qemu-e2k/block/vmdk.c
Max Reitz c80d8b06cf block: Add @exact parameter to bdrv_co_truncate()
We have two drivers (iscsi and file-posix) that (in some cases) return
success from their .bdrv_co_truncate() implementation if the block
device is larger than the requested offset, but cannot be shrunk.  Some
callers do not want that behavior, so this patch adds a new parameter
that they can use to turn off that behavior.

This patch just adds the parameter and lets the block/io.c and
block/block-backend.c functions pass it around.  All other callers
always pass false and none of the implementations evaluate it, so that
this patch does not change existing behavior.  Future patches take care
of that.

Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
Message-id: 20190918095144.955-5-mreitz@redhat.com
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Max Reitz <mreitz@redhat.com>
2019-10-28 12:00:07 +01:00

3071 lines
96 KiB
C

/*
* Block driver for the VMDK format
*
* Copyright (c) 2004 Fabrice Bellard
* Copyright (c) 2005 Filip Navara
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "block/block_int.h"
#include "sysemu/block-backend.h"
#include "qapi/qmp/qdict.h"
#include "qapi/qmp/qerror.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "qemu/option.h"
#include "qemu/bswap.h"
#include "migration/blocker.h"
#include "qemu/cutils.h"
#include <zlib.h>
#define VMDK3_MAGIC (('C' << 24) | ('O' << 16) | ('W' << 8) | 'D')
#define VMDK4_MAGIC (('K' << 24) | ('D' << 16) | ('M' << 8) | 'V')
#define VMDK4_COMPRESSION_DEFLATE 1
#define VMDK4_FLAG_NL_DETECT (1 << 0)
#define VMDK4_FLAG_RGD (1 << 1)
/* Zeroed-grain enable bit */
#define VMDK4_FLAG_ZERO_GRAIN (1 << 2)
#define VMDK4_FLAG_COMPRESS (1 << 16)
#define VMDK4_FLAG_MARKER (1 << 17)
#define VMDK4_GD_AT_END 0xffffffffffffffffULL
#define VMDK_EXTENT_MAX_SECTORS (1ULL << 32)
#define VMDK_GTE_ZEROED 0x1
/* VMDK internal error codes */
#define VMDK_OK 0
#define VMDK_ERROR (-1)
/* Cluster not allocated */
#define VMDK_UNALLOC (-2)
#define VMDK_ZEROED (-3)
#define BLOCK_OPT_ZEROED_GRAIN "zeroed_grain"
typedef struct {
uint32_t version;
uint32_t flags;
uint32_t disk_sectors;
uint32_t granularity;
uint32_t l1dir_offset;
uint32_t l1dir_size;
uint32_t file_sectors;
uint32_t cylinders;
uint32_t heads;
uint32_t sectors_per_track;
} QEMU_PACKED VMDK3Header;
typedef struct {
uint32_t version;
uint32_t flags;
uint64_t capacity;
uint64_t granularity;
uint64_t desc_offset;
uint64_t desc_size;
/* Number of GrainTableEntries per GrainTable */
uint32_t num_gtes_per_gt;
uint64_t rgd_offset;
uint64_t gd_offset;
uint64_t grain_offset;
char filler[1];
char check_bytes[4];
uint16_t compressAlgorithm;
} QEMU_PACKED VMDK4Header;
typedef struct VMDKSESparseConstHeader {
uint64_t magic;
uint64_t version;
uint64_t capacity;
uint64_t grain_size;
uint64_t grain_table_size;
uint64_t flags;
uint64_t reserved1;
uint64_t reserved2;
uint64_t reserved3;
uint64_t reserved4;
uint64_t volatile_header_offset;
uint64_t volatile_header_size;
uint64_t journal_header_offset;
uint64_t journal_header_size;
uint64_t journal_offset;
uint64_t journal_size;
uint64_t grain_dir_offset;
uint64_t grain_dir_size;
uint64_t grain_tables_offset;
uint64_t grain_tables_size;
uint64_t free_bitmap_offset;
uint64_t free_bitmap_size;
uint64_t backmap_offset;
uint64_t backmap_size;
uint64_t grains_offset;
uint64_t grains_size;
uint8_t pad[304];
} QEMU_PACKED VMDKSESparseConstHeader;
typedef struct VMDKSESparseVolatileHeader {
uint64_t magic;
uint64_t free_gt_number;
uint64_t next_txn_seq_number;
uint64_t replay_journal;
uint8_t pad[480];
} QEMU_PACKED VMDKSESparseVolatileHeader;
#define L2_CACHE_SIZE 16
typedef struct VmdkExtent {
BdrvChild *file;
bool flat;
bool compressed;
bool has_marker;
bool has_zero_grain;
bool sesparse;
uint64_t sesparse_l2_tables_offset;
uint64_t sesparse_clusters_offset;
int32_t entry_size;
int version;
int64_t sectors;
int64_t end_sector;
int64_t flat_start_offset;
int64_t l1_table_offset;
int64_t l1_backup_table_offset;
void *l1_table;
uint32_t *l1_backup_table;
unsigned int l1_size;
uint32_t l1_entry_sectors;
unsigned int l2_size;
void *l2_cache;
uint32_t l2_cache_offsets[L2_CACHE_SIZE];
uint32_t l2_cache_counts[L2_CACHE_SIZE];
int64_t cluster_sectors;
int64_t next_cluster_sector;
char *type;
} VmdkExtent;
typedef struct BDRVVmdkState {
CoMutex lock;
uint64_t desc_offset;
bool cid_updated;
bool cid_checked;
uint32_t cid;
uint32_t parent_cid;
int num_extents;
/* Extent array with num_extents entries, ascend ordered by address */
VmdkExtent *extents;
Error *migration_blocker;
char *create_type;
} BDRVVmdkState;
typedef struct VmdkMetaData {
unsigned int l1_index;
unsigned int l2_index;
unsigned int l2_offset;
int valid;
uint32_t *l2_cache_entry;
} VmdkMetaData;
typedef struct VmdkGrainMarker {
uint64_t lba;
uint32_t size;
uint8_t data[0];
} QEMU_PACKED VmdkGrainMarker;
enum {
MARKER_END_OF_STREAM = 0,
MARKER_GRAIN_TABLE = 1,
MARKER_GRAIN_DIRECTORY = 2,
MARKER_FOOTER = 3,
};
static int vmdk_probe(const uint8_t *buf, int buf_size, const char *filename)
{
uint32_t magic;
if (buf_size < 4) {
return 0;
}
magic = be32_to_cpu(*(uint32_t *)buf);
if (magic == VMDK3_MAGIC ||
magic == VMDK4_MAGIC) {
return 100;
} else {
const char *p = (const char *)buf;
const char *end = p + buf_size;
while (p < end) {
if (*p == '#') {
/* skip comment line */
while (p < end && *p != '\n') {
p++;
}
p++;
continue;
}
if (*p == ' ') {
while (p < end && *p == ' ') {
p++;
}
/* skip '\r' if windows line endings used. */
if (p < end && *p == '\r') {
p++;
}
/* only accept blank lines before 'version=' line */
if (p == end || *p != '\n') {
return 0;
}
p++;
continue;
}
if (end - p >= strlen("version=X\n")) {
if (strncmp("version=1\n", p, strlen("version=1\n")) == 0 ||
strncmp("version=2\n", p, strlen("version=2\n")) == 0 ||
strncmp("version=3\n", p, strlen("version=3\n")) == 0) {
return 100;
}
}
if (end - p >= strlen("version=X\r\n")) {
if (strncmp("version=1\r\n", p, strlen("version=1\r\n")) == 0 ||
strncmp("version=2\r\n", p, strlen("version=2\r\n")) == 0 ||
strncmp("version=3\r\n", p, strlen("version=3\r\n")) == 0) {
return 100;
}
}
return 0;
}
return 0;
}
}
#define SECTOR_SIZE 512
#define DESC_SIZE (20 * SECTOR_SIZE) /* 20 sectors of 512 bytes each */
#define BUF_SIZE 4096
#define HEADER_SIZE 512 /* first sector of 512 bytes */
static void vmdk_free_extents(BlockDriverState *bs)
{
int i;
BDRVVmdkState *s = bs->opaque;
VmdkExtent *e;
for (i = 0; i < s->num_extents; i++) {
e = &s->extents[i];
g_free(e->l1_table);
g_free(e->l2_cache);
g_free(e->l1_backup_table);
g_free(e->type);
if (e->file != bs->file) {
bdrv_unref_child(bs, e->file);
}
}
g_free(s->extents);
}
static void vmdk_free_last_extent(BlockDriverState *bs)
{
BDRVVmdkState *s = bs->opaque;
if (s->num_extents == 0) {
return;
}
s->num_extents--;
s->extents = g_renew(VmdkExtent, s->extents, s->num_extents);
}
/* Return -ve errno, or 0 on success and write CID into *pcid. */
static int vmdk_read_cid(BlockDriverState *bs, int parent, uint32_t *pcid)
{
char *desc;
uint32_t cid;
const char *p_name, *cid_str;
size_t cid_str_size;
BDRVVmdkState *s = bs->opaque;
int ret;
desc = g_malloc0(DESC_SIZE);
ret = bdrv_pread(bs->file, s->desc_offset, desc, DESC_SIZE);
if (ret < 0) {
goto out;
}
if (parent) {
cid_str = "parentCID";
cid_str_size = sizeof("parentCID");
} else {
cid_str = "CID";
cid_str_size = sizeof("CID");
}
desc[DESC_SIZE - 1] = '\0';
p_name = strstr(desc, cid_str);
if (p_name == NULL) {
ret = -EINVAL;
goto out;
}
p_name += cid_str_size;
if (sscanf(p_name, "%" SCNx32, &cid) != 1) {
ret = -EINVAL;
goto out;
}
*pcid = cid;
ret = 0;
out:
g_free(desc);
return ret;
}
static int vmdk_write_cid(BlockDriverState *bs, uint32_t cid)
{
char *desc, *tmp_desc;
char *p_name, *tmp_str;
BDRVVmdkState *s = bs->opaque;
int ret = 0;
desc = g_malloc0(DESC_SIZE);
tmp_desc = g_malloc0(DESC_SIZE);
ret = bdrv_pread(bs->file, s->desc_offset, desc, DESC_SIZE);
if (ret < 0) {
goto out;
}
desc[DESC_SIZE - 1] = '\0';
tmp_str = strstr(desc, "parentCID");
if (tmp_str == NULL) {
ret = -EINVAL;
goto out;
}
pstrcpy(tmp_desc, DESC_SIZE, tmp_str);
p_name = strstr(desc, "CID");
if (p_name != NULL) {
p_name += sizeof("CID");
snprintf(p_name, DESC_SIZE - (p_name - desc), "%" PRIx32 "\n", cid);
pstrcat(desc, DESC_SIZE, tmp_desc);
}
ret = bdrv_pwrite_sync(bs->file, s->desc_offset, desc, DESC_SIZE);
out:
g_free(desc);
g_free(tmp_desc);
return ret;
}
static int vmdk_is_cid_valid(BlockDriverState *bs)
{
BDRVVmdkState *s = bs->opaque;
uint32_t cur_pcid;
if (!s->cid_checked && bs->backing) {
BlockDriverState *p_bs = bs->backing->bs;
if (strcmp(p_bs->drv->format_name, "vmdk")) {
/* Backing file is not in vmdk format, so it does not have
* a CID, which makes the overlay's parent CID invalid */
return 0;
}
if (vmdk_read_cid(p_bs, 0, &cur_pcid) != 0) {
/* read failure: report as not valid */
return 0;
}
if (s->parent_cid != cur_pcid) {
/* CID not valid */
return 0;
}
}
s->cid_checked = true;
/* CID valid */
return 1;
}
/* We have nothing to do for VMDK reopen, stubs just return success */
static int vmdk_reopen_prepare(BDRVReopenState *state,
BlockReopenQueue *queue, Error **errp)
{
assert(state != NULL);
assert(state->bs != NULL);
return 0;
}
static int vmdk_parent_open(BlockDriverState *bs)
{
char *p_name;
char *desc;
BDRVVmdkState *s = bs->opaque;
int ret;
desc = g_malloc0(DESC_SIZE + 1);
ret = bdrv_pread(bs->file, s->desc_offset, desc, DESC_SIZE);
if (ret < 0) {
goto out;
}
ret = 0;
p_name = strstr(desc, "parentFileNameHint");
if (p_name != NULL) {
char *end_name;
p_name += sizeof("parentFileNameHint") + 1;
end_name = strchr(p_name, '\"');
if (end_name == NULL) {
ret = -EINVAL;
goto out;
}
if ((end_name - p_name) > sizeof(bs->auto_backing_file) - 1) {
ret = -EINVAL;
goto out;
}
pstrcpy(bs->auto_backing_file, end_name - p_name + 1, p_name);
pstrcpy(bs->backing_file, sizeof(bs->backing_file),
bs->auto_backing_file);
pstrcpy(bs->backing_format, sizeof(bs->backing_format),
"vmdk");
}
out:
g_free(desc);
return ret;
}
/* Create and append extent to the extent array. Return the added VmdkExtent
* address. return NULL if allocation failed. */
static int vmdk_add_extent(BlockDriverState *bs,
BdrvChild *file, bool flat, int64_t sectors,
int64_t l1_offset, int64_t l1_backup_offset,
uint32_t l1_size,
int l2_size, uint64_t cluster_sectors,
VmdkExtent **new_extent,
Error **errp)
{
VmdkExtent *extent;
BDRVVmdkState *s = bs->opaque;
int64_t nb_sectors;
if (cluster_sectors > 0x200000) {
/* 0x200000 * 512Bytes = 1GB for one cluster is unrealistic */
error_setg(errp, "Invalid granularity, image may be corrupt");
return -EFBIG;
}
if (l1_size > 32 * 1024 * 1024) {
/*
* Although with big capacity and small l1_entry_sectors, we can get a
* big l1_size, we don't want unbounded value to allocate the table.
