ab9c93c25c
Signed-off-by: Cédric Le Goater <clg@kaod.org> Message-Id: <20201215174025.2636824-1-clg@kaod.org> Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
1831 lines
54 KiB
C
1831 lines
54 KiB
C
/*
|
|
* QEMU PowerPC sPAPR XIVE interrupt controller model
|
|
*
|
|
* Copyright (c) 2017-2018, IBM Corporation.
|
|
*
|
|
* This code is licensed under the GPL version 2 or later. See the
|
|
* COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/module.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/error-report.h"
|
|
#include "target/ppc/cpu.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "sysemu/reset.h"
|
|
#include "migration/vmstate.h"
|
|
#include "monitor/monitor.h"
|
|
#include "hw/ppc/fdt.h"
|
|
#include "hw/ppc/spapr.h"
|
|
#include "hw/ppc/spapr_cpu_core.h"
|
|
#include "hw/ppc/spapr_xive.h"
|
|
#include "hw/ppc/xive.h"
|
|
#include "hw/ppc/xive_regs.h"
|
|
#include "hw/qdev-properties.h"
|
|
#include "trace.h"
|
|
|
|
/*
|
|
* XIVE Virtualization Controller BAR and Thread Managment BAR that we
|
|
* use for the ESB pages and the TIMA pages
|
|
*/
|
|
#define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
|
|
#define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
|
|
|
|
/*
|
|
* The allocation of VP blocks is a complex operation in OPAL and the
|
|
* VP identifiers have a relation with the number of HW chips, the
|
|
* size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
|
|
* controller model does not have the same constraints and can use a
|
|
* simple mapping scheme of the CPU vcpu_id
|
|
*
|
|
* These identifiers are never returned to the OS.
|
|
*/
|
|
|
|
#define SPAPR_XIVE_NVT_BASE 0x400
|
|
|
|
/*
|
|
* sPAPR NVT and END indexing helpers
|
|
*/
|
|
static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
|
|
{
|
|
return nvt_idx - SPAPR_XIVE_NVT_BASE;
|
|
}
|
|
|
|
static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
|
|
uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
|
|
{
|
|
assert(cpu);
|
|
|
|
if (out_nvt_blk) {
|
|
*out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
|
|
}
|
|
|
|
if (out_nvt_blk) {
|
|
*out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
|
|
}
|
|
}
|
|
|
|
static int spapr_xive_target_to_nvt(uint32_t target,
|
|
uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
|
|
{
|
|
PowerPCCPU *cpu = spapr_find_cpu(target);
|
|
|
|
if (!cpu) {
|
|
return -1;
|
|
}
|
|
|
|
spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
|
|
* priorities per CPU
|
|
*/
|
|
int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
|
|
uint32_t *out_server, uint8_t *out_prio)
|
|
{
|
|
|
|
assert(end_blk == SPAPR_XIVE_BLOCK_ID);
|
|
|
|
if (out_server) {
|
|
*out_server = end_idx >> 3;
|
|
}
|
|
|
|
if (out_prio) {
|
|
*out_prio = end_idx & 0x7;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
|
|
uint8_t *out_end_blk, uint32_t *out_end_idx)
|
|
{
|
|
assert(cpu);
|
|
|
|
if (out_end_blk) {
|
|
*out_end_blk = SPAPR_XIVE_BLOCK_ID;
|
|
}
|
|
|
|
if (out_end_idx) {
|
|
*out_end_idx = (cpu->vcpu_id << 3) + prio;
|
|
}
|
|
}
|
|
|
|
static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
|
|
uint8_t *out_end_blk, uint32_t *out_end_idx)
|
|
{
|
|
PowerPCCPU *cpu = spapr_find_cpu(target);
|
|
|
|
if (!cpu) {
|
|
return -1;
|
|
}
|
|
|
|
spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* On sPAPR machines, use a simplified output for the XIVE END
|
|
* structure dumping only the information related to the OS EQ.
|
|
*/
|
|
static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
|
|
Monitor *mon)
|
|
{
|
|
uint64_t qaddr_base = xive_end_qaddr(end);
|
|
uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
|
|
uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
|
|
uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
|
|
uint32_t qentries = 1 << (qsize + 10);
|
|
uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
|
|
uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
|
|
|
|
monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
|
|
spapr_xive_nvt_to_target(0, nvt),
|
|
priority, qindex, qentries, qaddr_base, qgen);
|
|
|
|
xive_end_queue_pic_print_info(end, 6, mon);
|
|
}
|
|
|
|
/*
|
|
* kvm_irqchip_in_kernel() will cause the compiler to turn this
|
|
* info a nop if CONFIG_KVM isn't defined.
