6b504a01c1
In arm_deliver_fault() we check for whether the fault is caused
by a data abort due to an access to a FEAT_NV2 sysreg in the
memory pointed to by the VNCR. Unfortunately part of the
condition checks the wrong argument to the function, meaning
that it would spuriously trigger, resulting in some instruction
aborts being taken to the wrong EL and reported incorrectly.
Use the right variable in the condition.
Fixes: 674e534527
("target/arm: Report VNCR_EL2 based faults correctly")
Reported-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-id: 20240116165605.2523055-1-peter.maydell@linaro.org
399 lines
13 KiB
C
399 lines
13 KiB
C
/*
|
|
* ARM TLB (Translation lookaside buffer) helpers.
|
|
*
|
|
* This code is licensed under the GNU GPL v2 or later.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "internals.h"
|
|
#include "cpu-features.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/helper-proto.h"
|
|
|
|
|
|
/*
|
|
* Returns true if the stage 1 translation regime is using LPAE format page
|
|
* tables. Used when raising alignment exceptions, whose FSR changes depending
|
|
* on whether the long or short descriptor format is in use.
|
|
*/
|
|
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
mmu_idx = stage_1_mmu_idx(mmu_idx);
|
|
return regime_using_lpae_format(env, mmu_idx);
|
|
}
|
|
|
|
static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
|
|
ARMMMUFaultInfo *fi,
|
|
unsigned int target_el,
|
|
bool same_el, bool is_write,
|
|
int fsc)
|
|
{
|
|
uint32_t syn;
|
|
|
|
/*
|
|
* ISV is only set for stage-2 data aborts routed to EL2 and
|
|
* never for stage-1 page table walks faulting on stage 2
|
|
* or for stage-1 faults.
|
|
*
|
|
* Furthermore, ISV is only set for certain kinds of load/stores.
|
|
* If the template syndrome does not have ISV set, we should leave
|
|
* it cleared.
|
|
*
|
|
* See ARMv8 specs, D7-1974:
|
|
* ISS encoding for an exception from a Data Abort, the
|
|
* ISV field.
|
|
*
|
|
* TODO: FEAT_LS64/FEAT_LS64_V/FEAT_SL64_ACCDATA: Translation,
|
|
* Access Flag, and Permission faults caused by LD64B, ST64B,
|
|
* ST64BV, or ST64BV0 insns report syndrome info even for stage-1
|
|
* faults and regardless of the target EL.
|
|
*/
|
|
if (template_syn & ARM_EL_VNCR) {
|
|
/*
|
|
* FEAT_NV2 faults on accesses via VNCR_EL2 are a special case:
|
|
* they are always reported as "same EL", even though we are going
|
|
* from EL1 to EL2.
|
|
*/
|
|
assert(!fi->stage2);
|
|
syn = syn_data_abort_vncr(fi->ea, is_write, fsc);
|
|
} else if (!(template_syn & ARM_EL_ISV) || target_el != 2
|
|
|| fi->s1ptw || !fi->stage2) {
|
|
syn = syn_data_abort_no_iss(same_el, 0,
|
|
fi->ea, 0, fi->s1ptw, is_write, fsc);
|
|
} else {
|
|
/*
|
|
* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
|
|
* syndrome created at translation time.
|
|
* Now we create the runtime syndrome with the remaining fields.
|
|
*/
|
|
syn = syn_data_abort_with_iss(same_el,
|
|
0, 0, 0, 0, 0,
|
|
fi->ea, 0, fi->s1ptw, is_write, fsc,
|
|
true);
|
|
/* Merge the runtime syndrome with the template syndrome. */
|
|
syn |= template_syn;
|
|
}
|
|
return syn;
|
|
}
|
|
|
|
static uint32_t compute_fsr_fsc(CPUARMState *env, ARMMMUFaultInfo *fi,
|
|
int target_el, int mmu_idx, uint32_t *ret_fsc)
|
|
{
|
|
ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
|
|
uint32_t fsr, fsc;
|
|
|
|
/*
|
|
* For M-profile there is no guest-facing FSR. We compute a
|
|
* short-form value for env->exception.fsr which we will then
|
|
* examine in arm_v7m_cpu_do_interrupt(). In theory we could
|
|
* use the LPAE format instead as long as both bits of code agree
|
|
* (and arm_fi_to_lfsc() handled the M-profile specific
|
|
* ARMFault_QEMU_NSCExec and ARMFault_QEMU_SFault cases).