* Limit it to 32M, which is enough to store:
* 8TB - for both VMDK3 & VMDK4 with
* minimal cluster size: 512B
* minimal L2 table size: 512 entries
* 8 TB is still more than the maximal value supported for
* VMDK3 & VMDK4 which is 2TB.
* 64TB - for "ESXi seSparse Extent"
* minimal cluster size: 512B (default is 4KB)
* L2 table size: 4096 entries (const).
* 64TB is more than the maximal value supported for
* seSparse VMDKs (which is slightly less than 64TB)
*/
error_setg(errp, "L1 size too big");
return -EFBIG;
}
nb_sectors = bdrv_nb_sectors(file->bs);
if (nb_sectors < 0) {
return nb_sectors;
}
s->extents = g_renew(VmdkExtent, s->extents, s->num_extents + 1);
extent = &s->extents[s->num_extents];
s->num_extents++;
memset(extent, 0, sizeof(VmdkExtent));
extent->file = file;
extent->flat = flat;
extent->sectors = sectors;
extent->l1_table_offset = l1_offset;
extent->l1_backup_table_offset = l1_backup_offset;
extent->l1_size = l1_size;
extent->l1_entry_sectors = l2_size * cluster_sectors;
extent->l2_size = l2_size;
extent->cluster_sectors = flat ? sectors : cluster_sectors;
extent->next_cluster_sector = ROUND_UP(nb_sectors, cluster_sectors);
extent->entry_size = sizeof(uint32_t);
if (s->num_extents > 1) {
extent->end_sector = (*(extent - 1)).end_sector + extent->sectors;
} else {
extent->end_sector = extent->sectors;
}
bs->total_sectors = extent->end_sector;
if (new_extent) {
*new_extent = extent;
}
return 0;
}
static int vmdk_init_tables(BlockDriverState *bs, VmdkExtent *extent,
Error **errp)
{
int ret;
size_t l1_size;
int i;
/* read the L1 table */
l1_size = extent->l1_size * extent->entry_size;
extent->l1_table = g_try_malloc(l1_size);
if (l1_size && extent->l1_table == NULL) {
return -ENOMEM;
}
ret = bdrv_pread(extent->file,
extent->l1_table_offset,
extent->l1_table,
l1_size);
if (ret < 0) {
bdrv_refresh_filename(extent->file->bs);
error_setg_errno(errp, -ret,
"Could not read l1 table from extent '%s'",
extent->file->bs->filename);
goto fail_l1;
}
for (i = 0; i < extent->l1_size; i++) {
if (extent->entry_size == sizeof(uint64_t)) {
le64_to_cpus((uint64_t *)extent->l1_table + i);
} else {
assert(extent->entry_size == sizeof(uint32_t));
le32_to_cpus((uint32_t *)extent->l1_table + i);
}
}
if (extent->l1_backup_table_offset) {
assert(!extent->sesparse);
extent->l1_backup_table = g_try_malloc(l1_size);
if (l1_size && extent->l1_backup_table == NULL) {
ret = -ENOMEM;
goto fail_l1;
}
ret = bdrv_pread(extent->file,
extent->l1_backup_table_offset,
extent->l1_backup_table,
l1_size);
if (ret < 0) {
bdrv_refresh_filename(extent->file->bs);
error_setg_errno(errp, -ret,
"Could not read l1 backup table from extent '%s'",
extent->file->bs->filename);
goto fail_l1b;
}
for (i = 0; i < extent->l1_size; i++) {
le32_to_cpus(&extent->l1_backup_table[i]);
}
}
extent->l2_cache =
g_malloc(extent->entry_size * extent->l2_size * L2_CACHE_SIZE);
return 0;
fail_l1b:
g_free(extent->l1_backup_table);
fail_l1:
g_free(extent->l1_table);
return ret;
}
static int vmdk_open_vmfs_sparse(BlockDriverState *bs,
BdrvChild *file,
int flags, Error **errp)
{
int ret;
uint32_t magic;
VMDK3Header header;
VmdkExtent *extent;
ret = bdrv_pread(file, sizeof(magic), &header, sizeof(header));
if (ret < 0) {
bdrv_refresh_filename(file->bs);
error_setg_errno(errp, -ret,
"Could not read header from file '%s'",
file->bs->filename);
return ret;
}
ret = vmdk_add_extent(bs, file, false,
le32_to_cpu(header.disk_sectors),
(int64_t)le32_to_cpu(header.l1dir_offset) << 9,
0,
le32_to_cpu(header.l1dir_size),
4096,
le32_to_cpu(header.granularity),
&extent,
errp);
if (ret < 0) {
return ret;
}
ret = vmdk_init_tables(bs, extent, errp);
if (ret) {
/* free extent allocated by vmdk_add_extent */
vmdk_free_last_extent(bs);
}
return ret;
}
#define SESPARSE_CONST_HEADER_MAGIC UINT64_C(0x00000000cafebabe)
#define SESPARSE_VOLATILE_HEADER_MAGIC UINT64_C(0x00000000cafecafe)
/* Strict checks - format not officially documented */
static int check_se_sparse_const_header(VMDKSESparseConstHeader *header,
Error **errp)
{
header->magic = le64_to_cpu(header->magic);
header->version = le64_to_cpu(header->version);
header->grain_size = le64_to_cpu(header->grain_size);
header->grain_table_size = le64_to_cpu(header->grain_table_size);
header->flags = le64_to_cpu(header->flags);
header->reserved1 = le64_to_cpu(header->reserved1);
header->reserved2 = le64_to_cpu(header->reserved2);
header->reserved3 = le64_to_cpu(header->reserved3);
header->reserved4 = le64_to_cpu(header->reserved4);
header->volatile_header_offset =
le64_to_cpu(header->volatile_header_offset);
header->volatile_header_size = le64_to_cpu(header->volatile_header_size);
header->journal_header_offset = le64_to_cpu(header->journal_header_offset);
header->journal_header_size = le64_to_cpu(header->journal_header_size);
header->journal_offset = le64_to_cpu(header->journal_offset);
header->journal_size = le64_to_cpu(header->journal_size);
header->grain_dir_offset = le64_to_cpu(header->grain_dir_offset);
header->grain_dir_size = le64_to_cpu(header->grain_dir_size);
header->grain_tables_offset = le64_to_cpu(header->grain_tables_offset);
header->grain_tables_size = le64_to_cpu(header->grain_tables_size);
header->free_bitmap_offset = le64_to_cpu(header->free_bitmap_offset);
header->free_bitmap_size = le64_to_cpu(header->free_bitmap_size);
header->backmap_offset = le64_to_cpu(header->backmap_offset);
header->backmap_size = le64_to_cpu(header->backmap_size);
header->grains_offset = le64_to_cpu(header->grains_offset);
header->grains_size = le64_to_cpu(header->grains_size);
if (header->magic != SESPARSE_CONST_HEADER_MAGIC) {
error_setg(errp, "Bad const header magic: 0x%016" PRIx64,
header->magic);
return -EINVAL;
}
if (header->version != 0x0000000200000001) {
error_setg(errp, "Unsupported version: 0x%016" PRIx64,
header->version);
return -ENOTSUP;
}
if (header->grain_size != 8) {
error_setg(errp, "Unsupported grain size: %" PRIu64,
header->grain_size);
return -ENOTSUP;
}
if (header->grain_table_size != 64) {
error_setg(errp, "Unsupported grain table size: %" PRIu64,
header->grain_table_size);
return -ENOTSUP;
}
if (header->flags != 0) {
error_setg(errp, "Unsupported flags: 0x%016" PRIx64,
header->flags);
return -ENOTSUP;
}
if (header->reserved1 != 0 || header->reserved2 != 0 ||
header->reserved3 != 0 || header->reserved4 != 0) {
error_setg(errp, "Unsupported reserved bits:"
" 0x%016" PRIx64 " 0x%016" PRIx64
" 0x%016" PRIx64 " 0x%016" PRIx64,
header->reserved1, header->reserved2,
header->reserved3, header->reserved4);
return -ENOTSUP;
}
/* check that padding is 0 */
if (!buffer_is_zero(header->pad, sizeof(header->pad))) {
error_setg(errp, "Unsupported non-zero const header padding");
return -ENOTSUP;
}
return 0;
}
static int check_se_sparse_volatile_header(VMDKSESparseVolatileHeader *header,
Error **errp)
{
header->magic = le64_to_cpu(header->magic);
header->free_gt_number = le64_to_cpu(header->free_gt_number);
header->next_txn_seq_number = le64_to_cpu(header->next_txn_seq_number);
header->replay_journal = le64_to_cpu(header->replay_journal);
if (header->magic != SESPARSE_VOLATILE_HEADER_MAGIC) {
error_setg(errp, "Bad volatile header magic: 0x%016" PRIx64,
header->magic);
return -EINVAL;
}
if (header->replay_journal) {
error_setg(errp, "Image is dirty, Replaying journal not supported");
return -ENOTSUP;
}
/* check that padding is 0 */
if (!buffer_is_zero(header->pad, sizeof(header->pad))) {
error_setg(errp, "Unsupported non-zero volatile header padding");
return -ENOTSUP;
}
return 0;
}
static int vmdk_open_se_sparse(BlockDriverState *bs,
BdrvChild *file,
int flags, Error **errp)
{
int ret;
VMDKSESparseConstHeader const_header;
VMDKSESparseVolatileHeader volatile_header;
VmdkExtent *extent;
ret = bdrv_apply_auto_read_only(bs,
"No write support for seSparse images available", errp);
if (ret < 0) {
return ret;
}
assert(sizeof(const_header) == SECTOR_SIZE);
ret = bdrv_pread(file, 0, &const_header, sizeof(const_header));
if (ret < 0) {
bdrv_refresh_filename(file->bs);
error_setg_errno(errp, -ret,
"Could not read const header from file '%s'",
file->bs->filename);
return ret;
}
/* check const header */
ret = check_se_sparse_const_header(&const_header, errp);
if (ret < 0) {
return ret;
}
assert(sizeof(volatile_header) == SECTOR_SIZE);
ret = bdrv_pread(file,
const_header.volatile_header_offset * SECTOR_SIZE,
&volatile_header, sizeof(volatile_header));
if (ret < 0) {
bdrv_refresh_filename(file->bs);
error_setg_errno(errp, -ret,
"Could not read volatile header from file '%s'",
file->bs->filename);
return ret;
}
/* check volatile header */
ret = check_se_sparse_volatile_header(&volatile_header, errp);
if (ret < 0) {
return ret;
}
ret = vmdk_add_extent(bs, file, false,
const_header.capacity,
const_header.grain_dir_offset * SECTOR_SIZE,
0,