|
|
*/
|
|
#define spapr_xive_in_kernel(xive) \
|
|
(kvm_irqchip_in_kernel() && (xive)->fd != -1)
|
|
|
|
static void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
|
|
{
|
|
XiveSource *xsrc = &xive->source;
|
|
int i;
|
|
|
|
if (spapr_xive_in_kernel(xive)) {
|
|
Error *local_err = NULL;
|
|
|
|
kvmppc_xive_synchronize_state(xive, &local_err);
|
|
if (local_err) {
|
|
error_report_err(local_err);
|
|
return;
|
|
}
|
|
}
|
|
|
|
monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n");
|
|
|
|
for (i = 0; i < xive->nr_irqs; i++) {
|
|
uint8_t pq = xive_source_esb_get(xsrc, i);
|
|
XiveEAS *eas = &xive->eat[i];
|
|
|
|
if (!xive_eas_is_valid(eas)) {
|
|
continue;
|
|
}
|
|
|
|
monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
|
|
xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
|
|
pq & XIVE_ESB_VAL_P ? 'P' : '-',
|
|
pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
|
|
xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
|
|
xive_eas_is_masked(eas) ? "M" : " ",
|
|
(int) xive_get_field64(EAS_END_DATA, eas->w));
|
|
|
|
if (!xive_eas_is_masked(eas)) {
|
|
uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
|
|
XiveEND *end;
|
|
|
|
assert(end_idx < xive->nr_ends);
|
|
end = &xive->endt[end_idx];
|
|
|
|
if (xive_end_is_valid(end)) {
|
|
spapr_xive_end_pic_print_info(xive, end, mon);
|
|
}
|
|
}
|
|
monitor_printf(mon, "\n");
|
|
}
|
|
}
|
|
|
|
void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
|
|
{
|
|
memory_region_set_enabled(&xive->source.esb_mmio, enable);
|
|
memory_region_set_enabled(&xive->tm_mmio, enable);
|
|
|
|
/* Disable the END ESBs until a guest OS makes use of them */
|
|
memory_region_set_enabled(&xive->end_source.esb_mmio, false);
|
|
}
|
|
|
|
static void spapr_xive_tm_write(void *opaque, hwaddr offset,
|
|
uint64_t value, unsigned size)
|
|
{
|
|
XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
|
|
|
|
xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
|
|
}
|
|
|
|
static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
|
|
{
|
|
XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
|
|
|
|
return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
|
|
}
|
|
|
|
const MemoryRegionOps spapr_xive_tm_ops = {
|
|
.read = spapr_xive_tm_read,
|
|
.write = spapr_xive_tm_write,
|
|
.endianness = DEVICE_BIG_ENDIAN,
|
|
.valid = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 8,
|
|
},
|
|
.impl = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
static void spapr_xive_end_reset(XiveEND *end)
|
|
{
|
|
memset(end, 0, sizeof(*end));
|
|
|
|
/* switch off the escalation and notification ESBs */
|
|
end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
|
|
}
|
|
|
|
static void spapr_xive_reset(void *dev)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(dev);
|
|
int i;
|
|
|
|
/*
|
|
* The XiveSource has its own reset handler, which mask off all
|
|
* IRQs (!P|Q)
|
|
*/
|
|
|
|
/* Mask all valid EASs in the IRQ number space. */
|
|
for (i = 0; i < xive->nr_irqs; i++) {
|
|
XiveEAS *eas = &xive->eat[i];
|
|
if (xive_eas_is_valid(eas)) {
|
|
eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
|
|
} else {
|
|
eas->w = 0;
|
|
}
|
|
}
|
|
|
|
/* Clear all ENDs */
|
|
for (i = 0; i < xive->nr_ends; i++) {
|
|
spapr_xive_end_reset(&xive->endt[i]);
|
|
}
|
|
}
|
|
|
|
static void spapr_xive_instance_init(Object *obj)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(obj);
|
|
|
|
object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
|
|
|
|
object_initialize_child(obj, "end_source", &xive->end_source,
|
|
TYPE_XIVE_END_SOURCE);
|
|
|
|
/* Not connected to the KVM XIVE device */
|
|
xive->fd = -1;
|
|
}
|
|
|
|
static void spapr_xive_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(dev);
|
|
SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
|
|
XiveSource *xsrc = &xive->source;
|
|
XiveENDSource *end_xsrc = &xive->end_source;
|
|
Error *local_err = NULL;
|
|
|
|
/* Set by spapr_irq_init() */
|
|
g_assert(xive->nr_irqs);
|
|
g_assert(xive->nr_ends);
|
|
|
|
sxc->parent_realize(dev, &local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Initialize the internal sources, for IPIs and virtual devices.
|
|
*/
|
|
object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs,
|
|
&error_fatal);
|
|
object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
|
|
if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
|
|
return;
|
|
}
|
|
sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
|
|
|
|
/*
|
|
* Initialize the END ESB source
|
|
*/
|
|
object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs,
|
|
&error_fatal);
|
|
object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
|
|
&error_abort);
|
|
if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
|
|
return;
|
|
}
|
|
sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
|
|
|
|
/* Set the mapping address of the END ESB pages after the source ESBs */
|
|
xive->end_base = xive->vc_base + xive_source_esb_len(xsrc);
|
|
|
|
/*
|
|
* Allocate the routing tables
|
|
*/
|
|
xive->eat = g_new0(XiveEAS, xive->nr_irqs);
|
|
xive->endt = g_new0(XiveEND, xive->nr_ends);
|
|
|
|
xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
|
|
xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
|
|
|
|
qemu_register_reset(spapr_xive_reset, dev);
|
|
|
|
/* TIMA initialization */
|
|
memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
|
|
xive, "xive.tima", 4ull << TM_SHIFT);
|
|
sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
|
|
|
|
/*
|
|
* Map all regions. These will be enabled or disabled at reset and
|
|
* can also be overridden by KVM memory regions if active
|
|
*/
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
|
|
}
|
|
|
|
static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
|
|
uint32_t eas_idx, XiveEAS *eas)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(xrtr);
|
|
|
|
if (eas_idx >= xive->nr_irqs) {
|
|
return -1;
|
|
}
|
|
|
|
*eas = xive->eat[eas_idx];
|
|
return 0;
|
|
}
|
|
|
|
static int spapr_xive_get_end(XiveRouter *xrtr,
|
|
uint8_t end_blk, uint32_t end_idx, XiveEND *end)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(xrtr);
|
|
|
|
if (end_idx >= xive->nr_ends) {
|
|
return -1;
|
|
}
|
|
|
|
memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
|
|
return 0;
|
|
}
|
|
|
|
static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
|
|
uint32_t end_idx, XiveEND *end,
|
|
uint8_t word_number)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(xrtr);
|
|
|
|
if (end_idx >= xive->nr_ends) {
|
|
return -1;
|
|
}
|
|
|
|
memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
|
|
return 0;
|
|
}
|
|
|
|
static int spapr_xive_get_nvt(XiveRouter *xrtr,
|
|
uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
|
|
{
|
|
uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
|
|
PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
|
|
|
|
if (!cpu) {
|
|
/* TODO: should we assert() if we can find a NVT ? */
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* sPAPR does not maintain a NVT table. Return that the NVT is
|
|
* valid if we have found a matching CPU
|
|
*/
|
|
nvt->w0 = cpu_to_be32(NVT_W0_VALID);
|
|
return 0;
|
|
}
|
|
|
|
static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
|
|
uint32_t nvt_idx, XiveNVT *nvt,
|
|
uint8_t word_number)
|
|
{
|
|
/*
|
|
* We don't need to write back to the NVTs because the sPAPR
|
|
* machine should never hit a non-scheduled NVT. It should never
|
|
* get called.
|
|
*/
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
|
|
uint8_t nvt_blk, uint32_t nvt_idx,
|
|
bool cam_ignore, uint8_t priority,
|
|
uint32_t logic_serv, XiveTCTXMatch *match)
|
|
{
|
|
CPUState *cs;
|
|
int count = 0;
|
|
|
|
CPU_FOREACH(cs) {
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
|
|
int ring;
|
|
|
|
/*
|
|
* Skip partially initialized vCPUs. This can happen when
|
|
* vCPUs are hotplugged.
|
|
*/
|
|
if (!tctx) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Check the thread context CAM lines and record matches.
