen ^= 1;
end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
}
end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
}
/*
* XIVE Router (aka. Virtualization Controller or IVRE)
*/
int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
XiveEAS *eas)
{
XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
}
int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
XiveEND *end)
{
XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
return xrc->get_end(xrtr, end_blk, end_idx, end);
}
int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
XiveEND *end, uint8_t word_number)
{
XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
}
int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
XiveNVT *nvt)
{
XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
}
int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
XiveNVT *nvt, uint8_t word_number)
{
XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
}
XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
{
XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
return xrc->get_tctx(xrtr, cs);
}
/*
* Encode the HW CAM line in the block group mode format :
*
* chip << 19 | 0000000 0 0001 thread (7Bit)
*/
static uint32_t xive_tctx_hw_cam_line(XiveTCTX *tctx)
{
CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
uint32_t pir = env->spr_cb[SPR_PIR].default_value;
return xive_nvt_cam_line((pir >> 8) & 0xf, 1 << 7 | (pir & 0x7f));
}
/*
* The thread context register words are in big-endian format.
*/
static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
uint8_t nvt_blk, uint32_t nvt_idx,
bool cam_ignore, uint32_t logic_serv)
{
uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
/*
* TODO (PowerNV): ignore mode. The low order bits of the NVT
* identifier are ignored in the "CAM" match.
*/
if (format == 0) {
if (cam_ignore == true) {
/*
* F=0 & i=1: Logical server notification (bits ignored at
* the end of the NVT identifier)
*/
qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
nvt_blk, nvt_idx);
return -1;
}
/* F=0 & i=0: Specific NVT notification */
/* PHYS ring */
if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
cam == xive_tctx_hw_cam_line(tctx)) {
return TM_QW3_HV_PHYS;
}
/* HV POOL ring */
if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
return TM_QW2_HV_POOL;
}
/* OS ring */
if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
return TM_QW1_OS;
}
} else {
/* F=1 : User level Event-Based Branch (EBB) notification */
/* USER ring */
if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
(cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
(be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
(logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
return TM_QW0_USER;
}
}
return -1;
}
typedef struct XiveTCTXMatch {
XiveTCTX *tctx;
uint8_t ring;
} XiveTCTXMatch;
static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
uint8_t nvt_blk, uint32_t nvt_idx,
bool cam_ignore, uint8_t priority,
uint32_t logic_serv, XiveTCTXMatch *match)
{
CPUState *cs;
/*
* TODO (PowerNV): handle chip_id overwrite of block field for
* hardwired CAM compares
*/
CPU_FOREACH(cs) {
XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
int ring;
/*
* HW checks that the CPU is enabled in the Physical Thread
* Enable Register (PTER).
*/
/*
* Check the thread context CAM lines and record matches. We
* will handle CPU exception delivery later
*/
ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
cam_ignore, logic_serv);
/*
* Save the context and follow on to catch duplicates, that we
* don't support yet.
*/
if (ring != -1) {
if (match->tctx) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
"context NVT %x/%x\n", nvt_blk, nvt_idx);
return false;
}
match->ring = ring;
match->tctx = tctx;
}
}
if (!match->tctx) {
qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
nvt_blk, nvt_idx);
return false;
}
return true;
}
/*
* This is our simple Xive Presenter Engine model. It is merged in the
* Router as it does not require an extra object.
*
* It receives notification requests sent by the IVRE to find one
* matching NVT (or more) dispatched on the processor threads. In case
* of a single NVT notification, the process is abreviated and the
* thread is signaled if a match is found. In case of a logical server
* notification (bits ignored at the end of the NVT identifier), the
* IVPE and IVRE select a winning thread using different filters. This
* involves 2 or 3 exchanges on the PowerBus that the model does not
* support.
*
* The parameters represent what is sent on the PowerBus
*/
static void xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
uint8_t nvt_blk, uint32_t nvt_idx,
bool cam_ignore, uint8_t priority,
uint32_t logic_serv)
{
XiveNVT nvt;
XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
bool found;
/* NVT cache lookup */
if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
nvt_blk, nvt_idx);
return;
}
if (!xive_nvt_is_valid(&nvt)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
nvt_blk, nvt_idx);
return;
}
found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
priority, logic_serv, &match);
if (found) {
ipb_update(&match.tctx->regs[match.ring], priority);
xive_tctx_notify(match.tctx, match.ring);
return;
}
/* Record the IPB in the associated NVT structure */
ipb_update((uint8_t *) &nvt.w4, priority);
xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
/*
* If no matching NVT is dispatched on a HW thread :
* - update the NVT structure if backlog is activated
* - escalate (ESe PQ bits and EAS in w4-5) if escalation is
* activated
*/
}
/*
* An END trigger can come from an event trigger (IPI or HW) or from
* another chip. We don't model the PowerBus but the END trigger
* message has the same parameters than in the function below.