const_header.grain_dir_size *
SECTOR_SIZE / sizeof(uint64_t),
const_header.grain_table_size *
SECTOR_SIZE / sizeof(uint64_t),
const_header.grain_size,
&extent,
errp);
if (ret < 0) {
return ret;
}
extent->sesparse = true;
extent->sesparse_l2_tables_offset = const_header.grain_tables_offset;
extent->sesparse_clusters_offset = const_header.grains_offset;
extent->entry_size = sizeof(uint64_t);
ret = vmdk_init_tables(bs, extent, errp);
if (ret) {
/* free extent allocated by vmdk_add_extent */
vmdk_free_last_extent(bs);
}
return ret;
}
static int vmdk_open_desc_file(BlockDriverState *bs, int flags, char *buf,
QDict *options, Error **errp);
static char *vmdk_read_desc(BdrvChild *file, uint64_t desc_offset, Error **errp)
{
int64_t size;
char *buf;
int ret;
size = bdrv_getlength(file->bs);
if (size < 0) {
error_setg_errno(errp, -size, "Could not access file");
return NULL;
}
if (size < 4) {
/* Both descriptor file and sparse image must be much larger than 4
* bytes, also callers of vmdk_read_desc want to compare the first 4
* bytes with VMDK4_MAGIC, let's error out if less is read. */
error_setg(errp, "File is too small, not a valid image");
return NULL;
}
size = MIN(size, (1 << 20) - 1); /* avoid unbounded allocation */
buf = g_malloc(size + 1);
ret = bdrv_pread(file, desc_offset, buf, size);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read from file");
g_free(buf);
return NULL;
}
buf[ret] = 0;
return buf;
}
static int vmdk_open_vmdk4(BlockDriverState *bs,
BdrvChild *file,
int flags, QDict *options, Error **errp)
{
int ret;
uint32_t magic;
uint32_t l1_size, l1_entry_sectors;
VMDK4Header header;
VmdkExtent *extent;
BDRVVmdkState *s = bs->opaque;
int64_t l1_backup_offset = 0;
bool compressed;
ret = bdrv_pread(file, sizeof(magic), &header, sizeof(header));
if (ret < 0) {
bdrv_refresh_filename(file->bs);
error_setg_errno(errp, -ret,
"Could not read header from file '%s'",
file->bs->filename);
return -EINVAL;
}
if (header.capacity == 0) {
uint64_t desc_offset = le64_to_cpu(header.desc_offset);
if (desc_offset) {
char *buf = vmdk_read_desc(file, desc_offset << 9, errp);
if (!buf) {
return -EINVAL;
}
ret = vmdk_open_desc_file(bs, flags, buf, options, errp);
g_free(buf);
return ret;
}
}
if (!s->create_type) {
s->create_type = g_strdup("monolithicSparse");
}
if (le64_to_cpu(header.gd_offset) == VMDK4_GD_AT_END) {
/*
* The footer takes precedence over the header, so read it in. The
* footer starts at offset -1024 from the end: One sector for the
* footer, and another one for the end-of-stream marker.
*/
struct {
struct {
uint64_t val;
uint32_t size;
uint32_t type;
uint8_t pad[512 - 16];
} QEMU_PACKED footer_marker;
uint32_t magic;
VMDK4Header header;
uint8_t pad[512 - 4 - sizeof(VMDK4Header)];
struct {
uint64_t val;
uint32_t size;
uint32_t type;
uint8_t pad[512 - 16];
} QEMU_PACKED eos_marker;
} QEMU_PACKED footer;
ret = bdrv_pread(file,
bs->file->bs->total_sectors * 512 - 1536,
&footer, sizeof(footer));
if (ret < 0) {
error_setg_errno(errp, -ret, "Failed to read footer");
return ret;
}
/* Some sanity checks for the footer */
if (be32_to_cpu(footer.magic) != VMDK4_MAGIC ||
le32_to_cpu(footer.footer_marker.size) != 0 ||
le32_to_cpu(footer.footer_marker.type) != MARKER_FOOTER ||
le64_to_cpu(footer.eos_marker.val) != 0 ||
le32_to_cpu(footer.eos_marker.size) != 0 ||
le32_to_cpu(footer.eos_marker.type) != MARKER_END_OF_STREAM)
{
error_setg(errp, "Invalid footer");
return -EINVAL;
}
header = footer.header;
}
compressed =
le16_to_cpu(header.compressAlgorithm) == VMDK4_COMPRESSION_DEFLATE;
if (le32_to_cpu(header.version) > 3) {
error_setg(errp, "Unsupported VMDK version %" PRIu32,
le32_to_cpu(header.version));
return -ENOTSUP;
} else if (le32_to_cpu(header.version) == 3 && (flags & BDRV_O_RDWR) &&
!compressed) {
/* VMware KB 2064959 explains that version 3 added support for
* persistent changed block tracking (CBT), and backup software can
* read it as version=1 if it doesn't care about the changed area
* information. So we are safe to enable read only. */
error_setg(errp, "VMDK version 3 must be read only");
return -EINVAL;
}
if (le32_to_cpu(header.num_gtes_per_gt) > 512) {
error_setg(errp, "L2 table size too big");
return -EINVAL;
}
l1_entry_sectors = le32_to_cpu(header.num_gtes_per_gt)
* le64_to_cpu(header.granularity);
if (l1_entry_sectors == 0) {
error_setg(errp, "L1 entry size is invalid");
return -EINVAL;
}
l1_size = (le64_to_cpu(header.capacity) + l1_entry_sectors - 1)
/ l1_entry_sectors;
if (le32_to_cpu(header.flags) & VMDK4_FLAG_RGD) {
l1_backup_offset = le64_to_cpu(header.rgd_offset) << 9;
}
if (bdrv_nb_sectors(file->bs) < le64_to_cpu(header.grain_offset)) {
error_setg(errp, "File truncated, expecting at least %" PRId64 " bytes",
(int64_t)(le64_to_cpu(header.grain_offset)
* BDRV_SECTOR_SIZE));
return -EINVAL;
}
ret = vmdk_add_extent(bs, file, false,
le64_to_cpu(header.capacity),
le64_to_cpu(header.gd_offset) << 9,
l1_backup_offset,
l1_size,
le32_to_cpu(header.num_gtes_per_gt),
le64_to_cpu(header.granularity),
&extent,
errp);
if (ret < 0) {
return ret;
}
extent->compressed =
le16_to_cpu(header.compressAlgorithm) == VMDK4_COMPRESSION_DEFLATE;
if (extent->compressed) {
g_free(s->create_type);
s->create_type = g_strdup("streamOptimized");
}
extent->has_marker = le32_to_cpu(header.flags) & VMDK4_FLAG_MARKER;
extent->version = le32_to_cpu(header.version);
extent->has_zero_grain = le32_to_cpu(header.flags) & VMDK4_FLAG_ZERO_GRAIN;
ret = vmdk_init_tables(bs, extent, errp);
if (ret) {
/* free extent allocated by vmdk_add_extent */
vmdk_free_last_extent(bs);
}
return ret;
}
/* find an option value out of descriptor file */
static int vmdk_parse_description(const char *desc, const char *opt_name,
char *buf, int buf_size)
{
char *opt_pos, *opt_end;
const char *end = desc + strlen(desc);
opt_pos = strstr(desc, opt_name);
if (!opt_pos) {
return VMDK_ERROR;
}
/* Skip "=\"" following opt_name */
opt_pos += strlen(opt_name) + 2;
if (opt_pos >= end) {
return VMDK_ERROR;
}
opt_end = opt_pos;
while (opt_end < end && *opt_end != '"') {
opt_end++;
}
if (opt_end == end || buf_size < opt_end - opt_pos + 1) {
return VMDK_ERROR;
}
pstrcpy(buf, opt_end - opt_pos + 1, opt_pos);
return VMDK_OK;
}
/* Open an extent file and append to bs array */
static int vmdk_open_sparse(BlockDriverState *bs, BdrvChild *file, int flags,
char *buf, QDict *options, Error **errp)
{
uint32_t magic;
magic = ldl_be_p(buf);
switch (magic) {
case VMDK3_MAGIC:
return vmdk_open_vmfs_sparse(bs, file, flags, errp);
break;
case VMDK4_MAGIC:
return vmdk_open_vmdk4(bs, file, flags, options, errp);
break;
default:
error_setg(errp, "Image not in VMDK format");
return -EINVAL;
break;
}
}
static const char *next_line(const char *s)
{
while (*s) {
if (*s == '\n') {
return s + 1;
}
s++;
}
return s;
}
static int vmdk_parse_extents(const char *desc, BlockDriverState *bs,
QDict *options, Error **errp)
{
int ret;
int matches;
char access[11];
char type[11];
char fname[512];
const char *p, *np;
int64_t sectors = 0;
int64_t flat_offset;
char *desc_file_dir = NULL;
char *extent_path;
BdrvChild *extent_file;
BDRVVmdkState *s = bs->opaque;
VmdkExtent *extent;
char extent_opt_prefix[32];
Error *local_err = NULL;
for (p = desc; *p; p = next_line(p)) {
/* parse extent line in one of below formats:
*
* RW [size in sectors] FLAT "file-name.vmdk" OFFSET
* RW [size in sectors] SPARSE "file-name.vmdk"
* RW [size in sectors] VMFS "file-name.vmdk"
* RW [size in sectors] VMFSSPARSE "file-name.vmdk"
* RW [size in sectors] SESPARSE "file-name.vmdk"
*/
flat_offset = -1;
matches = sscanf(p, "%10s %" SCNd64 " %10s \"%511[^\n\r\"]\" %" SCNd64,
access, &sectors, type, fname, &flat_offset);
if (matches < 4 || strcmp(access, "RW")) {
continue;
} else if (!strcmp(type, "FLAT")) {
if (matches != 5 || flat_offset < 0) {
goto invalid;
}
} else if (!strcmp(type, "VMFS")) {
if (matches == 4) {
flat_offset = 0;
} else {
goto invalid;
}
} else if (matches != 4) {
goto invalid;
}
if (sectors <= 0 ||
(strcmp(type, "FLAT") && strcmp(type, "SPARSE") &&
strcmp(type, "VMFS") && strcmp(type, "VMFSSPARSE") &&
strcmp(type, "SESPARSE")) ||
(strcmp(access, "RW"))) {
continue;
}
if (path_is_absolute(fname)) {
extent_path = g_strdup(fname);
} else {
if (!desc_file_dir) {
desc_file_dir = bdrv_dirname(bs->file->bs, errp);
if (!desc_file_dir) {
bdrv_refresh_filename(bs->file->bs);
error_prepend(errp, "Cannot use relative paths with VMDK "
"descriptor file '%s': ",
bs->file->bs->filename);
ret = -EINVAL;
goto out;
}
}
extent_path = g_strconcat(desc_file_dir, fname, NULL);
}
ret = snprintf(extent_opt_prefix, 32, "extents.%d", s->num_extents);
assert(ret < 32);
extent_file = bdrv_open_child(extent_path, options, extent_opt_prefix,
bs, &child_file, false, &local_err);
g_free(extent_path);
if (local_err) {