|
|
*/
|
|
ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
|
|
cam_ignore, logic_serv);
|
|
/*
|
|
* Save the matching thread interrupt context and follow on to
|
|
* check for duplicates which are invalid.
|
|
*/
|
|
if (ring != -1) {
|
|
if (match->tctx) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
|
|
"context NVT %x/%x\n", nvt_blk, nvt_idx);
|
|
return -1;
|
|
}
|
|
|
|
match->ring = ring;
|
|
match->tctx = tctx;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
|
|
{
|
|
return SPAPR_XIVE_BLOCK_ID;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_spapr_xive_end = {
|
|
.name = TYPE_SPAPR_XIVE "/end",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.fields = (VMStateField []) {
|
|
VMSTATE_UINT32(w0, XiveEND),
|
|
VMSTATE_UINT32(w1, XiveEND),
|
|
VMSTATE_UINT32(w2, XiveEND),
|
|
VMSTATE_UINT32(w3, XiveEND),
|
|
VMSTATE_UINT32(w4, XiveEND),
|
|
VMSTATE_UINT32(w5, XiveEND),
|
|
VMSTATE_UINT32(w6, XiveEND),
|
|
VMSTATE_UINT32(w7, XiveEND),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static const VMStateDescription vmstate_spapr_xive_eas = {
|
|
.name = TYPE_SPAPR_XIVE "/eas",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.fields = (VMStateField []) {
|
|
VMSTATE_UINT64(w, XiveEAS),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static int vmstate_spapr_xive_pre_save(void *opaque)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(opaque);
|
|
|
|
if (spapr_xive_in_kernel(xive)) {
|
|
return kvmppc_xive_pre_save(xive);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Called by the sPAPR IRQ backend 'post_load' method at the machine
|
|
* level.
|
|
*/
|
|
static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(intc);
|
|
|
|
if (spapr_xive_in_kernel(xive)) {
|
|
return kvmppc_xive_post_load(xive, version_id);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_spapr_xive = {
|
|
.name = TYPE_SPAPR_XIVE,
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.pre_save = vmstate_spapr_xive_pre_save,
|
|
.post_load = NULL, /* handled at the machine level */
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
|
|
VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
|
|
vmstate_spapr_xive_eas, XiveEAS),
|
|
VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
|
|
vmstate_spapr_xive_end, XiveEND),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
|
|
bool lsi, Error **errp)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(intc);
|
|
XiveSource *xsrc = &xive->source;
|
|
|
|
assert(lisn < xive->nr_irqs);
|
|
|
|
trace_spapr_xive_claim_irq(lisn, lsi);
|
|
|
|
if (xive_eas_is_valid(&xive->eat[lisn])) {
|
|
error_setg(errp, "IRQ %d is not free", lisn);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Set default values when allocating an IRQ number
|
|
*/
|
|
xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
|
|
if (lsi) {
|
|
xive_source_irq_set_lsi(xsrc, lisn);
|
|
}
|
|
|
|
if (spapr_xive_in_kernel(xive)) {
|
|
return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(intc);
|
|
assert(lisn < xive->nr_irqs);
|
|
|
|
trace_spapr_xive_free_irq(lisn);
|
|
|
|
xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
|
|
}
|
|
|
|
static Property spapr_xive_properties[] = {
|
|
DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
|
|
DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
|
|
DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
|
|
DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
|
|
DEFINE_PROP_UINT8("hv-prio", SpaprXive, hv_prio, 7),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
|
|
PowerPCCPU *cpu, Error **errp)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(intc);
|
|
Object *obj;
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
|
|
obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
|
|
if (!obj) {
|
|
return -1;
|
|
}
|
|
|
|
spapr_cpu->tctx = XIVE_TCTX(obj);
|
|
return 0;
|
|
}
|
|
|
|
static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
|
|
{
|
|
uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
|
|
memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
|
|
}
|
|
|
|
static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
|
|
PowerPCCPU *cpu)
|
|
{
|
|
XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
|
|
uint8_t nvt_blk;
|
|
uint32_t nvt_idx;
|
|
|
|
xive_tctx_reset(tctx);
|
|
|
|
/*
|
|
* When a Virtual Processor is scheduled to run on a HW thread,
|
|
* the hypervisor pushes its identifier in the OS CAM line.
|
|
* Emulate the same behavior under QEMU.
|
|
*/
|
|
spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
|
|
|
|
xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
|
|
}
|
|
|
|
static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
|
|
PowerPCCPU *cpu)
|
|
{
|
|
SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
|
|
|
|
xive_tctx_destroy(spapr_cpu->tctx);
|
|
spapr_cpu->tctx = NULL;
|
|
}
|
|
|
|
static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(intc);
|
|
|
|
trace_spapr_xive_set_irq(irq, val);
|
|
|
|
if (spapr_xive_in_kernel(xive)) {
|
|
kvmppc_xive_source_set_irq(&xive->source, irq, val);
|
|
} else {
|
|
xive_source_set_irq(&xive->source, irq, val);
|
|
}
|
|
}
|
|
|
|
static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(intc);
|
|
CPUState *cs;
|
|
|
|
CPU_FOREACH(cs) {
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
|
|
xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon);
|
|
}
|
|
|
|
spapr_xive_pic_print_info(xive, mon);
|
|
}
|
|
|
|
static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
|
|
void *fdt, uint32_t phandle)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(intc);
|
|
int node;
|
|
uint64_t timas[2 * 2];
|
|
/* Interrupt number ranges for the IPIs */
|
|
uint32_t lisn_ranges[] = {
|
|
cpu_to_be32(SPAPR_IRQ_IPI),
|
|
cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
|
|
};
|
|
/*
|
|
* EQ size - the sizes of pages supported by the system 4K, 64K,
|
|
* 2M, 16M. We only advertise 64K for the moment.
|
|
*/
|
|
uint32_t eq_sizes[] = {
|
|
cpu_to_be32(16), /* 64K */
|
|
};
|
|
/*
|
|
* QEMU/KVM only needs to define a single range to reserve the
|
|
* escalation priority. A priority bitmask would have been more
|
|
* appropriate.