*/
static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
uint32_t end_idx, uint32_t end_data)
{
XiveEND end;
uint8_t priority;
uint8_t format;
/* END cache lookup */
if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
end_idx);
return;
}
if (!xive_end_is_valid(&end)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
end_blk, end_idx);
return;
}
if (xive_end_is_enqueue(&end)) {
xive_end_enqueue(&end, end_data);
/* Enqueuing event data modifies the EQ toggle and index */
xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
}
/*
* The W7 format depends on the F bit in W6. It defines the type
* of the notification :
*
* F=0 : single or multiple NVT notification
* F=1 : User level Event-Based Branch (EBB) notification, no
* priority
*/
format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
/* The END is masked */
if (format == 0 && priority == 0xff) {
return;
}
/*
* Check the END ESn (Event State Buffer for notification) for
* even futher coalescing in the Router
*/
if (!xive_end_is_notify(&end)) {
uint8_t pq = xive_get_field32(END_W1_ESn, end.w1);
bool notify = xive_esb_trigger(&pq);
if (pq != xive_get_field32(END_W1_ESn, end.w1)) {
end.w1 = xive_set_field32(END_W1_ESn, end.w1, pq);
xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
}
/* ESn[Q]=1 : end of notification */
if (!notify) {
return;
}
}
/*
* Follows IVPE notification
*/
xive_presenter_notify(xrtr, format,
xive_get_field32(END_W6_NVT_BLOCK, end.w6),
xive_get_field32(END_W6_NVT_INDEX, end.w6),
xive_get_field32(END_W7_F0_IGNORE, end.w7),
priority,
xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
/* TODO: Auto EOI. */
}
void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
{
XiveRouter *xrtr = XIVE_ROUTER(xn);
uint8_t eas_blk = XIVE_SRCNO_BLOCK(lisn);
uint32_t eas_idx = XIVE_SRCNO_INDEX(lisn);
XiveEAS eas;
/* EAS cache lookup */
if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
return;
}
/*
* The IVRE checks the State Bit Cache at this point. We skip the
* SBC lookup because the state bits of the sources are modeled
* internally in QEMU.
*/
if (!xive_eas_is_valid(&eas)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
return;
}
if (xive_eas_is_masked(&eas)) {
/* Notification completed */
return;
}
/*
* The event trigger becomes an END trigger
*/
xive_router_end_notify(xrtr,
xive_get_field64(EAS_END_BLOCK, eas.w),
xive_get_field64(EAS_END_INDEX, eas.w),
xive_get_field64(EAS_END_DATA, eas.w));
}
static void xive_router_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
dc->desc = "XIVE Router Engine";
xnc->notify = xive_router_notify;
}
static const TypeInfo xive_router_info = {
.name = TYPE_XIVE_ROUTER,
.parent = TYPE_SYS_BUS_DEVICE,
.abstract = true,
.class_size = sizeof(XiveRouterClass),
.class_init = xive_router_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_XIVE_NOTIFIER },
{ }
}
};
void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
{
if (!xive_eas_is_valid(eas)) {
return;
}
monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
lisn, xive_eas_is_masked(eas) ? "M" : " ",
(uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
(uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
(uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
}
/*
* END ESB MMIO loads
*/
static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
{
XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
uint32_t offset = addr & 0xFFF;
uint8_t end_blk;
uint32_t end_idx;
XiveEND end;
uint32_t end_esmask;
uint8_t pq;
uint64_t ret = -1;
end_blk = xsrc->block_id;
end_idx = addr >> (xsrc->esb_shift + 1);
if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
end_idx);
return -1;
}
if (!xive_end_is_valid(&end)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
end_blk, end_idx);
return -1;
}
end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
pq = xive_get_field32(end_esmask, end.w1);
switch (offset) {
case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
ret = xive_esb_eoi(&pq);
/* Forward the source event notification for routing ?? */
break;
case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
ret = pq;
break;
case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
offset);
return -1;
}
if (pq != xive_get_field32(end_esmask, end.w1)) {
end.w1 = xive_set_field32(end_esmask, end.w1, pq);
xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
}
return ret;
}
/*
* END ESB MMIO stores are invalid
*/
static void xive_end_source_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
HWADDR_PRIx"\n", addr);
}
static const MemoryRegionOps xive_end_source_ops = {
.read = xive_end_source_read,
.write = xive_end_source_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
static void xive_end_source_realize(DeviceState *dev, Error **errp)
{
XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
Object *obj;
Error *local_err = NULL;
obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
if (!obj) {
error_propagate(errp, local_err);
error_prepend(errp, "required link 'xive' not found: ");
return;
}
xsrc->xrtr = XIVE_ROUTER(obj);
if (!xsrc->nr_ends) {
error_setg(errp, "Number of interrupt needs to be greater than 0");
return;
}
if (xsrc->esb_shift != XIVE_ESB_4K &&
xsrc->esb_shift != XIVE_ESB_64K) {
error_setg(errp, "Invalid ESB shift setting");
return;
}
/*
* Each END is assigned an even/odd pair of MMIO pages, the even page
* manages the ESn field while the odd page manages the ESe field.
*/
memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
&xive_end_source_ops, xsrc, "xive.end",
(1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
}
static Property xive_end_source_properties[] = {
DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
DEFINE_PROP_END_OF_LIST(),
};
static void xive_end_source_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "XIVE END Source";
dc->props = xive_end_source_properties;
dc->realize = xive_end_source_realize;
}
static const TypeInfo xive_end_source_info = {
.name = TYPE_XIVE_END_SOURCE,
.parent = TYPE_DEVICE,
.instance_size = sizeof(XiveENDSource),
.class_init = xive_end_source_class_init,
};
/*
* XIVE Notifier
*/
static const TypeInfo xive_notifier_info = {
.name = TYPE_XIVE_NOTIFIER,
.parent = TYPE_INTERFACE,
.class_size = sizeof(XiveNotifierClass),
};
static void xive_register_types(void)
{
type_register_static(&xive_source_info);
type_register_static(&xive_notifier_info);
type_register_static(&xive_router_info);
type_register_static(&xive_end_source_info);
type_register_static(&xive_tctx_info);
}
type_init(xive_register_types)