error_propagate(errp, local_err);
ret = -EINVAL;
goto out;
}
/* save to extents array */
if (!strcmp(type, "FLAT") || !strcmp(type, "VMFS")) {
/* FLAT extent */
ret = vmdk_add_extent(bs, extent_file, true, sectors,
0, 0, 0, 0, 0, &extent, errp);
if (ret < 0) {
bdrv_unref_child(bs, extent_file);
goto out;
}
extent->flat_start_offset = flat_offset << 9;
} else if (!strcmp(type, "SPARSE") || !strcmp(type, "VMFSSPARSE")) {
/* SPARSE extent and VMFSSPARSE extent are both "COWD" sparse file*/
char *buf = vmdk_read_desc(extent_file, 0, errp);
if (!buf) {
ret = -EINVAL;
} else {
ret = vmdk_open_sparse(bs, extent_file, bs->open_flags, buf,
options, errp);
}
g_free(buf);
if (ret) {
bdrv_unref_child(bs, extent_file);
goto out;
}
extent = &s->extents[s->num_extents - 1];
} else if (!strcmp(type, "SESPARSE")) {
ret = vmdk_open_se_sparse(bs, extent_file, bs->open_flags, errp);
if (ret) {
bdrv_unref_child(bs, extent_file);
goto out;
}
extent = &s->extents[s->num_extents - 1];
} else {
error_setg(errp, "Unsupported extent type '%s'", type);
bdrv_unref_child(bs, extent_file);
ret = -ENOTSUP;
goto out;
}
extent->type = g_strdup(type);
}
ret = 0;
goto out;
invalid:
np = next_line(p);
assert(np != p);
if (np[-1] == '\n') {
np--;
}
error_setg(errp, "Invalid extent line: %.*s", (int)(np - p), p);
ret = -EINVAL;
out:
g_free(desc_file_dir);
return ret;
}
static int vmdk_open_desc_file(BlockDriverState *bs, int flags, char *buf,
QDict *options, Error **errp)
{
int ret;
char ct[128];
BDRVVmdkState *s = bs->opaque;
if (vmdk_parse_description(buf, "createType", ct, sizeof(ct))) {
error_setg(errp, "invalid VMDK image descriptor");
ret = -EINVAL;
goto exit;
}
if (strcmp(ct, "monolithicFlat") &&
strcmp(ct, "vmfs") &&
strcmp(ct, "vmfsSparse") &&
strcmp(ct, "seSparse") &&
strcmp(ct, "twoGbMaxExtentSparse") &&
strcmp(ct, "twoGbMaxExtentFlat")) {
error_setg(errp, "Unsupported image type '%s'", ct);
ret = -ENOTSUP;
goto exit;
}
s->create_type = g_strdup(ct);
s->desc_offset = 0;
ret = vmdk_parse_extents(buf, bs, options, errp);
exit:
return ret;
}
static int vmdk_open(BlockDriverState *bs, QDict *options, int flags,
Error **errp)
{
char *buf;
int ret;
BDRVVmdkState *s = bs->opaque;
uint32_t magic;
Error *local_err = NULL;
bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
false, errp);
if (!bs->file) {
return -EINVAL;
}
buf = vmdk_read_desc(bs->file, 0, errp);
if (!buf) {
return -EINVAL;
}
magic = ldl_be_p(buf);
switch (magic) {
case VMDK3_MAGIC:
case VMDK4_MAGIC:
ret = vmdk_open_sparse(bs, bs->file, flags, buf, options,
errp);
s->desc_offset = 0x200;
break;
default:
ret = vmdk_open_desc_file(bs, flags, buf, options, errp);
break;
}
if (ret) {
goto fail;
}
/* try to open parent images, if exist */
ret = vmdk_parent_open(bs);
if (ret) {
goto fail;
}
ret = vmdk_read_cid(bs, 0, &s->cid);
if (ret) {
goto fail;
}
ret = vmdk_read_cid(bs, 1, &s->parent_cid);
if (ret) {
goto fail;
}
qemu_co_mutex_init(&s->lock);
/* Disable migration when VMDK images are used */
error_setg(&s->migration_blocker, "The vmdk format used by node '%s' "
"does not support live migration",
bdrv_get_device_or_node_name(bs));
ret = migrate_add_blocker(s->migration_blocker, &local_err);
if (local_err) {
error_propagate(errp, local_err);
error_free(s->migration_blocker);
goto fail;
}
g_free(buf);
return 0;
fail:
g_free(buf);
g_free(s->create_type);
s->create_type = NULL;
vmdk_free_extents(bs);
return ret;
}
static void vmdk_refresh_limits(BlockDriverState *bs, Error **errp)
{
BDRVVmdkState *s = bs->opaque;
int i;
for (i = 0; i < s->num_extents; i++) {
if (!s->extents[i].flat) {
bs->bl.pwrite_zeroes_alignment =
MAX(bs->bl.pwrite_zeroes_alignment,
s->extents[i].cluster_sectors << BDRV_SECTOR_BITS);
}
}
}
/**
* get_whole_cluster
*
* Copy backing file's cluster that covers @sector_num, otherwise write zero,
* to the cluster at @cluster_sector_num.
*
* If @skip_start_sector < @skip_end_sector, the relative range
* [@skip_start_sector, @skip_end_sector) is not copied or written, and leave
* it for call to write user data in the request.
*/
static int get_whole_cluster(BlockDriverState *bs,
VmdkExtent *extent,
uint64_t cluster_offset,
uint64_t offset,
uint64_t skip_start_bytes,
uint64_t skip_end_bytes)
{
int ret = VMDK_OK;
int64_t cluster_bytes;
uint8_t *whole_grain;
/* For COW, align request sector_num to cluster start */
cluster_bytes = extent->cluster_sectors << BDRV_SECTOR_BITS;
offset = QEMU_ALIGN_DOWN(offset, cluster_bytes);
whole_grain = qemu_blockalign(bs, cluster_bytes);
if (!bs->backing) {
memset(whole_grain, 0, skip_start_bytes);
memset(whole_grain + skip_end_bytes, 0, cluster_bytes - skip_end_bytes);
}
assert(skip_end_bytes <= cluster_bytes);
/* we will be here if it's first write on non-exist grain(cluster).
* try to read from parent image, if exist */
if (bs->backing && !vmdk_is_cid_valid(bs)) {
ret = VMDK_ERROR;
goto exit;
}
/* Read backing data before skip range */
if (skip_start_bytes > 0) {
if (bs->backing) {
/* qcow2 emits this on bs->file instead of bs->backing */
BLKDBG_EVENT(extent->file, BLKDBG_COW_READ);
ret = bdrv_pread(bs->backing, offset, whole_grain,
skip_start_bytes);
if (ret < 0) {
ret = VMDK_ERROR;
goto exit;
}
}
BLKDBG_EVENT(extent->file, BLKDBG_COW_WRITE);
ret = bdrv_pwrite(extent->file, cluster_offset, whole_grain,
skip_start_bytes);
if (ret < 0) {
ret = VMDK_ERROR;
goto exit;
}
}
/* Read backing data after skip range */
if (skip_end_bytes < cluster_bytes) {
if (bs->backing) {
/* qcow2 emits this on bs->file instead of bs->backing */
BLKDBG_EVENT(extent->file, BLKDBG_COW_READ);
ret = bdrv_pread(bs->backing, offset + skip_end_bytes,
whole_grain + skip_end_bytes,
cluster_bytes - skip_end_bytes);
if (ret < 0) {
ret = VMDK_ERROR;
goto exit;
}
}
BLKDBG_EVENT(extent->file, BLKDBG_COW_WRITE);
ret = bdrv_pwrite(extent->file, cluster_offset + skip_end_bytes,
whole_grain + skip_end_bytes,
cluster_bytes - skip_end_bytes);
if (ret < 0) {
ret = VMDK_ERROR;
goto exit;
}
}
ret = VMDK_OK;
exit:
qemu_vfree(whole_grain);
return ret;
}
static int vmdk_L2update(VmdkExtent *extent, VmdkMetaData *m_data,
uint32_t offset)
{
offset = cpu_to_le32(offset);
/* update L2 table */
BLKDBG_EVENT(extent->file, BLKDBG_L2_UPDATE);
if (bdrv_pwrite_sync(extent->file,
((int64_t)m_data->l2_offset * 512)
+ (m_data->l2_index * sizeof(offset)),
&offset, sizeof(offset)) < 0) {
return VMDK_ERROR;
}
/* update backup L2 table */
if (extent->l1_backup_table_offset != 0) {
m_data->l2_offset = extent->l1_backup_table[m_data->l1_index];
if (bdrv_pwrite_sync(extent->file,
((int64_t)m_data->l2_offset * 512)
+ (m_data->l2_index * sizeof(offset)),
&offset, sizeof(offset)) < 0) {
return VMDK_ERROR;
}
}
if (m_data->l2_cache_entry) {
*m_data->l2_cache_entry = offset;
}
return VMDK_OK;
}
/**
* get_cluster_offset
*
* Look up cluster offset in extent file by sector number, and store in
* @cluster_offset.
*
* For flat extents, the start offset as parsed from the description file is
* returned.
*
* For sparse extents, look up in L1, L2 table. If allocate is true, return an
* offset for a new cluster and update L2 cache. If there is a backing file,
* COW is done before returning; otherwise, zeroes are written to the allocated
* cluster. Both COW and zero writing skips the sector range
* [@skip_start_sector, @skip_end_sector) passed in by caller, because caller
* has new data to write there.
*
* Returns: VMDK_OK if cluster exists and mapped in the image.
* VMDK_UNALLOC if cluster is not mapped and @allocate is false.
* VMDK_ERROR if failed.
*/
static int get_cluster_offset(BlockDriverState *bs,
VmdkExtent *extent,
VmdkMetaData *m_data,
uint64_t offset,
bool allocate,
uint64_t *cluster_offset,
uint64_t skip_start_bytes,
uint64_t skip_end_bytes)
{
unsigned int l1_index, l2_offset, l2_index;
int min_index, i, j;
uint32_t min_count;
void *l2_table;
bool zeroed = false;
int64_t ret;
int64_t cluster_sector;
unsigned int l2_size_bytes = extent->l2_size * extent->entry_size;
if (m_data) {
m_data->valid = 0;
}
if (extent->flat) {
*cluster_offset = extent->flat_start_offset;
return VMDK_OK;
}
offset -= (extent->end_sector - extent->sectors) * SECTOR_SIZE;
l1_index = (offset >> 9) / extent->l1_entry_sectors;
if (l1_index >= extent->l1_size) {
return VMDK_ERROR;
}
if (extent->sesparse) {
uint64_t l2_offset_u64;
assert(extent->entry_size == sizeof(uint64_t));
l2_offset_u64 = ((uint64_t *)extent->l1_table)[l1_index];
if (l2_offset_u64 == 0) {
l2_offset = 0;
} else if ((l2_offset_u64 & 0xffffffff00000000) != 0x1000000000000000) {
/*
* Top most nibble is 0x1 if grain table is allocated.
* strict check - top most 4 bytes must be 0x10000000 since max
* supported size is 64TB for disk - so no more than 64TB / 16MB
* grain directories which is smaller than uint32,
* where 16MB is the only supported default grain table coverage.