|
|
*/
|
|
uint32_t plat_res_int_priorities[] = {
|
|
cpu_to_be32(xive->hv_prio), /* start */
|
|
cpu_to_be32(0xff - xive->hv_prio), /* count */
|
|
};
|
|
|
|
/* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
|
|
timas[0] = cpu_to_be64(xive->tm_base +
|
|
XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
|
|
timas[1] = cpu_to_be64(1ull << TM_SHIFT);
|
|
timas[2] = cpu_to_be64(xive->tm_base +
|
|
XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
|
|
timas[3] = cpu_to_be64(1ull << TM_SHIFT);
|
|
|
|
_FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
|
|
|
|
_FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
|
|
_FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
|
|
|
|
_FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
|
|
_FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
|
|
sizeof(eq_sizes)));
|
|
_FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
|
|
sizeof(lisn_ranges)));
|
|
|
|
/* For Linux to link the LSIs to the interrupt controller. */
|
|
_FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
|
|
_FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
|
|
|
|
/* For SLOF */
|
|
_FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
|
|
_FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
|
|
|
|
/*
|
|
* The "ibm,plat-res-int-priorities" property defines the priority
|
|
* ranges reserved by the hypervisor
|
|
*/
|
|
_FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
|
|
plat_res_int_priorities, sizeof(plat_res_int_priorities)));
|
|
}
|
|
|
|
static int spapr_xive_activate(SpaprInterruptController *intc,
|
|
uint32_t nr_servers, Error **errp)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(intc);
|
|
|
|
if (kvm_enabled()) {
|
|
int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
|
|
errp);
|
|
if (rc < 0) {
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
/* Activate the XIVE MMIOs */
|
|
spapr_xive_mmio_set_enabled(xive, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spapr_xive_deactivate(SpaprInterruptController *intc)
|
|
{
|
|
SpaprXive *xive = SPAPR_XIVE(intc);
|
|
|
|
spapr_xive_mmio_set_enabled(xive, false);
|
|
|
|
if (spapr_xive_in_kernel(xive)) {
|
|
kvmppc_xive_disconnect(intc);
|
|
}
|
|
}
|
|
|
|
static bool spapr_xive_in_kernel_xptr(const XivePresenter *xptr)
|
|
{
|
|
return spapr_xive_in_kernel(SPAPR_XIVE(xptr));
|
|
}
|
|
|
|
static void spapr_xive_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
|
|
SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
|
|
XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
|
|
SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
|
|
|
|
dc->desc = "sPAPR XIVE Interrupt Controller";
|
|
device_class_set_props(dc, spapr_xive_properties);
|
|
device_class_set_parent_realize(dc, spapr_xive_realize,
|
|
&sxc->parent_realize);
|
|
dc->vmsd = &vmstate_spapr_xive;
|
|
|
|
xrc->get_eas = spapr_xive_get_eas;
|
|
xrc->get_end = spapr_xive_get_end;
|
|
xrc->write_end = spapr_xive_write_end;
|
|
xrc->get_nvt = spapr_xive_get_nvt;
|
|
xrc->write_nvt = spapr_xive_write_nvt;
|
|
xrc->get_block_id = spapr_xive_get_block_id;
|
|
|
|
sicc->activate = spapr_xive_activate;
|
|
sicc->deactivate = spapr_xive_deactivate;
|
|
sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
|
|
sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
|
|
sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
|
|
sicc->claim_irq = spapr_xive_claim_irq;
|
|
sicc->free_irq = spapr_xive_free_irq;
|
|
sicc->set_irq = spapr_xive_set_irq;
|
|
sicc->print_info = spapr_xive_print_info;
|
|
sicc->dt = spapr_xive_dt;
|
|
sicc->post_load = spapr_xive_post_load;
|
|
|
|
xpc->match_nvt = spapr_xive_match_nvt;
|
|
xpc->in_kernel = spapr_xive_in_kernel_xptr;
|
|
}
|
|
|
|
static const TypeInfo spapr_xive_info = {
|
|
.name = TYPE_SPAPR_XIVE,
|
|
.parent = TYPE_XIVE_ROUTER,
|
|
.instance_init = spapr_xive_instance_init,
|
|
.instance_size = sizeof(SpaprXive),
|
|
.class_init = spapr_xive_class_init,
|
|
.class_size = sizeof(SpaprXiveClass),
|
|
.interfaces = (InterfaceInfo[]) {
|
|
{ TYPE_SPAPR_INTC },
|
|
{ }
|
|
},
|
|
};
|
|
|
|
static void spapr_xive_register_types(void)
|
|
{
|
|
type_register_static(&spapr_xive_info);
|
|
}
|
|
|
|
type_init(spapr_xive_register_types)
|
|
|
|
/*
|
|
* XIVE hcalls
|
|
*
|
|
* The terminology used by the XIVE hcalls is the following :
|
|
*
|
|
* TARGET vCPU number
|
|
* EQ Event Queue assigned by OS to receive event data
|
|
* ESB page for source interrupt management
|
|
* LISN Logical Interrupt Source Number identifying a source in the
|
|
* machine
|
|
* EISN Effective Interrupt Source Number used by guest OS to
|
|
* identify source in the guest
|
|
*
|
|
* The EAS, END, NVT structures are not exposed.
|
|
*/
|
|
|
|
/*
|
|
* On POWER9, the KVM XIVE device uses priority 7 for the escalation
|
|
* interrupts. So we only allow the guest to use priorities [0..6].
|
|
*/
|
|
static bool spapr_xive_priority_is_reserved(SpaprXive *xive, uint8_t priority)
|
|
{
|
|
return priority >= xive->hv_prio;
|
|
}
|
|
|
|
/*
|
|
* The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
|
|
* real address of the MMIO page through which the Event State Buffer
|
|
* entry associated with the value of the "lisn" parameter is managed.
|
|
*
|
|
* Parameters:
|
|
* Input
|
|
* - R4: "flags"
|
|
* Bits 0-63 reserved
|
|
* - R5: "lisn" is per "interrupts", "interrupt-map", or
|
|
* "ibm,xive-lisn-ranges" properties, or as returned by the
|
|
* ibm,query-interrupt-source-number RTAS call, or as returned
|
|
* by the H_ALLOCATE_VAS_WINDOW hcall
|
|
*
|
|
* Output
|
|
* - R4: "flags"
|
|
* Bits 0-59: Reserved
|
|
* Bit 60: H_INT_ESB must be used for Event State Buffer
|
|
* management
|
|
* Bit 61: 1 == LSI 0 == MSI
|
|
* Bit 62: the full function page supports trigger
|
|
* Bit 63: Store EOI Supported
|
|
* - R5: Logical Real address of full function Event State Buffer
|
|
* management page, -1 if H_INT_ESB hcall flag is set to 1.
|
|
* - R6: Logical Real Address of trigger only Event State Buffer
|
|
* management page or -1.
|
|
* - R7: Power of 2 page size for the ESB management pages returned in
|
|
* R5 and R6.