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_M) &&
|
|
(target_el == 2 || arm_el_is_aa64(env, target_el) ||
|
|
arm_s1_regime_using_lpae_format(env, arm_mmu_idx))) {
|
|
/*
|
|
* LPAE format fault status register : bottom 6 bits are
|
|
* status code in the same form as needed for syndrome
|
|
*/
|
|
fsr = arm_fi_to_lfsc(fi);
|
|
fsc = extract32(fsr, 0, 6);
|
|
} else {
|
|
fsr = arm_fi_to_sfsc(fi);
|
|
/*
|
|
* Short format FSR : this fault will never actually be reported
|
|
* to an EL that uses a syndrome register. Use a (currently)
|
|
* reserved FSR code in case the constructed syndrome does leak
|
|
* into the guest somehow.
|
|
*/
|
|
fsc = 0x3f;
|
|
}
|
|
|
|
*ret_fsc = fsc;
|
|
return fsr;
|
|
}
|
|
|
|
static bool report_as_gpc_exception(ARMCPU *cpu, int current_el,
|
|
ARMMMUFaultInfo *fi)
|
|
{
|
|
bool ret;
|
|
|
|
switch (fi->gpcf) {
|
|
case GPCF_None:
|
|
return false;
|
|
case GPCF_AddressSize:
|
|
case GPCF_Walk:
|
|
case GPCF_EABT:
|
|
/* R_PYTGX: GPT faults are reported as GPC. */
|
|
ret = true;
|
|
break;
|
|
case GPCF_Fail:
|
|
/*
|
|
* R_BLYPM: A GPF at EL3 is reported as insn or data abort.
|
|
* R_VBZMW, R_LXHQR: A GPF at EL[0-2] is reported as a GPC
|
|
* if SCR_EL3.GPF is set, otherwise an insn or data abort.
|
|
*/
|
|
ret = (cpu->env.cp15.scr_el3 & SCR_GPF) && current_el != 3;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
assert(cpu_isar_feature(aa64_rme, cpu));
|
|
assert(fi->type == ARMFault_GPCFOnWalk ||
|
|
fi->type == ARMFault_GPCFOnOutput);
|
|
if (fi->gpcf == GPCF_AddressSize) {
|
|
assert(fi->level == 0);
|
|
} else {
|
|
assert(fi->level >= 0 && fi->level <= 1);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned encode_gpcsc(ARMMMUFaultInfo *fi)
|
|
{
|
|
static uint8_t const gpcsc[] = {
|
|
[GPCF_AddressSize] = 0b000000,
|
|
[GPCF_Walk] = 0b000100,
|
|
[GPCF_Fail] = 0b001100,
|
|
[GPCF_EABT] = 0b010100,
|
|
};
|
|
|
|
/* Note that we've validated fi->gpcf and fi->level above. */
|
|
return gpcsc[fi->gpcf] | fi->level;
|
|
}
|
|
|
|
static G_NORETURN
|
|
void arm_deliver_fault(ARMCPU *cpu, vaddr addr,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, ARMMMUFaultInfo *fi)
|
|
{
|
|
CPUARMState *env = &cpu->env;
|
|
int target_el = exception_target_el(env);
|
|
int current_el = arm_current_el(env);
|
|
bool same_el;
|
|
uint32_t syn, exc, fsr, fsc;
|
|
/*
|
|
* We know this must be a data or insn abort, and that
|
|
* env->exception.syndrome contains the template syndrome set
|
|
* up at translate time. So we can check only the VNCR bit
|
|
* (and indeed syndrome does not have the EC field in it,
|
|
* because we masked that out in disas_set_insn_syndrome())
|
|
*/
|
|
bool is_vncr = (access_type != MMU_INST_FETCH) &&
|
|