*/
return VMDK_ERROR;
} else {
l2_offset_u64 = l2_offset_u64 & 0x00000000ffffffff;
l2_offset_u64 = extent->sesparse_l2_tables_offset +
l2_offset_u64 * l2_size_bytes / SECTOR_SIZE;
if (l2_offset_u64 > 0x00000000ffffffff) {
return VMDK_ERROR;
}
l2_offset = (unsigned int)(l2_offset_u64);
}
} else {
assert(extent->entry_size == sizeof(uint32_t));
l2_offset = ((uint32_t *)extent->l1_table)[l1_index];
}
if (!l2_offset) {
return VMDK_UNALLOC;
}
for (i = 0; i < L2_CACHE_SIZE; i++) {
if (l2_offset == extent->l2_cache_offsets[i]) {
/* increment the hit count */
if (++extent->l2_cache_counts[i] == 0xffffffff) {
for (j = 0; j < L2_CACHE_SIZE; j++) {
extent->l2_cache_counts[j] >>= 1;
}
}
l2_table = (char *)extent->l2_cache + (i * l2_size_bytes);
goto found;
}
}
/* not found: load a new entry in the least used one */
min_index = 0;
min_count = 0xffffffff;
for (i = 0; i < L2_CACHE_SIZE; i++) {
if (extent->l2_cache_counts[i] < min_count) {
min_count = extent->l2_cache_counts[i];
min_index = i;
}
}
l2_table = (char *)extent->l2_cache + (min_index * l2_size_bytes);
BLKDBG_EVENT(extent->file, BLKDBG_L2_LOAD);
if (bdrv_pread(extent->file,
(int64_t)l2_offset * 512,
l2_table,
l2_size_bytes
) != l2_size_bytes) {
return VMDK_ERROR;
}
extent->l2_cache_offsets[min_index] = l2_offset;
extent->l2_cache_counts[min_index] = 1;
found:
l2_index = ((offset >> 9) / extent->cluster_sectors) % extent->l2_size;
if (extent->sesparse) {
cluster_sector = le64_to_cpu(((uint64_t *)l2_table)[l2_index]);
switch (cluster_sector & 0xf000000000000000) {
case 0x0000000000000000:
/* unallocated grain */
if (cluster_sector != 0) {
return VMDK_ERROR;
}
break;
case 0x1000000000000000:
/* scsi-unmapped grain - fallthrough */
case 0x2000000000000000:
/* zero grain */
zeroed = true;
break;
case 0x3000000000000000:
/* allocated grain */
cluster_sector = (((cluster_sector & 0x0fff000000000000) >> 48) |
((cluster_sector & 0x0000ffffffffffff) << 12));
cluster_sector = extent->sesparse_clusters_offset +
cluster_sector * extent->cluster_sectors;
break;
default:
return VMDK_ERROR;
}
} else {
cluster_sector = le32_to_cpu(((uint32_t *)l2_table)[l2_index]);
if (extent->has_zero_grain && cluster_sector == VMDK_GTE_ZEROED) {
zeroed = true;
}
}
if (!cluster_sector || zeroed) {
if (!allocate) {
return zeroed ? VMDK_ZEROED : VMDK_UNALLOC;
}
assert(!extent->sesparse);
if (extent->next_cluster_sector >= VMDK_EXTENT_MAX_SECTORS) {
return VMDK_ERROR;
}
cluster_sector = extent->next_cluster_sector;
extent->next_cluster_sector += extent->cluster_sectors;
/* First of all we write grain itself, to avoid race condition
* that may to corrupt the image.
* This problem may occur because of insufficient space on host disk
* or inappropriate VM shutdown.
*/
ret = get_whole_cluster(bs, extent, cluster_sector * BDRV_SECTOR_SIZE,
offset, skip_start_bytes, skip_end_bytes);
if (ret) {
return ret;
}
if (m_data) {
m_data->valid = 1;
m_data->l1_index = l1_index;
m_data->l2_index = l2_index;
m_data->l2_offset = l2_offset;
m_data->l2_cache_entry = ((uint32_t *)l2_table) + l2_index;
}
}
*cluster_offset = cluster_sector << BDRV_SECTOR_BITS;
return VMDK_OK;
}
static VmdkExtent *find_extent(BDRVVmdkState *s,
int64_t sector_num, VmdkExtent *start_hint)
{
VmdkExtent *extent = start_hint;
if (!extent) {
extent = &s->extents[0];
}
while (extent < &s->extents[s->num_extents]) {
if (sector_num < extent->end_sector) {
return extent;
}
extent++;
}
return NULL;
}
static inline uint64_t vmdk_find_offset_in_cluster(VmdkExtent *extent,
int64_t offset)
{
uint64_t extent_begin_offset, extent_relative_offset;
uint64_t cluster_size = extent->cluster_sectors * BDRV_SECTOR_SIZE;
extent_begin_offset =
(extent->end_sector - extent->sectors) * BDRV_SECTOR_SIZE;
extent_relative_offset = offset - extent_begin_offset;
return extent_relative_offset % cluster_size;
}
static int coroutine_fn vmdk_co_block_status(BlockDriverState *bs,
bool want_zero,
int64_t offset, int64_t bytes,
int64_t *pnum, int64_t *map,
BlockDriverState **file)
{
BDRVVmdkState *s = bs->opaque;
int64_t index_in_cluster, n, ret;
uint64_t cluster_offset;
VmdkExtent *extent;
extent = find_extent(s, offset >> BDRV_SECTOR_BITS, NULL);
if (!extent) {
return -EIO;
}
qemu_co_mutex_lock(&s->lock);
ret = get_cluster_offset(bs, extent, NULL, offset, false, &cluster_offset,
0, 0);
qemu_co_mutex_unlock(&s->lock);
index_in_cluster = vmdk_find_offset_in_cluster(extent, offset);
switch (ret) {
case VMDK_ERROR:
ret = -EIO;
break;
case VMDK_UNALLOC:
ret = 0;
break;
case VMDK_ZEROED:
ret = BDRV_BLOCK_ZERO;
break;
case VMDK_OK:
ret = BDRV_BLOCK_DATA;
if (!extent->compressed) {
ret |= BDRV_BLOCK_OFFSET_VALID;
*map = cluster_offset + index_in_cluster;
if (extent->flat) {
ret |= BDRV_BLOCK_RECURSE;
}
}
*file = extent->file->bs;
break;
}
n = extent->cluster_sectors * BDRV_SECTOR_SIZE - index_in_cluster;
*pnum = MIN(n, bytes);
return ret;
}
static int vmdk_write_extent(VmdkExtent *extent, int64_t cluster_offset,
int64_t offset_in_cluster, QEMUIOVector *qiov,
uint64_t qiov_offset, uint64_t n_bytes,
uint64_t offset)
{
int ret;
VmdkGrainMarker *data = NULL;
uLongf buf_len;
QEMUIOVector local_qiov;
int64_t write_offset;
int64_t write_end_sector;
if (extent->compressed) {
void *compressed_data;
/* Only whole clusters */
if (offset_in_cluster ||
n_bytes > (extent->cluster_sectors * SECTOR_SIZE) ||
(n_bytes < (extent->cluster_sectors * SECTOR_SIZE) &&
offset + n_bytes != extent->end_sector * SECTOR_SIZE))
{
ret = -EINVAL;
goto out;
}
if (!extent->has_marker) {
ret = -EINVAL;
goto out;
}
buf_len = (extent->cluster_sectors << 9) * 2;
data = g_malloc(buf_len + sizeof(VmdkGrainMarker));
compressed_data = g_malloc(n_bytes);
qemu_iovec_to_buf(qiov, qiov_offset, compressed_data, n_bytes);
ret = compress(data->data, &buf_len, compressed_data, n_bytes);
g_free(compressed_data);
if (ret != Z_OK || buf_len == 0) {
ret = -EINVAL;
goto out;
}
data->lba = cpu_to_le64(offset >> BDRV_SECTOR_BITS);
data->size = cpu_to_le32(buf_len);
n_bytes = buf_len + sizeof(VmdkGrainMarker);
qemu_iovec_init_buf(&local_qiov, data, n_bytes);
BLKDBG_EVENT(extent->file, BLKDBG_WRITE_COMPRESSED);
} else {
qemu_iovec_init(&local_qiov, qiov->niov);
qemu_iovec_concat(&local_qiov, qiov, qiov_offset, n_bytes);
BLKDBG_EVENT(extent->file, BLKDBG_WRITE_AIO);
}
write_offset = cluster_offset + offset_in_cluster;
ret = bdrv_co_pwritev(extent->file, write_offset, n_bytes,
&local_qiov, 0);
write_end_sector = DIV_ROUND_UP(write_offset + n_bytes, BDRV_SECTOR_SIZE);
if (extent->compressed) {
extent->next_cluster_sector = write_end_sector;
} else {
extent->next_cluster_sector = MAX(extent->next_cluster_sector,
write_end_sector);
}
if (ret < 0) {
goto out;
}
ret = 0;
out:
g_free(data);
if (!extent->compressed) {
qemu_iovec_destroy(&local_qiov);
}
return ret;
}
static int vmdk_read_extent(VmdkExtent *extent, int64_t cluster_offset,
int64_t offset_in_cluster, QEMUIOVector *qiov,
int bytes)
{
int ret;
int cluster_bytes, buf_bytes;
uint8_t *cluster_buf, *compressed_data;
uint8_t *uncomp_buf;
uint32_t data_len;
VmdkGrainMarker *marker;
uLongf buf_len;
if (!extent->compressed) {
BLKDBG_EVENT(extent->file, BLKDBG_READ_AIO);
ret = bdrv_co_preadv(extent->file,
cluster_offset + offset_in_cluster, bytes,
qiov, 0);
if (ret < 0) {
return ret;
}
return 0;
}
cluster_bytes = extent->cluster_sectors * 512;
/* Read two clusters in case GrainMarker + compressed data > one cluster */
buf_bytes = cluster_bytes * 2;
cluster_buf = g_malloc(buf_bytes);
uncomp_buf = g_malloc(cluster_bytes);
BLKDBG_EVENT(extent->file, BLKDBG_READ_COMPRESSED);
ret = bdrv_pread(extent->file,
cluster_offset,
cluster_buf, buf_bytes);
if (ret < 0) {
goto out;
}
compressed_data = cluster_buf;
buf_len = cluster_bytes;
data_len = cluster_bytes;
if (extent->has_marker) {
marker = (VmdkGrainMarker *)cluster_buf;
compressed_data = marker->data;
data_len = le32_to_cpu(marker->size);
}
if (!data_len || data_len > buf_bytes) {
ret = -EINVAL;
goto out;
}
ret = uncompress(uncomp_buf, &buf_len, compressed_data, data_len);
if (ret != Z_OK) {
ret = -EINVAL;
goto out;
}
if (offset_in_cluster < 0 ||
offset_in_cluster + bytes > buf_len) {
ret = -EINVAL;
goto out;
}
qemu_iovec_from_buf(qiov, 0, uncomp_buf + offset_in_cluster, bytes);
ret = 0;
out:
g_free(uncomp_buf);
g_free(cluster_buf);
return ret;
}
static int coroutine_fn
vmdk_co_preadv(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
QEMUIOVector *qiov, int flags)
{
BDRVVmdkState *s = bs->opaque;
int ret;
uint64_t n_bytes, offset_in_cluster;
VmdkExtent *extent = NULL;
QEMUIOVector local_qiov;
uint64_t cluster_offset;
uint64_t bytes_done = 0;
qemu_iovec_init(&local_qiov, qiov->niov);
qemu_co_mutex_lock(&s->lock);
while (bytes > 0) {
extent = find_extent(s, offset >> BDRV_SECTOR_BITS, extent);
if (!extent) {
ret = -EIO;
goto fail;
}
ret = get_cluster_offset(bs, extent, NULL,
offset, false, &cluster_offset, 0, 0);
offset_in_cluster = vmdk_find_offset_in_cluster(extent, offset);
n_bytes = MIN(bytes, extent->cluster_sectors * BDRV_SECTOR_SIZE
- offset_in_cluster);
if (ret != VMDK_OK) {
/* if not allocated, try to read from parent image, if exist */
if (bs->backing && ret != VMDK_ZEROED) {
if (!vmdk_is_cid_valid(bs)) {
ret = -EINVAL;
goto fail;
}
qemu_iovec_reset(&local_qiov);
qemu_iovec_concat(&local_qiov, qiov, bytes_done, n_bytes);
/* qcow2 emits this on bs->file instead of bs->backing */
BLKDBG_EVENT(bs->file, BLKDBG_READ_BACKING_AIO);
ret = bdrv_co_preadv(bs->backing, offset, n_bytes,
&local_qiov, 0);
if (ret < 0) {
goto fail;
}
} else {
qemu_iovec_memset(qiov, bytes_done, 0, n_bytes);
}
} else {
qemu_iovec_reset(&local_qiov);
qemu_iovec_concat(&local_qiov, qiov, bytes_done, n_bytes);
ret = vmdk_read_extent(extent, cluster_offset, offset_in_cluster,
&local_qiov, n_bytes);
if (ret) {
goto fail;
}
}
bytes -= n_bytes;
offset += n_bytes;
bytes_done += n_bytes;
}
ret = 0;
fail:
qemu_co_mutex_unlock(&s->lock);
qemu_iovec_destroy(&local_qiov);
return ret;
}
/**
* vmdk_write:
* @zeroed: buf is ignored (data is zero), use zeroed_grain GTE feature
* if possible, otherwise return -ENOTSUP.