|
|
*/
|
|
|
|
#define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
|
|
#define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
|
|
#define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
|
|
on same page */
|
|
#define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
|
|
|
|
static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
SpaprXive *xive = spapr->xive;
|
|
XiveSource *xsrc = &xive->source;
|
|
target_ulong flags = args[0];
|
|
target_ulong lisn = args[1];
|
|
|
|
trace_spapr_xive_get_source_info(flags, lisn);
|
|
|
|
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
if (flags) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (lisn >= xive->nr_irqs) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
|
|
lisn);
|
|
return H_P2;
|
|
}
|
|
|
|
if (!xive_eas_is_valid(&xive->eat[lisn])) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
|
|
lisn);
|
|
return H_P2;
|
|
}
|
|
|
|
/*
|
|
* All sources are emulated under the main XIVE object and share
|
|
* the same characteristics.
|
|
*/
|
|
args[0] = 0;
|
|
if (!xive_source_esb_has_2page(xsrc)) {
|
|
args[0] |= SPAPR_XIVE_SRC_TRIGGER;
|
|
}
|
|
if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
|
|
args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
|
|
}
|
|
|
|
/*
|
|
* Force the use of the H_INT_ESB hcall in case of an LSI
|
|
* interrupt. This is necessary under KVM to re-trigger the
|
|
* interrupt if the level is still asserted
|
|
*/
|
|
if (xive_source_irq_is_lsi(xsrc, lisn)) {
|
|
args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
|
|
}
|
|
|
|
if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
|
|
args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
|
|
} else {
|
|
args[1] = -1;
|
|
}
|
|
|
|
if (xive_source_esb_has_2page(xsrc) &&
|
|
!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
|
|
args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
|
|
} else {
|
|
args[2] = -1;
|
|
}
|
|
|
|
if (xive_source_esb_has_2page(xsrc)) {
|
|
args[3] = xsrc->esb_shift - 1;
|
|
} else {
|
|
args[3] = xsrc->esb_shift;
|
|
}
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
|
|
* Interrupt Source to a target. The Logical Interrupt Source is
|
|
* designated with the "lisn" parameter and the target is designated
|
|
* with the "target" and "priority" parameters. Upon return from the
|
|
* hcall(), no additional interrupts will be directed to the old EQ.
|
|
*
|
|
* Parameters:
|
|
* Input:
|
|
* - R4: "flags"
|
|
* Bits 0-61: Reserved
|
|
* Bit 62: set the "eisn" in the EAS
|
|
* Bit 63: masks the interrupt source in the hardware interrupt
|
|
* control structure. An interrupt masked by this mechanism will
|
|
* be dropped, but it's source state bits will still be
|
|
* set. There is no race-free way of unmasking and restoring the
|
|
* source. Thus this should only be used in interrupts that are
|
|
* also masked at the source, and only in cases where the
|
|
* interrupt is not meant to be used for a large amount of time
|
|
* because no valid target exists for it for example
|
|
* - R5: "lisn" is per "interrupts", "interrupt-map", or
|
|
* "ibm,xive-lisn-ranges" properties, or as returned by the
|
|
* ibm,query-interrupt-source-number RTAS call, or as returned by
|
|
* the H_ALLOCATE_VAS_WINDOW hcall
|
|
* - R6: "target" is per "ibm,ppc-interrupt-server#s" or
|
|
* "ibm,ppc-interrupt-gserver#s"
|
|
* - R7: "priority" is a valid priority not in
|
|
* "ibm,plat-res-int-priorities"
|
|
* - R8: "eisn" is the guest EISN associated with the "lisn"
|
|
*
|
|
* Output:
|
|
* - None
|
|
*/
|
|
|
|
#define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
|
|
#define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
|
|
|
|
static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
SpaprXive *xive = spapr->xive;
|
|
XiveEAS eas, new_eas;
|
|
target_ulong flags = args[0];
|
|
target_ulong lisn = args[1];
|
|
target_ulong target = args[2];
|
|
target_ulong priority = args[3];
|
|
target_ulong eisn = args[4];
|
|
uint8_t end_blk;
|
|
uint32_t end_idx;
|
|
|
|
trace_spapr_xive_set_source_config(flags, lisn, target, priority, eisn);
|
|
|
|
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (lisn >= xive->nr_irqs) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
|
|
lisn);
|
|
return H_P2;
|
|
}
|
|
|
|
eas = xive->eat[lisn];
|
|
if (!xive_eas_is_valid(&eas)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
|
|
lisn);
|
|
return H_P2;
|
|
}
|
|
|
|
/* priority 0xff is used to reset the EAS */
|
|
if (priority == 0xff) {
|
|
new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
|
|
goto out;
|
|
}
|
|
|
|
if (flags & SPAPR_XIVE_SRC_MASK) {
|
|
new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
|
|
} else {
|
|
new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
|
|
}
|
|
|
|
if (spapr_xive_priority_is_reserved(xive, priority)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
|
|
" is reserved\n", priority);
|
|
return H_P4;
|
|
}
|
|
|
|
/*
|
|
* Validate that "target" is part of the list of threads allocated
|
|
* to the partition. For that, find the END corresponding to the
|
|
* target.
|
|
*/
|
|
if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
|
|
return H_P3;
|
|
}
|
|
|
|
new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
|
|
new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
|
|
|
|
if (flags & SPAPR_XIVE_SRC_SET_EISN) {
|
|
new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
|
|
}
|
|
|
|
if (spapr_xive_in_kernel(xive)) {
|
|
Error *local_err = NULL;
|
|
|
|
kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
|
|
if (local_err) {
|
|
error_report_err(local_err);
|
|
return H_HARDWARE;
|
|
}
|
|
}
|
|
|
|
out:
|
|
xive->eat[lisn] = new_eas;
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
|
|
* target/priority pair is assigned to the specified Logical Interrupt
|
|
* Source.