(env->exception.syndrome & ARM_EL_VNCR);
|
|
|
|
if (is_vncr) {
|
|
/* FEAT_NV2 faults on accesses via VNCR_EL2 go to EL2 */
|
|
target_el = 2;
|
|
}
|
|
|
|
if (report_as_gpc_exception(cpu, current_el, fi)) {
|
|
target_el = 3;
|
|
|
|
fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc);
|
|
|
|
syn = syn_gpc(fi->stage2 && fi->type == ARMFault_GPCFOnWalk,
|
|
access_type == MMU_INST_FETCH,
|
|
encode_gpcsc(fi), is_vncr,
|
|
0, fi->s1ptw,
|
|
access_type == MMU_DATA_STORE, fsc);
|
|
|
|
env->cp15.mfar_el3 = fi->paddr;
|
|
switch (fi->paddr_space) {
|
|
case ARMSS_Secure:
|
|
break;
|
|
case ARMSS_NonSecure:
|
|
env->cp15.mfar_el3 |= R_MFAR_NS_MASK;
|
|
break;
|
|
case ARMSS_Root:
|
|
env->cp15.mfar_el3 |= R_MFAR_NSE_MASK;
|
|
break;
|
|
case ARMSS_Realm:
|
|
env->cp15.mfar_el3 |= R_MFAR_NSE_MASK | R_MFAR_NS_MASK;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
exc = EXCP_GPC;
|
|
goto do_raise;
|
|
}
|
|
|
|
/* If SCR_EL3.GPF is unset, GPF may still be routed to EL2. */
|
|
if (fi->gpcf == GPCF_Fail && target_el < 2) {
|
|
if (arm_hcr_el2_eff(env) & HCR_GPF) {
|
|
target_el = 2;
|
|
}
|
|
}
|
|
|
|
if (fi->stage2) {
|
|
target_el = 2;
|
|
env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
|
|
if (arm_is_secure_below_el3(env) && fi->s1ns) {
|
|
env->cp15.hpfar_el2 |= HPFAR_NS;
|
|
}
|
|
}
|
|
|
|
same_el = current_el == target_el;
|
|
fsr = compute_fsr_fsc(env, fi, target_el, mmu_idx, &fsc);
|
|
|
|
if (access_type == MMU_INST_FETCH) {
|
|
syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
|
|
exc = EXCP_PREFETCH_ABORT;
|
|
} else {
|
|
syn = merge_syn_data_abort(env->exception.syndrome, fi, target_el,
|
|
same_el, access_type == MMU_DATA_STORE,
|
|
fsc);
|
|
if (access_type == MMU_DATA_STORE
|
|
&& arm_feature(env, ARM_FEATURE_V6)) {
|
|
fsr |= (1 << 11);
|
|
}
|
|
exc = EXCP_DATA_ABORT;
|
|
}
|
|
|
|
do_raise:
|
|
env->exception.vaddress = addr;
|
|
env->exception.fsr = fsr;
|
|
raise_exception(env, exc, syn, target_el);
|
|
}
|
|
|
|
/* Raise a data fault alignment exception for the specified virtual address */
|
|
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
ARMMMUFaultInfo fi = {};
|
|
|
|
/* now we have a real cpu fault */
|
|
cpu_restore_state(cs, retaddr);
|
|
|
|
fi.type = ARMFault_Alignment;
|
|
arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
|
|
}
|
|
|
|
void helper_exception_pc_alignment(CPUARMState *env, target_ulong pc)
|
|
{
|
|
ARMMMUFaultInfo fi = { .type = ARMFault_Alignment };
|
|
int target_el = exception_target_el(env);
|
|
int mmu_idx = cpu_mmu_index(env, true);
|
|
uint32_t fsc;
|
|
|
|
env->exception.vaddress = pc;
|
|
|
|
/*
|
|
* Note that the fsc is not applicable to this exception,
|
|
* since any syndrome is pcalignment not insn_abort.