* @zero_dry_run: used for zeroed == true only, don't update L2 table, just try
* with each cluster. By dry run we can find if the zero write
* is possible without modifying image data.
*
* Returns: error code with 0 for success.
*/
static int vmdk_pwritev(BlockDriverState *bs, uint64_t offset,
uint64_t bytes, QEMUIOVector *qiov,
bool zeroed, bool zero_dry_run)
{
BDRVVmdkState *s = bs->opaque;
VmdkExtent *extent = NULL;
int ret;
int64_t offset_in_cluster, n_bytes;
uint64_t cluster_offset;
uint64_t bytes_done = 0;
VmdkMetaData m_data;
if (DIV_ROUND_UP(offset, BDRV_SECTOR_SIZE) > bs->total_sectors) {
error_report("Wrong offset: offset=0x%" PRIx64
" total_sectors=0x%" PRIx64,
offset, bs->total_sectors);
return -EIO;
}
while (bytes > 0) {
extent = find_extent(s, offset >> BDRV_SECTOR_BITS, extent);
if (!extent) {
return -EIO;
}
if (extent->sesparse) {
return -ENOTSUP;
}
offset_in_cluster = vmdk_find_offset_in_cluster(extent, offset);
n_bytes = MIN(bytes, extent->cluster_sectors * BDRV_SECTOR_SIZE
- offset_in_cluster);
ret = get_cluster_offset(bs, extent, &m_data, offset,
!(extent->compressed || zeroed),
&cluster_offset, offset_in_cluster,
offset_in_cluster + n_bytes);
if (extent->compressed) {
if (ret == VMDK_OK) {
/* Refuse write to allocated cluster for streamOptimized */
error_report("Could not write to allocated cluster"
" for streamOptimized");
return -EIO;
} else {
/* allocate */
ret = get_cluster_offset(bs, extent, &m_data, offset,
true, &cluster_offset, 0, 0);
}
}
if (ret == VMDK_ERROR) {
return -EINVAL;
}
if (zeroed) {
/* Do zeroed write, buf is ignored */
if (extent->has_zero_grain &&
offset_in_cluster == 0 &&
n_bytes >= extent->cluster_sectors * BDRV_SECTOR_SIZE) {
n_bytes = extent->cluster_sectors * BDRV_SECTOR_SIZE;
if (!zero_dry_run) {
/* update L2 tables */
if (vmdk_L2update(extent, &m_data, VMDK_GTE_ZEROED)
!= VMDK_OK) {
return -EIO;
}
}
} else {
return -ENOTSUP;
}
} else {
ret = vmdk_write_extent(extent, cluster_offset, offset_in_cluster,
qiov, bytes_done, n_bytes, offset);
if (ret) {
return ret;
}
if (m_data.valid) {
/* update L2 tables */
if (vmdk_L2update(extent, &m_data,
cluster_offset >> BDRV_SECTOR_BITS)
!= VMDK_OK) {
return -EIO;
}
}
}
bytes -= n_bytes;
offset += n_bytes;
bytes_done += n_bytes;
/* update CID on the first write every time the virtual disk is
* opened */
if (!s->cid_updated) {
ret = vmdk_write_cid(bs, g_random_int());
if (ret < 0) {
return ret;
}
s->cid_updated = true;
}
}
return 0;
}
static int coroutine_fn
vmdk_co_pwritev(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
QEMUIOVector *qiov, int flags)
{
int ret;
BDRVVmdkState *s = bs->opaque;
qemu_co_mutex_lock(&s->lock);
ret = vmdk_pwritev(bs, offset, bytes, qiov, false, false);
qemu_co_mutex_unlock(&s->lock);
return ret;
}
static int coroutine_fn
vmdk_co_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
uint64_t bytes, QEMUIOVector *qiov)
{
if (bytes == 0) {
/* The caller will write bytes 0 to signal EOF.
* When receive it, we align EOF to a sector boundary. */
BDRVVmdkState *s = bs->opaque;
int i, ret;
int64_t length;
for (i = 0; i < s->num_extents; i++) {
length = bdrv_getlength(s->extents[i].file->bs);
if (length < 0) {
return length;
}
length = QEMU_ALIGN_UP(length, BDRV_SECTOR_SIZE);
ret = bdrv_truncate(s->extents[i].file, length, false,
PREALLOC_MODE_OFF, NULL);
if (ret < 0) {
return ret;
}
}
return 0;
}
return vmdk_co_pwritev(bs, offset, bytes, qiov, 0);
}
static int coroutine_fn vmdk_co_pwrite_zeroes(BlockDriverState *bs,
int64_t offset,
int bytes,
BdrvRequestFlags flags)
{
int ret;
BDRVVmdkState *s = bs->opaque;
qemu_co_mutex_lock(&s->lock);
/* write zeroes could fail if sectors not aligned to cluster, test it with
* dry_run == true before really updating image */
ret = vmdk_pwritev(bs, offset, bytes, NULL, true, true);
if (!ret) {
ret = vmdk_pwritev(bs, offset, bytes, NULL, true, false);
}
qemu_co_mutex_unlock(&s->lock);
return ret;
}
static int vmdk_init_extent(BlockBackend *blk,
int64_t filesize, bool flat,
bool compress, bool zeroed_grain,
Error **errp)
{
int ret, i;
VMDK4Header header;
uint32_t tmp, magic, grains, gd_sectors, gt_size, gt_count;
uint32_t *gd_buf = NULL;
int gd_buf_size;
if (flat) {
ret = blk_truncate(blk, filesize, false, PREALLOC_MODE_OFF, errp);
goto exit;
}
magic = cpu_to_be32(VMDK4_MAGIC);
memset(&header, 0, sizeof(header));
if (compress) {
header.version = 3;
} else if (zeroed_grain) {
header.version = 2;
} else {
header.version = 1;
}
header.flags = VMDK4_FLAG_RGD | VMDK4_FLAG_NL_DETECT
| (compress ? VMDK4_FLAG_COMPRESS | VMDK4_FLAG_MARKER : 0)
| (zeroed_grain ? VMDK4_FLAG_ZERO_GRAIN : 0);
header.compressAlgorithm = compress ? VMDK4_COMPRESSION_DEFLATE : 0;
header.capacity = filesize / BDRV_SECTOR_SIZE;
header.granularity = 128;
header.num_gtes_per_gt = BDRV_SECTOR_SIZE;
grains = DIV_ROUND_UP(filesize / BDRV_SECTOR_SIZE, header.granularity);
gt_size = DIV_ROUND_UP(header.num_gtes_per_gt * sizeof(uint32_t),
BDRV_SECTOR_SIZE);
gt_count = DIV_ROUND_UP(grains, header.num_gtes_per_gt);
gd_sectors = DIV_ROUND_UP(gt_count * sizeof(uint32_t), BDRV_SECTOR_SIZE);
header.desc_offset = 1;
header.desc_size = 20;
header.rgd_offset = header.desc_offset + header.desc_size;
header.gd_offset = header.rgd_offset + gd_sectors + (gt_size * gt_count);
header.grain_offset =
ROUND_UP(header.gd_offset + gd_sectors + (gt_size * gt_count),
header.granularity);
/* swap endianness for all header fields */
header.version = cpu_to_le32(header.version);
header.flags = cpu_to_le32(header.flags);
header.capacity = cpu_to_le64(header.capacity);
header.granularity = cpu_to_le64(header.granularity);
header.num_gtes_per_gt = cpu_to_le32(header.num_gtes_per_gt);
header.desc_offset = cpu_to_le64(header.desc_offset);
header.desc_size = cpu_to_le64(header.desc_size);
header.rgd_offset = cpu_to_le64(header.rgd_offset);
header.gd_offset = cpu_to_le64(header.gd_offset);
header.grain_offset = cpu_to_le64(header.grain_offset);
header.compressAlgorithm = cpu_to_le16(header.compressAlgorithm);
header.check_bytes[0] = 0xa;
header.check_bytes[1] = 0x20;
header.check_bytes[2] = 0xd;
header.check_bytes[3] = 0xa;
/* write all the data */
ret = blk_pwrite(blk, 0, &magic, sizeof(magic), 0);
if (ret < 0) {
error_setg(errp, QERR_IO_ERROR);
goto exit;
}
ret = blk_pwrite(blk, sizeof(magic), &header, sizeof(header), 0);
if (ret < 0) {
error_setg(errp, QERR_IO_ERROR);
goto exit;
}
ret = blk_truncate(blk, le64_to_cpu(header.grain_offset) << 9, false,
PREALLOC_MODE_OFF, errp);
if (ret < 0) {
goto exit;
}
/* write grain directory */
gd_buf_size = gd_sectors * BDRV_SECTOR_SIZE;
gd_buf = g_malloc0(gd_buf_size);
for (i = 0, tmp = le64_to_cpu(header.rgd_offset) + gd_sectors;
i < gt_count; i++, tmp += gt_size) {
gd_buf[i] = cpu_to_le32(tmp);
}
ret = blk_pwrite(blk, le64_to_cpu(header.rgd_offset) * BDRV_SECTOR_SIZE,
gd_buf, gd_buf_size, 0);
if (ret < 0) {
error_setg(errp, QERR_IO_ERROR);
goto exit;
}
/* write backup grain directory */
for (i = 0, tmp = le64_to_cpu(header.gd_offset) + gd_sectors;
i < gt_count; i++, tmp += gt_size) {
gd_buf[i] = cpu_to_le32(tmp);
}
ret = blk_pwrite(blk, le64_to_cpu(header.gd_offset) * BDRV_SECTOR_SIZE,
gd_buf, gd_buf_size, 0);
if (ret < 0) {
error_setg(errp, QERR_IO_ERROR);
}
ret = 0;
exit:
g_free(gd_buf);
return ret;
}
static int vmdk_create_extent(const char *filename, int64_t filesize,
bool flat, bool compress, bool zeroed_grain,
BlockBackend **pbb,
QemuOpts *opts, Error **errp)
{
int ret;
BlockBackend *blk = NULL;
Error *local_err = NULL;
ret = bdrv_create_file(filename, opts, &local_err);
if (ret < 0) {
error_propagate(errp, local_err);
goto exit;
}
blk = blk_new_open(filename, NULL, NULL,
BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL,
&local_err);
if (blk == NULL) {
error_propagate(errp, local_err);
ret = -EIO;
goto exit;
}
blk_set_allow_write_beyond_eof(blk, true);
ret = vmdk_init_extent(blk, filesize, flat, compress, zeroed_grain, errp);
exit:
if (blk) {
if (pbb) {
*pbb = blk;
} else {
blk_unref(blk);
blk = NULL;
}
}
return ret;
}
static int filename_decompose(const char *filename, char *path, char *prefix,
char *postfix, size_t buf_len, Error **errp)
{
const char *p, *q;
if (filename == NULL || !strlen(filename)) {
error_setg(errp, "No filename provided");
return VMDK_ERROR;
}
p = strrchr(filename, '/');
if (p == NULL) {
p = strrchr(filename, '\\');
}
if (p == NULL) {
p = strrchr(filename, ':');
}
if (p != NULL) {
p++;
if (p - filename >= buf_len) {
return VMDK_ERROR;
}
pstrcpy(path, p - filename + 1, filename);
} else {
p = filename;
path[0] = '\0';
}
q = strrchr(p, '.');
if (q == NULL) {
pstrcpy(prefix, buf_len, p);
postfix[0] = '\0';
} else {
if (q - p >= buf_len) {
return VMDK_ERROR;
}
pstrcpy(prefix, q - p + 1, p);
pstrcpy(postfix, buf_len, q);
}
return VMDK_OK;
}
/*
* idx == 0: get or create the descriptor file (also the image file if in a
* non-split format.