|
|
*
|
|
* Parameters:
|
|
* Input:
|
|
* - R4: "flags"
|
|
* Bits 0-63 Reserved
|
|
* - R5: "lisn" is per "interrupts", "interrupt-map", or
|
|
* "ibm,xive-lisn-ranges" properties, or as returned by the
|
|
* ibm,query-interrupt-source-number RTAS call, or as
|
|
* returned by the H_ALLOCATE_VAS_WINDOW hcall
|
|
*
|
|
* Output:
|
|
* - R4: Target to which the specified Logical Interrupt Source is
|
|
* assigned
|
|
* - R5: Priority to which the specified Logical Interrupt Source is
|
|
* assigned
|
|
* - R6: EISN for the specified Logical Interrupt Source (this will be
|
|
* equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
|
|
*/
|
|
static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
SpaprXive *xive = spapr->xive;
|
|
target_ulong flags = args[0];
|
|
target_ulong lisn = args[1];
|
|
XiveEAS eas;
|
|
XiveEND *end;
|
|
uint8_t nvt_blk;
|
|
uint32_t end_idx, nvt_idx;
|
|
|
|
trace_spapr_xive_get_source_config(flags, lisn);
|
|
|
|
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
if (flags) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (lisn >= xive->nr_irqs) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
|
|
lisn);
|
|
return H_P2;
|
|
}
|
|
|
|
eas = xive->eat[lisn];
|
|
if (!xive_eas_is_valid(&eas)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
|
|
lisn);
|
|
return H_P2;
|
|
}
|
|
|
|
/* EAS_END_BLOCK is unused on sPAPR */
|
|
end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
|
|
|
|
assert(end_idx < xive->nr_ends);
|
|
end = &xive->endt[end_idx];
|
|
|
|
nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
|
|
nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
|
|
args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
|
|
|
|
if (xive_eas_is_masked(&eas)) {
|
|
args[1] = 0xff;
|
|
} else {
|
|
args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
|
|
}
|
|
|
|
args[2] = xive_get_field64(EAS_END_DATA, eas.w);
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
|
|
* address of the notification management page associated with the
|
|
* specified target and priority.
|
|
*
|
|
* Parameters:
|
|
* Input:
|
|
* - R4: "flags"
|
|
* Bits 0-63 Reserved
|
|
* - R5: "target" is per "ibm,ppc-interrupt-server#s" or
|
|
* "ibm,ppc-interrupt-gserver#s"
|
|
* - R6: "priority" is a valid priority not in
|
|
* "ibm,plat-res-int-priorities"
|
|
*
|
|
* Output:
|
|
* - R4: Logical real address of notification page
|
|
* - R5: Power of 2 page size of the notification page
|
|
*/
|
|
static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
SpaprXive *xive = spapr->xive;
|
|
XiveENDSource *end_xsrc = &xive->end_source;
|
|
target_ulong flags = args[0];
|
|
target_ulong target = args[1];
|
|
target_ulong priority = args[2];
|
|
XiveEND *end;
|
|
uint8_t end_blk;
|
|
uint32_t end_idx;
|
|
|
|
trace_spapr_xive_get_queue_info(flags, target, priority);
|
|
|
|
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
if (flags) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
/*
|
|
* H_STATE should be returned if a H_INT_RESET is in progress.
|
|
* This is not needed when running the emulation under QEMU
|
|
*/
|
|
|
|
if (spapr_xive_priority_is_reserved(xive, priority)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
|
|
" is reserved\n", priority);
|
|
return H_P3;
|
|
}
|
|
|
|
/*
|
|
* Validate that "target" is part of the list of threads allocated
|
|
* to the partition. For that, find the END corresponding to the
|
|
* target.
|
|
*/
|
|
if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
|
|
return H_P2;
|
|
}
|
|
|
|
assert(end_idx < xive->nr_ends);
|
|
end = &xive->endt[end_idx];
|
|
|
|
args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
|
|
if (xive_end_is_enqueue(end)) {
|
|
args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
|
|
} else {
|
|
args[1] = 0;
|
|
}
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
|
|
* a given "target" and "priority". It is also used to set the
|
|
* notification config associated with the EQ. An EQ size of 0 is
|
|
* used to reset the EQ config for a given target and priority. If
|
|
* resetting the EQ config, the END associated with the given "target"
|
|
* and "priority" will be changed to disable queueing.
|
|
*
|
|
* Upon return from the hcall(), no additional interrupts will be
|
|
* directed to the old EQ (if one was set). The old EQ (if one was
|
|
* set) should be investigated for interrupts that occurred prior to
|
|
* or during the hcall().
|
|
*
|
|
* Parameters:
|
|
* Input:
|
|
* - R4: "flags"
|
|
* Bits 0-62: Reserved
|
|
* Bit 63: Unconditional Notify (n) per the XIVE spec
|
|
* - R5: "target" is per "ibm,ppc-interrupt-server#s" or
|
|
* "ibm,ppc-interrupt-gserver#s"
|
|
* - R6: "priority" is a valid priority not in
|
|
* "ibm,plat-res-int-priorities"
|
|
* - R7: "eventQueue": The logical real address of the start of the EQ
|
|
* - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
|
|
*
|
|
* Output:
|
|
* - None
|
|
*/
|
|
|
|
#define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
|
|
|
|
static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
SpaprXive *xive = spapr->xive;
|
|
target_ulong flags = args[0];
|
|
target_ulong target = args[1];
|
|
target_ulong priority = args[2];
|
|
target_ulong qpage = args[3];
|
|
target_ulong qsize = args[4];
|
|
XiveEND end;
|
|
uint8_t end_blk, nvt_blk;
|
|
uint32_t end_idx, nvt_idx;
|
|
|
|
trace_spapr_xive_set_queue_config(flags, target, priority, qpage, qsize);
|
|
|
|
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
/*
|
|
* H_STATE should be returned if a H_INT_RESET is in progress.
|
|
* This is not needed when running the emulation under QEMU
|
|
*/
|
|
|
|
if (spapr_xive_priority_is_reserved(xive, priority)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
|
|
" is reserved\n", priority);
|
|
return H_P3;
|
|
}
|
|
|
|
/*
|
|
* Validate that "target" is part of the list of threads allocated
|
|
* to the partition. For that, find the END corresponding to the
|
|
* target.
|
|
*/
|
|
|
|
if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
|
|
return H_P2;
|
|
}
|
|
|
|
assert(end_idx < xive->nr_ends);
|
|
memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
|
|
|
|
switch (qsize) {
|
|
case 12:
|
|
case 16:
|
|
case 21:
|
|
case 24:
|
|
if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
|
|
" is not naturally aligned with %" HWADDR_PRIx "\n",
|
|
qpage, (hwaddr)1 << qsize);
|
|
return H_P4;
|
|
}
|
|
end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
|
|
end.w3 = cpu_to_be32(qpage & 0xffffffff);
|
|
end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
|
|
end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
|
|
break;
|
|
case 0:
|
|
/* reset queue and disable queueing */
|
|
spapr_xive_end_reset(&end);
|
|
goto out;
|
|
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
|
|
qsize);
|
|
return H_P5;
|
|
}
|
|
|
|
if (qsize) {
|
|
hwaddr plen = 1 << qsize;
|
|
void *eq;
|
|
|
|
/*
|
|
* Validate the guest EQ. We should also check that the queue
|
|
* has been zeroed by the OS.