|
|
*/
|
|
env->exception.fsr = compute_fsr_fsc(env, &fi, target_el, mmu_idx, &fsc);
|
|
raise_exception(env, EXCP_PREFETCH_ABORT, syn_pcalignment(), target_el);
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
/*
|
|
* arm_cpu_do_transaction_failed: handle a memory system error response
|
|
* (eg "no device/memory present at address") by raising an external abort
|
|
* exception
|
|
*/
|
|
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
|
|
vaddr addr, unsigned size,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, MemTxAttrs attrs,
|
|
MemTxResult response, uintptr_t retaddr)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
ARMMMUFaultInfo fi = {};
|
|
|
|
/* now we have a real cpu fault */
|
|
cpu_restore_state(cs, retaddr);
|
|
|
|
fi.ea = arm_extabort_type(response);
|
|
fi.type = ARMFault_SyncExternal;
|
|
arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
|
|
}
|
|
|
|
bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
|
|
MMUAccessType access_type, int mmu_idx,
|
|
bool probe, uintptr_t retaddr)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
GetPhysAddrResult res = {};
|
|
ARMMMUFaultInfo local_fi, *fi;
|
|
int ret;
|
|
|
|
/*
|
|
* Allow S1_ptw_translate to see any fault generated here.
|
|
* Since this may recurse, read and clear.
|
|
*/
|
|
fi = cpu->env.tlb_fi;
|
|
if (fi) {
|
|
cpu->env.tlb_fi = NULL;
|
|
} else {
|
|
fi = memset(&local_fi, 0, sizeof(local_fi));
|
|
}
|
|
|
|
/*
|
|
* Walk the page table and (if the mapping exists) add the page
|
|
* to the TLB. On success, return true. Otherwise, if probing,
|
|
* return false. Otherwise populate fsr with ARM DFSR/IFSR fault
|
|
* register format, and signal the fault.
|
|
*/
|
|
ret = get_phys_addr(&cpu->env, address, access_type,
|
|
core_to_arm_mmu_idx(&cpu->env, mmu_idx),
|
|
&res, fi);
|
|
if (likely(!ret)) {
|
|
/*
|
|
* Map a single [sub]page. Regions smaller than our declared
|
|
* target page size are handled specially, so for those we
|
|
* pass in the exact addresses.
|
|
*/
|
|
if (res.f.lg_page_size >= TARGET_PAGE_BITS) {
|
|
res.f.phys_addr &= TARGET_PAGE_MASK;
|
|
address &= TARGET_PAGE_MASK;
|
|
}
|
|
|
|
res.f.extra.arm.pte_attrs = res.cacheattrs.attrs;
|
|
res.f.extra.arm.shareability = res.cacheattrs.shareability;
|
|
|
|
tlb_set_page_full(cs, mmu_idx, address, &res.f);
|
|
return true;
|
|
} else if (probe) {
|
|
return false;
|
|
} else {
|
|
/* now we have a real cpu fault */
|
|
cpu_restore_state(cs, retaddr);
|
|
arm_deliver_fault(cpu, address, access_type, mmu_idx, fi);
|
|
}
|
|
}
|
|
#else
|
|
void arm_cpu_record_sigsegv(CPUState *cs, vaddr addr,
|
|
MMUAccessType access_type,
|
|
bool maperr, uintptr_t ra)
|
|
{
|
|
ARMMMUFaultInfo fi = {
|
|
.type = maperr ? ARMFault_Translation : ARMFault_Permission,
|
|
.level = 3,
|
|
};
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
/*
|
|
* We report both ESR and FAR to signal handlers.
|
|
* For now, it's easiest to deliver the fault normally.
|
|
*/
|
|
cpu_restore_state(cs, ra);
|
|
arm_deliver_fault(cpu, addr, access_type, MMU_USER_IDX, &fi);
|
|
}
|
|
|
|
void arm_cpu_record_sigbus(CPUState *cs, vaddr addr,
|
|
MMUAccessType access_type, uintptr_t ra)
|
|
{
|
|
arm_cpu_do_unaligned_access(cs, addr, access_type, MMU_USER_IDX, ra);
|
|
}
|
|
#endif /* !defined(CONFIG_USER_ONLY) */
|