* idx >= 1: get the n-th extent if in a split subformat
*/
typedef BlockBackend *(*vmdk_create_extent_fn)(int64_t size,
int idx,
bool flat,
bool split,
bool compress,
bool zeroed_grain,
void *opaque,
Error **errp);
static void vmdk_desc_add_extent(GString *desc,
const char *extent_line_fmt,
int64_t size, const char *filename)
{
char *basename = g_path_get_basename(filename);
g_string_append_printf(desc, extent_line_fmt,
DIV_ROUND_UP(size, BDRV_SECTOR_SIZE), basename);
g_free(basename);
}
static int coroutine_fn vmdk_co_do_create(int64_t size,
BlockdevVmdkSubformat subformat,
BlockdevVmdkAdapterType adapter_type,
const char *backing_file,
const char *hw_version,
bool compat6,
bool zeroed_grain,
vmdk_create_extent_fn extent_fn,
void *opaque,
Error **errp)
{
int extent_idx;
BlockBackend *blk = NULL;
BlockBackend *extent_blk;
Error *local_err = NULL;
char *desc = NULL;
int ret = 0;
bool flat, split, compress;
GString *ext_desc_lines;
const int64_t split_size = 0x80000000; /* VMDK has constant split size */
int64_t extent_size;
int64_t created_size = 0;
const char *extent_line_fmt;
char *parent_desc_line = g_malloc0(BUF_SIZE);
uint32_t parent_cid = 0xffffffff;
uint32_t number_heads = 16;
uint32_t desc_offset = 0, desc_len;
const char desc_template[] =
"# Disk DescriptorFile\n"
"version=1\n"
"CID=%" PRIx32 "\n"
"parentCID=%" PRIx32 "\n"
"createType=\"%s\"\n"
"%s"
"\n"
"# Extent description\n"
"%s"
"\n"
"# The Disk Data Base\n"
"#DDB\n"
"\n"
"ddb.virtualHWVersion = \"%s\"\n"
"ddb.geometry.cylinders = \"%" PRId64 "\"\n"
"ddb.geometry.heads = \"%" PRIu32 "\"\n"
"ddb.geometry.sectors = \"63\"\n"
"ddb.adapterType = \"%s\"\n";
ext_desc_lines = g_string_new(NULL);
/* Read out options */
if (compat6) {
if (hw_version) {
error_setg(errp,
"compat6 cannot be enabled with hwversion set");
ret = -EINVAL;
goto exit;
}
hw_version = "6";
}
if (!hw_version) {
hw_version = "4";
}
if (adapter_type != BLOCKDEV_VMDK_ADAPTER_TYPE_IDE) {
/* that's the number of heads with which vmware operates when
creating, exporting, etc. vmdk files with a non-ide adapter type */
number_heads = 255;
}
split = (subformat == BLOCKDEV_VMDK_SUBFORMAT_TWOGBMAXEXTENTFLAT) ||
(subformat == BLOCKDEV_VMDK_SUBFORMAT_TWOGBMAXEXTENTSPARSE);
flat = (subformat == BLOCKDEV_VMDK_SUBFORMAT_MONOLITHICFLAT) ||
(subformat == BLOCKDEV_VMDK_SUBFORMAT_TWOGBMAXEXTENTFLAT);
compress = subformat == BLOCKDEV_VMDK_SUBFORMAT_STREAMOPTIMIZED;
if (flat) {
extent_line_fmt = "RW %" PRId64 " FLAT \"%s\" 0\n";
} else {
extent_line_fmt = "RW %" PRId64 " SPARSE \"%s\"\n";
}
if (flat && backing_file) {
error_setg(errp, "Flat image can't have backing file");
ret = -ENOTSUP;
goto exit;
}
if (flat && zeroed_grain) {
error_setg(errp, "Flat image can't enable zeroed grain");
ret = -ENOTSUP;
goto exit;
}
/* Create extents */
if (split) {
extent_size = split_size;
} else {
extent_size = size;
}
if (!split && !flat) {
created_size = extent_size;
} else {
created_size = 0;
}
/* Get the descriptor file BDS */
blk = extent_fn(created_size, 0, flat, split, compress, zeroed_grain,
opaque, errp);
if (!blk) {
ret = -EIO;
goto exit;
}
if (!split && !flat) {
vmdk_desc_add_extent(ext_desc_lines, extent_line_fmt, created_size,
blk_bs(blk)->filename);
}
if (backing_file) {
BlockBackend *backing;
char *full_backing =
bdrv_get_full_backing_filename_from_filename(blk_bs(blk)->filename,
backing_file,
&local_err);
if (local_err) {
error_propagate(errp, local_err);
ret = -ENOENT;
goto exit;
}
assert(full_backing);
backing = blk_new_open(full_backing, NULL, NULL,
BDRV_O_NO_BACKING, errp);
g_free(full_backing);
if (backing == NULL) {
ret = -EIO;
goto exit;
}
if (strcmp(blk_bs(backing)->drv->format_name, "vmdk")) {
error_setg(errp, "Invalid backing file format: %s. Must be vmdk",
blk_bs(backing)->drv->format_name);
blk_unref(backing);
ret = -EINVAL;
goto exit;
}
ret = vmdk_read_cid(blk_bs(backing), 0, &parent_cid);
blk_unref(backing);
if (ret) {
error_setg(errp, "Failed to read parent CID");
goto exit;
}
snprintf(parent_desc_line, BUF_SIZE,
"parentFileNameHint=\"%s\"", backing_file);
}
extent_idx = 1;
while (created_size < size) {
int64_t cur_size = MIN(size - created_size, extent_size);
extent_blk = extent_fn(cur_size, extent_idx, flat, split, compress,
zeroed_grain, opaque, errp);
if (!extent_blk) {
ret = -EINVAL;
goto exit;
}
vmdk_desc_add_extent(ext_desc_lines, extent_line_fmt, cur_size,
blk_bs(extent_blk)->filename);
created_size += cur_size;
extent_idx++;
blk_unref(extent_blk);
}
/* Check whether we got excess extents */
extent_blk = extent_fn(-1, extent_idx, flat, split, compress, zeroed_grain,
opaque, NULL);
if (extent_blk) {
blk_unref(extent_blk);
error_setg(errp, "List of extents contains unused extents");
ret = -EINVAL;
goto exit;
}
/* generate descriptor file */
desc = g_strdup_printf(desc_template,
g_random_int(),
parent_cid,
BlockdevVmdkSubformat_str(subformat),
parent_desc_line,
ext_desc_lines->str,
hw_version,
size /
(int64_t)(63 * number_heads * BDRV_SECTOR_SIZE),
number_heads,
BlockdevVmdkAdapterType_str(adapter_type));
desc_len = strlen(desc);
/* the descriptor offset = 0x200 */
if (!split && !flat) {
desc_offset = 0x200;
}
ret = blk_pwrite(blk, desc_offset, desc, desc_len, 0);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not write description");
goto exit;
}
/* bdrv_pwrite write padding zeros to align to sector, we don't need that
* for description file */
if (desc_offset == 0) {
ret = blk_truncate(blk, desc_len, false, PREALLOC_MODE_OFF, errp);
if (ret < 0) {
goto exit;
}
}
ret = 0;
exit:
if (blk) {
blk_unref(blk);
}
g_free(desc);
g_free(parent_desc_line);
g_string_free(ext_desc_lines, true);
return ret;
}
typedef struct {
char *path;
char *prefix;
char *postfix;
QemuOpts *opts;
} VMDKCreateOptsData;
static BlockBackend *vmdk_co_create_opts_cb(int64_t size, int idx,
bool flat, bool split, bool compress,
bool zeroed_grain, void *opaque,
Error **errp)
{
BlockBackend *blk = NULL;
BlockDriverState *bs = NULL;
VMDKCreateOptsData *data = opaque;
char *ext_filename = NULL;
char *rel_filename = NULL;
/* We're done, don't create excess extents. */
if (size == -1) {
assert(errp == NULL);
return NULL;
}
if (idx == 0) {
rel_filename = g_strdup_printf("%s%s", data->prefix, data->postfix);
} else if (split) {
rel_filename = g_strdup_printf("%s-%c%03d%s",
data->prefix,
flat ? 'f' : 's', idx, data->postfix);
} else {
assert(idx == 1);
rel_filename = g_strdup_printf("%s-flat%s", data->prefix, data->postfix);
}
ext_filename = g_strdup_printf("%s%s", data->path, rel_filename);
g_free(rel_filename);
if (vmdk_create_extent(ext_filename, size,
flat, compress, zeroed_grain, &blk, data->opts,
errp)) {
goto exit;
}
bdrv_unref(bs);
exit:
g_free(ext_filename);
return blk;
}
static int coroutine_fn vmdk_co_create_opts(const char *filename, QemuOpts *opts,
Error **errp)
{
Error *local_err = NULL;
char *desc = NULL;
int64_t total_size = 0;
char *adapter_type = NULL;
BlockdevVmdkAdapterType adapter_type_enum;
char *backing_file = NULL;
char *hw_version = NULL;
char *fmt = NULL;
BlockdevVmdkSubformat subformat;
int ret = 0;
char *path = g_malloc0(PATH_MAX);
char *prefix = g_malloc0(PATH_MAX);
char *postfix = g_malloc0(PATH_MAX);
char *desc_line = g_malloc0(BUF_SIZE);
char *ext_filename = g_malloc0(PATH_MAX);
char *desc_filename = g_malloc0(PATH_MAX);
char *parent_desc_line = g_malloc0(BUF_SIZE);
bool zeroed_grain;
bool compat6;
VMDKCreateOptsData data;
if (filename_decompose(filename, path, prefix, postfix, PATH_MAX, errp)) {
ret = -EINVAL;
goto exit;
}
/* Read out options */
total_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
BDRV_SECTOR_SIZE);
adapter_type = qemu_opt_get_del(opts, BLOCK_OPT_ADAPTER_TYPE);
backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
hw_version = qemu_opt_get_del(opts, BLOCK_OPT_HWVERSION);
compat6 = qemu_opt_get_bool_del(opts, BLOCK_OPT_COMPAT6, false);
if (strcmp(hw_version, "undefined") == 0) {
g_free(hw_version);
hw_version = NULL;
}
fmt = qemu_opt_get_del(opts, BLOCK_OPT_SUBFMT);
zeroed_grain = qemu_opt_get_bool_del(opts, BLOCK_OPT_ZEROED_GRAIN, false);
if (adapter_type) {
adapter_type_enum = qapi_enum_parse(&BlockdevVmdkAdapterType_lookup,
adapter_type,
BLOCKDEV_VMDK_ADAPTER_TYPE_IDE,
&local_err);
if (local_err) {
error_propagate(errp, local_err);
ret = -EINVAL;
goto exit;
}
} else {
adapter_type_enum = BLOCKDEV_VMDK_ADAPTER_TYPE_IDE;
}
if (!fmt) {
/* Default format to monolithicSparse */
subformat = BLOCKDEV_VMDK_SUBFORMAT_MONOLITHICSPARSE;
} else {
subformat = qapi_enum_parse(&BlockdevVmdkSubformat_lookup,
fmt,
BLOCKDEV_VMDK_SUBFORMAT_MONOLITHICSPARSE,
&local_err);
if (local_err) {
error_propagate(errp, local_err);
ret = -EINVAL;
goto exit;
}
}
data = (VMDKCreateOptsData){
.prefix = prefix,
.postfix = postfix,
.path = path,
.opts = opts,
};
ret = vmdk_co_do_create(total_size, subformat, adapter_type_enum,