|
|
*/
|
|
eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
|
|
MEMTXATTRS_UNSPECIFIED);
|
|
if (plen != 1 << qsize) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
|
|
HWADDR_PRIx "\n", qpage);
|
|
return H_P4;
|
|
}
|
|
address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
|
|
}
|
|
|
|
/* "target" should have been validated above */
|
|
if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/*
|
|
* Ensure the priority and target are correctly set (they will not
|
|
* be right after allocation)
|
|
*/
|
|
end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
|
|
xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
|
|
end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
|
|
|
|
if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
|
|
end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
|
|
} else {
|
|
end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
|
|
}
|
|
|
|
/*
|
|
* The generation bit for the END starts at 1 and The END page
|
|
* offset counter starts at 0.
|
|
*/
|
|
end.w1 = cpu_to_be32(END_W1_GENERATION) |
|
|
xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
|
|
end.w0 |= cpu_to_be32(END_W0_VALID);
|
|
|
|
/*
|
|
* TODO: issue syncs required to ensure all in-flight interrupts
|
|
* are complete on the old END
|
|
*/
|
|
|
|
out:
|
|
if (spapr_xive_in_kernel(xive)) {
|
|
Error *local_err = NULL;
|
|
|
|
kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
|
|
if (local_err) {
|
|
error_report_err(local_err);
|
|
return H_HARDWARE;
|
|
}
|
|
}
|
|
|
|
/* Update END */
|
|
memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
|
|
* target and priority.
|
|
*
|
|
* Parameters:
|
|
* Input:
|
|
* - R4: "flags"
|
|
* Bits 0-62: Reserved
|
|
* Bit 63: Debug: Return debug data
|
|
* - R5: "target" is per "ibm,ppc-interrupt-server#s" or
|
|
* "ibm,ppc-interrupt-gserver#s"
|
|
* - R6: "priority" is a valid priority not in
|
|
* "ibm,plat-res-int-priorities"
|
|
*
|
|
* Output:
|
|
* - R4: "flags":
|
|
* Bits 0-61: Reserved
|
|
* Bit 62: The value of Event Queue Generation Number (g) per
|
|
* the XIVE spec if "Debug" = 1
|
|
* Bit 63: The value of Unconditional Notify (n) per the XIVE spec
|
|
* - R5: The logical real address of the start of the EQ
|
|
* - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
|
|
* - R7: The value of Event Queue Offset Counter per XIVE spec
|
|
* if "Debug" = 1, else 0
|
|
*
|
|
*/
|
|
|
|
#define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
|
|
|
|
static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
SpaprXive *xive = spapr->xive;
|
|
target_ulong flags = args[0];
|
|
target_ulong target = args[1];
|
|
target_ulong priority = args[2];
|
|
XiveEND *end;
|
|
uint8_t end_blk;
|
|
uint32_t end_idx;
|
|
|
|
trace_spapr_xive_get_queue_config(flags, target, priority);
|
|
|
|
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
if (flags & ~SPAPR_XIVE_END_DEBUG) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
/*
|
|
* H_STATE should be returned if a H_INT_RESET is in progress.
|
|
* This is not needed when running the emulation under QEMU
|
|
*/
|
|
|
|
if (spapr_xive_priority_is_reserved(xive, priority)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
|
|
" is reserved\n", priority);
|
|
return H_P3;
|
|
}
|
|
|
|
/*
|
|
* Validate that "target" is part of the list of threads allocated
|
|
* to the partition. For that, find the END corresponding to the
|
|
* target.
|
|
*/
|
|
if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
|
|
return H_P2;
|
|
}
|
|
|
|
assert(end_idx < xive->nr_ends);
|
|
end = &xive->endt[end_idx];
|
|
|
|
args[0] = 0;
|
|
if (xive_end_is_notify(end)) {
|
|
args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
|
|
}
|
|
|
|
if (xive_end_is_enqueue(end)) {
|
|
args[1] = xive_end_qaddr(end);
|
|
args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
|
|
} else {
|
|
args[1] = 0;
|
|
args[2] = 0;
|
|
}
|
|
|
|
if (spapr_xive_in_kernel(xive)) {
|
|
Error *local_err = NULL;
|
|
|
|
kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
|
|
if (local_err) {
|
|
error_report_err(local_err);
|
|
return H_HARDWARE;
|
|
}
|
|
}
|
|
|
|
/* TODO: do we need any locking on the END ? */
|
|
if (flags & SPAPR_XIVE_END_DEBUG) {
|
|
/* Load the event queue generation number into the return flags */
|
|
args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
|
|
|
|
/* Load R7 with the event queue offset counter */
|
|
args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
|
|
} else {
|
|
args[3] = 0;
|
|
}
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
|
|
* reporting cache line pair for the calling thread. The reporting
|
|
* cache lines will contain the OS interrupt context when the OS
|
|
* issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
|
|
* interrupt. The reporting cache lines can be reset by inputting -1
|
|
* in "reportingLine". Issuing the CI store byte without reporting
|
|
* cache lines registered will result in the data not being accessible
|
|
* to the OS.
|
|
*
|
|
* Parameters:
|
|
* Input:
|
|
* - R4: "flags"
|
|
* Bits 0-63: Reserved
|
|
* - R5: "reportingLine": The logical real address of the reporting cache
|
|
* line pair
|
|
*
|
|
* Output:
|
|
* - None
|
|
*/
|
|
static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
|
|
trace_spapr_xive_set_os_reporting_line(flags);
|
|
|
|
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
/*
|
|
* H_STATE should be returned if a H_INT_RESET is in progress.
|
|
* This is not needed when running the emulation under QEMU
|
|
*/
|
|
|
|
/* TODO: H_INT_SET_OS_REPORTING_LINE */
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
/*
|
|
* The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
|
|
* real address of the reporting cache line pair set for the input
|
|
* "target". If no reporting cache line pair has been set, -1 is
|
|
* returned.
|
|
*
|
|
* Parameters:
|
|
* Input:
|
|
* - R4: "flags"
|
|
* Bits 0-63: Reserved
|
|
* - R5: "target" is per "ibm,ppc-interrupt-server#s" or
|
|
* "ibm,ppc-interrupt-gserver#s"
|
|
* - R6: "reportingLine": The logical real address of the reporting
|
|
* cache line pair
|
|
*
|
|
* Output:
|
|
* - R4: The logical real address of the reporting line if set, else -1
|
|
*/
|
|
static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
target_ulong flags = args[0];
|
|
|
|
trace_spapr_xive_get_os_reporting_line(flags);
|
|
|
|
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
/*
|
|
* H_STATE should be returned if a H_INT_RESET is in progress.