backing_file, hw_version, compat6, zeroed_grain,
vmdk_co_create_opts_cb, &data, errp);
exit:
g_free(adapter_type);
g_free(backing_file);
g_free(hw_version);
g_free(fmt);
g_free(desc);
g_free(path);
g_free(prefix);
g_free(postfix);
g_free(desc_line);
g_free(ext_filename);
g_free(desc_filename);
g_free(parent_desc_line);
return ret;
}
static BlockBackend *vmdk_co_create_cb(int64_t size, int idx,
bool flat, bool split, bool compress,
bool zeroed_grain, void *opaque,
Error **errp)
{
int ret;
BlockDriverState *bs;
BlockBackend *blk;
BlockdevCreateOptionsVmdk *opts = opaque;
if (idx == 0) {
bs = bdrv_open_blockdev_ref(opts->file, errp);
} else {
int i;
BlockdevRefList *list = opts->extents;
for (i = 1; i < idx; i++) {
if (!list || !list->next) {
error_setg(errp, "Extent [%d] not specified", i);
return NULL;
}
list = list->next;
}
if (!list) {
error_setg(errp, "Extent [%d] not specified", idx - 1);
return NULL;
}
bs = bdrv_open_blockdev_ref(list->value, errp);
}
if (!bs) {
return NULL;
}
blk = blk_new(bdrv_get_aio_context(bs),
BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE | BLK_PERM_RESIZE,
BLK_PERM_ALL);
if (blk_insert_bs(blk, bs, errp)) {
bdrv_unref(bs);
return NULL;
}
blk_set_allow_write_beyond_eof(blk, true);
bdrv_unref(bs);
if (size != -1) {
ret = vmdk_init_extent(blk, size, flat, compress, zeroed_grain, errp);
if (ret) {
blk_unref(blk);
blk = NULL;
}
}
return blk;
}
static int coroutine_fn vmdk_co_create(BlockdevCreateOptions *create_options,
Error **errp)
{
int ret;
BlockdevCreateOptionsVmdk *opts;
opts = &create_options->u.vmdk;
/* Validate options */
if (!QEMU_IS_ALIGNED(opts->size, BDRV_SECTOR_SIZE)) {
error_setg(errp, "Image size must be a multiple of 512 bytes");
ret = -EINVAL;
goto out;
}
ret = vmdk_co_do_create(opts->size,
opts->subformat,
opts->adapter_type,
opts->backing_file,
opts->hwversion,
false,
opts->zeroed_grain,
vmdk_co_create_cb,
opts, errp);
return ret;
out:
return ret;
}
static void vmdk_close(BlockDriverState *bs)
{
BDRVVmdkState *s = bs->opaque;
vmdk_free_extents(bs);
g_free(s->create_type);
migrate_del_blocker(s->migration_blocker);
error_free(s->migration_blocker);
}
static coroutine_fn int vmdk_co_flush(BlockDriverState *bs)
{
BDRVVmdkState *s = bs->opaque;
int i, err;
int ret = 0;
for (i = 0; i < s->num_extents; i++) {
err = bdrv_co_flush(s->extents[i].file->bs);
if (err < 0) {
ret = err;
}
}
return ret;
}
static int64_t vmdk_get_allocated_file_size(BlockDriverState *bs)
{
int i;
int64_t ret = 0;
int64_t r;
BDRVVmdkState *s = bs->opaque;
ret = bdrv_get_allocated_file_size(bs->file->bs);
if (ret < 0) {
return ret;
}
for (i = 0; i < s->num_extents; i++) {
if (s->extents[i].file == bs->file) {
continue;
}
r = bdrv_get_allocated_file_size(s->extents[i].file->bs);
if (r < 0) {
return r;
}
ret += r;
}
return ret;
}
static int vmdk_has_zero_init(BlockDriverState *bs)
{
int i;
BDRVVmdkState *s = bs->opaque;
/* If has a flat extent and its underlying storage doesn't have zero init,
* return 0. */
for (i = 0; i < s->num_extents; i++) {
if (s->extents[i].flat) {
if (!bdrv_has_zero_init(s->extents[i].file->bs)) {
return 0;
}
}
}
return 1;
}
static ImageInfo *vmdk_get_extent_info(VmdkExtent *extent)
{
ImageInfo *info = g_new0(ImageInfo, 1);
bdrv_refresh_filename(extent->file->bs);
*info = (ImageInfo){
.filename = g_strdup(extent->file->bs->filename),
.format = g_strdup(extent->type),
.virtual_size = extent->sectors * BDRV_SECTOR_SIZE,
.compressed = extent->compressed,
.has_compressed = extent->compressed,
.cluster_size = extent->cluster_sectors * BDRV_SECTOR_SIZE,
.has_cluster_size = !extent->flat,
};
return info;
}
static int coroutine_fn vmdk_co_check(BlockDriverState *bs,
BdrvCheckResult *result,
BdrvCheckMode fix)
{
BDRVVmdkState *s = bs->opaque;
VmdkExtent *extent = NULL;
int64_t sector_num = 0;
int64_t total_sectors = bdrv_nb_sectors(bs);
int ret;
uint64_t cluster_offset;
if (fix) {
return -ENOTSUP;
}
for (;;) {
if (sector_num >= total_sectors) {
return 0;
}
extent = find_extent(s, sector_num, extent);
if (!extent) {
fprintf(stderr,
"ERROR: could not find extent for sector %" PRId64 "\n",
sector_num);
ret = -EINVAL;
break;
}
ret = get_cluster_offset(bs, extent, NULL,
sector_num << BDRV_SECTOR_BITS,
false, &cluster_offset, 0, 0);
if (ret == VMDK_ERROR) {
fprintf(stderr,
"ERROR: could not get cluster_offset for sector %"
PRId64 "\n", sector_num);
break;
}
if (ret == VMDK_OK) {
int64_t extent_len = bdrv_getlength(extent->file->bs);
if (extent_len < 0) {
fprintf(stderr,
"ERROR: could not get extent file length for sector %"
PRId64 "\n", sector_num);
ret = extent_len;
break;
}
if (cluster_offset >= extent_len) {
fprintf(stderr,
"ERROR: cluster offset for sector %"
PRId64 " points after EOF\n", sector_num);
ret = -EINVAL;
break;
}
}
sector_num += extent->cluster_sectors;
}
result->corruptions++;
return ret;
}
static ImageInfoSpecific *vmdk_get_specific_info(BlockDriverState *bs,
Error **errp)
{
int i;
BDRVVmdkState *s = bs->opaque;
ImageInfoSpecific *spec_info = g_new0(ImageInfoSpecific, 1);
ImageInfoList **next;
*spec_info = (ImageInfoSpecific){
.type = IMAGE_INFO_SPECIFIC_KIND_VMDK,
.u = {
.vmdk.data = g_new0(ImageInfoSpecificVmdk, 1),
},
};
*spec_info->u.vmdk.data = (ImageInfoSpecificVmdk) {
.create_type = g_strdup(s->create_type),
.cid = s->cid,
.parent_cid = s->parent_cid,
};
next = &spec_info->u.vmdk.data->extents;
for (i = 0; i < s->num_extents; i++) {
*next = g_new0(ImageInfoList, 1);
(*next)->value = vmdk_get_extent_info(&s->extents[i]);
(*next)->next = NULL;
next = &(*next)->next;
}
return spec_info;
}
static bool vmdk_extents_type_eq(const VmdkExtent *a, const VmdkExtent *b)
{
return a->flat == b->flat &&
a->compressed == b->compressed &&
(a->flat || a->cluster_sectors == b->cluster_sectors);
}
static int vmdk_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
{
int i;
BDRVVmdkState *s = bs->opaque;
assert(s->num_extents);
/* See if we have multiple extents but they have different cases */
for (i = 1; i < s->num_extents; i++) {
if (!vmdk_extents_type_eq(&s->extents[0], &s->extents[i])) {
return -ENOTSUP;
}
}
bdi->needs_compressed_writes = s->extents[0].compressed;
if (!s->extents[0].flat) {
bdi->cluster_size = s->extents[0].cluster_sectors << BDRV_SECTOR_BITS;
}
return 0;
}
static void vmdk_gather_child_options(BlockDriverState *bs, QDict *target,
bool backing_overridden)
{
/* No children but file and backing can be explicitly specified (TODO) */
qdict_put(target, "file",
qobject_ref(bs->file->bs->full_open_options));
if (backing_overridden) {
if (bs->backing) {
qdict_put(target, "backing",
qobject_ref(bs->backing->bs->full_open_options));
} else {
qdict_put_null(target, "backing");
}
}
}
static QemuOptsList vmdk_create_opts = {
.name = "vmdk-create-opts",
.head = QTAILQ_HEAD_INITIALIZER(vmdk_create_opts.head),
.desc = {
{
.name = BLOCK_OPT_SIZE,
.type = QEMU_OPT_SIZE,
.help = "Virtual disk size"
},
{
.name = BLOCK_OPT_ADAPTER_TYPE,
.type = QEMU_OPT_STRING,
.help = "Virtual adapter type, can be one of "
"ide (default), lsilogic, buslogic or legacyESX"
},
{
.name = BLOCK_OPT_BACKING_FILE,
.type = QEMU_OPT_STRING,
.help = "File name of a base image"
},
{
.name = BLOCK_OPT_COMPAT6,
.type = QEMU_OPT_BOOL,
.help = "VMDK version 6 image",
.def_value_str = "off"
},
{
.name = BLOCK_OPT_HWVERSION,
.type = QEMU_OPT_STRING,
.help = "VMDK hardware version",
.def_value_str = "undefined"
},
{
.name = BLOCK_OPT_SUBFMT,
.type = QEMU_OPT_STRING,
.help =
"VMDK flat extent format, can be one of "
"{monolithicSparse (default) | monolithicFlat | twoGbMaxExtentSparse | twoGbMaxExtentFlat | streamOptimized} "
},
{
.name = BLOCK_OPT_ZEROED_GRAIN,
.type = QEMU_OPT_BOOL,
.help = "Enable efficient zero writes "
"using the zeroed-grain GTE feature"
},
{ /* end of list */ }
}
};
static BlockDriver bdrv_vmdk = {
.format_name = "vmdk",
.instance_size = sizeof(BDRVVmdkState),
.bdrv_probe = vmdk_probe,
.bdrv_open = vmdk_open,
.bdrv_co_check = vmdk_co_check,
.bdrv_reopen_prepare = vmdk_reopen_prepare,
.bdrv_child_perm = bdrv_format_default_perms,
.bdrv_co_preadv = vmdk_co_preadv,
.bdrv_co_pwritev = vmdk_co_pwritev,
.bdrv_co_pwritev_compressed = vmdk_co_pwritev_compressed,
.bdrv_co_pwrite_zeroes = vmdk_co_pwrite_zeroes,
.bdrv_close = vmdk_close,
.bdrv_co_create_opts = vmdk_co_create_opts,
.bdrv_co_create = vmdk_co_create,
.bdrv_co_flush_to_disk = vmdk_co_flush,
.bdrv_co_block_status = vmdk_co_block_status,
.bdrv_get_allocated_file_size = vmdk_get_allocated_file_size,
.bdrv_has_zero_init = vmdk_has_zero_init,
.bdrv_get_specific_info = vmdk_get_specific_info,
.bdrv_refresh_limits = vmdk_refresh_limits,
.bdrv_get_info = vmdk_get_info,
.bdrv_gather_child_options = vmdk_gather_child_options,
.supports_backing = true,
.create_opts = &vmdk_create_opts,
};
static void bdrv_vmdk_init(void)
{
bdrv_register(&bdrv_vmdk);
}
block_init(bdrv_vmdk_init);