|
|
* This is not needed when running the emulation under QEMU
|
|
*/
|
|
|
|
/* TODO: H_INT_GET_OS_REPORTING_LINE */
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
/*
|
|
* The H_INT_ESB hcall() is used to issue a load or store to the ESB
|
|
* page for the input "lisn". This hcall is only supported for LISNs
|
|
* that have the ESB hcall flag set to 1 when returned from hcall()
|
|
* H_INT_GET_SOURCE_INFO.
|
|
*
|
|
* Parameters:
|
|
* Input:
|
|
* - R4: "flags"
|
|
* Bits 0-62: Reserved
|
|
* bit 63: Store: Store=1, store operation, else load operation
|
|
* - R5: "lisn" is per "interrupts", "interrupt-map", or
|
|
* "ibm,xive-lisn-ranges" properties, or as returned by the
|
|
* ibm,query-interrupt-source-number RTAS call, or as
|
|
* returned by the H_ALLOCATE_VAS_WINDOW hcall
|
|
* - R6: "esbOffset" is the offset into the ESB page for the load or
|
|
* store operation
|
|
* - R7: "storeData" is the data to write for a store operation
|
|
*
|
|
* Output:
|
|
* - R4: The value of the load if load operation, else -1
|
|
*/
|
|
|
|
#define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
|
|
|
|
static target_ulong h_int_esb(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
SpaprXive *xive = spapr->xive;
|
|
XiveEAS eas;
|
|
target_ulong flags = args[0];
|
|
target_ulong lisn = args[1];
|
|
target_ulong offset = args[2];
|
|
target_ulong data = args[3];
|
|
hwaddr mmio_addr;
|
|
XiveSource *xsrc = &xive->source;
|
|
|
|
trace_spapr_xive_esb(flags, lisn, offset, data);
|
|
|
|
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
if (flags & ~SPAPR_XIVE_ESB_STORE) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (lisn >= xive->nr_irqs) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
|
|
lisn);
|
|
return H_P2;
|
|
}
|
|
|
|
eas = xive->eat[lisn];
|
|
if (!xive_eas_is_valid(&eas)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
|
|
lisn);
|
|
return H_P2;
|
|
}
|
|
|
|
if (offset > (1ull << xsrc->esb_shift)) {
|
|
return H_P3;
|
|
}
|
|
|
|
if (spapr_xive_in_kernel(xive)) {
|
|
args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
|
|
flags & SPAPR_XIVE_ESB_STORE);
|
|
} else {
|
|
mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
|
|
|
|
if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
|
|
(flags & SPAPR_XIVE_ESB_STORE))) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
|
|
HWADDR_PRIx "\n", mmio_addr);
|
|
return H_HARDWARE;
|
|
}
|
|
args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
|
|
}
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* The H_INT_SYNC hcall() is used to issue hardware syncs that will
|
|
* ensure any in flight events for the input lisn are in the event
|
|
* queue.
|
|
*
|
|
* Parameters:
|
|
* Input:
|
|
* - R4: "flags"
|
|
* Bits 0-63: Reserved
|
|
* - R5: "lisn" is per "interrupts", "interrupt-map", or
|
|
* "ibm,xive-lisn-ranges" properties, or as returned by the
|
|
* ibm,query-interrupt-source-number RTAS call, or as
|
|
* returned by the H_ALLOCATE_VAS_WINDOW hcall
|
|
*
|
|
* Output:
|
|
* - None
|
|
*/
|
|
static target_ulong h_int_sync(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
SpaprXive *xive = spapr->xive;
|
|
XiveEAS eas;
|
|
target_ulong flags = args[0];
|
|
target_ulong lisn = args[1];
|
|
|
|
trace_spapr_xive_sync(flags, lisn);
|
|
|
|
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
if (flags) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
if (lisn >= xive->nr_irqs) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
|
|
lisn);
|
|
return H_P2;
|
|
}
|
|
|
|
eas = xive->eat[lisn];
|
|
if (!xive_eas_is_valid(&eas)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
|
|
lisn);
|
|
return H_P2;
|
|
}
|
|
|
|
/*
|
|
* H_STATE should be returned if a H_INT_RESET is in progress.
|
|
* This is not needed when running the emulation under QEMU
|
|
*/
|
|
|
|
/*
|
|
* This is not real hardware. Nothing to be done unless when
|
|
* under KVM
|
|
*/
|
|
|
|
if (spapr_xive_in_kernel(xive)) {
|
|
Error *local_err = NULL;
|
|
|
|
kvmppc_xive_sync_source(xive, lisn, &local_err);
|
|
if (local_err) {
|
|
error_report_err(local_err);
|
|
return H_HARDWARE;
|
|
}
|
|
}
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* The H_INT_RESET hcall() is used to reset all of the partition's
|
|
* interrupt exploitation structures to their initial state. This
|
|
* means losing all previously set interrupt state set via
|
|
* H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
|
|
*
|
|
* Parameters:
|
|
* Input:
|
|
* - R4: "flags"
|
|
* Bits 0-63: Reserved
|
|
*
|
|
* Output:
|
|
* - None
|
|
*/
|
|
static target_ulong h_int_reset(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
SpaprXive *xive = spapr->xive;
|
|
target_ulong flags = args[0];
|
|
|
|
trace_spapr_xive_reset(flags);
|
|
|
|
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
if (flags) {
|
|
return H_PARAMETER;
|
|
}
|
|
|
|
device_legacy_reset(DEVICE(xive));
|
|
|
|
if (spapr_xive_in_kernel(xive)) {
|
|
Error *local_err = NULL;
|
|
|
|
kvmppc_xive_reset(xive, &local_err);
|
|
if (local_err) {
|
|
error_report_err(local_err);
|
|
return H_HARDWARE;
|
|
}
|
|
}
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
void spapr_xive_hcall_init(SpaprMachineState *spapr)
|
|
{
|
|
spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
|
|
spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
|
|
spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
|
|
spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
|
|
spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
|
|
spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
|
|
spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
|
|
h_int_set_os_reporting_line);
|
|
spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
|
|
h_int_get_os_reporting_line);
|
|
spapr_register_hypercall(H_INT_ESB, h_int_esb);
|
|
spapr_register_hypercall(H_INT_SYNC, h_int_sync);
|
|
spapr_register_hypercall(H_INT_RESET, h_int_reset);
|
|
}
|