qemu-e2k/hw/pxa2xx_timer.c
Alexander Graf 2507c12ab0 Add endianness as io mem parameter
As stated before, devices can be little, big or native endian. The
target endianness is not of their concern, so we need to push things
down a level.

This patch adds a parameter to cpu_register_io_memory that allows a
device to choose its endianness. For now, all devices simply choose
native endian, because that's the same behavior as before.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2010-12-11 15:24:25 +00:00

491 lines
13 KiB
C

/*
* Intel XScale PXA255/270 OS Timers.
*
* Copyright (c) 2006 Openedhand Ltd.
* Copyright (c) 2006 Thorsten Zitterell
*
* This code is licenced under the GPL.
*/
#include "hw.h"
#include "qemu-timer.h"
#include "sysemu.h"
#include "pxa.h"
#define OSMR0 0x00
#define OSMR1 0x04
#define OSMR2 0x08
#define OSMR3 0x0c
#define OSMR4 0x80
#define OSMR5 0x84
#define OSMR6 0x88
#define OSMR7 0x8c
#define OSMR8 0x90
#define OSMR9 0x94
#define OSMR10 0x98
#define OSMR11 0x9c
#define OSCR 0x10 /* OS Timer Count */
#define OSCR4 0x40
#define OSCR5 0x44
#define OSCR6 0x48
#define OSCR7 0x4c
#define OSCR8 0x50
#define OSCR9 0x54
#define OSCR10 0x58
#define OSCR11 0x5c
#define OSSR 0x14 /* Timer status register */
#define OWER 0x18
#define OIER 0x1c /* Interrupt enable register 3-0 to E3-E0 */
#define OMCR4 0xc0 /* OS Match Control registers */
#define OMCR5 0xc4
#define OMCR6 0xc8
#define OMCR7 0xcc
#define OMCR8 0xd0
#define OMCR9 0xd4
#define OMCR10 0xd8
#define OMCR11 0xdc
#define OSNR 0x20
#define PXA25X_FREQ 3686400 /* 3.6864 MHz */
#define PXA27X_FREQ 3250000 /* 3.25 MHz */
static int pxa2xx_timer4_freq[8] = {
[0] = 0,
[1] = 32768,
[2] = 1000,
[3] = 1,
[4] = 1000000,
/* [5] is the "Externally supplied clock". Assign if necessary. */
[5 ... 7] = 0,
};
typedef struct {
uint32_t value;
int level;
qemu_irq irq;
QEMUTimer *qtimer;
int num;
void *info;
} PXA2xxTimer0;
typedef struct {
PXA2xxTimer0 tm;
int32_t oldclock;
int32_t clock;
uint64_t lastload;
uint32_t freq;
uint32_t control;
} PXA2xxTimer4;
typedef struct {
int32_t clock;
int32_t oldclock;
uint64_t lastload;
uint32_t freq;
PXA2xxTimer0 timer[4];
PXA2xxTimer4 *tm4;
uint32_t events;
uint32_t irq_enabled;
uint32_t reset3;
uint32_t snapshot;
} pxa2xx_timer_info;
static void pxa2xx_timer_update(void *opaque, uint64_t now_qemu)
{
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
int i;
uint32_t now_vm;
uint64_t new_qemu;
now_vm = s->clock +
muldiv64(now_qemu - s->lastload, s->freq, get_ticks_per_sec());
for (i = 0; i < 4; i ++) {
new_qemu = now_qemu + muldiv64((uint32_t) (s->timer[i].value - now_vm),
get_ticks_per_sec(), s->freq);
qemu_mod_timer(s->timer[i].qtimer, new_qemu);
}
}
static void pxa2xx_timer_update4(void *opaque, uint64_t now_qemu, int n)
{
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
uint32_t now_vm;
uint64_t new_qemu;
static const int counters[8] = { 0, 0, 0, 0, 4, 4, 6, 6 };
int counter;
if (s->tm4[n].control & (1 << 7))
counter = n;
else
counter = counters[n];
if (!s->tm4[counter].freq) {
qemu_del_timer(s->tm4[n].tm.qtimer);
return;
}
now_vm = s->tm4[counter].clock + muldiv64(now_qemu -
s->tm4[counter].lastload,
s->tm4[counter].freq, get_ticks_per_sec());
new_qemu = now_qemu + muldiv64((uint32_t) (s->tm4[n].tm.value - now_vm),
get_ticks_per_sec(), s->tm4[counter].freq);
qemu_mod_timer(s->tm4[n].tm.qtimer, new_qemu);
}
static uint32_t pxa2xx_timer_read(void *opaque, target_phys_addr_t offset)
{
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
int tm = 0;
switch (offset) {
case OSMR3: tm ++;
case OSMR2: tm ++;
case OSMR1: tm ++;
case OSMR0:
return s->timer[tm].value;
case OSMR11: tm ++;
case OSMR10: tm ++;
case OSMR9: tm ++;
case OSMR8: tm ++;
case OSMR7: tm ++;
case OSMR6: tm ++;
case OSMR5: tm ++;
case OSMR4:
if (!s->tm4)
goto badreg;
return s->tm4[tm].tm.value;
case OSCR:
return s->clock + muldiv64(qemu_get_clock(vm_clock) -
s->lastload, s->freq, get_ticks_per_sec());
case OSCR11: tm ++;
case OSCR10: tm ++;
case OSCR9: tm ++;
case OSCR8: tm ++;
case OSCR7: tm ++;
case OSCR6: tm ++;
case OSCR5: tm ++;
case OSCR4:
if (!s->tm4)
goto badreg;
if ((tm == 9 - 4 || tm == 11 - 4) && (s->tm4[tm].control & (1 << 9))) {
if (s->tm4[tm - 1].freq)
s->snapshot = s->tm4[tm - 1].clock + muldiv64(
qemu_get_clock(vm_clock) -
s->tm4[tm - 1].lastload,
s->tm4[tm - 1].freq, get_ticks_per_sec());
else
s->snapshot = s->tm4[tm - 1].clock;
}
if (!s->tm4[tm].freq)
return s->tm4[tm].clock;
return s->tm4[tm].clock + muldiv64(qemu_get_clock(vm_clock) -
s->tm4[tm].lastload, s->tm4[tm].freq, get_ticks_per_sec());
case OIER:
return s->irq_enabled;
case OSSR: /* Status register */
return s->events;
case OWER:
return s->reset3;
case OMCR11: tm ++;
case OMCR10: tm ++;
case OMCR9: tm ++;
case OMCR8: tm ++;
case OMCR7: tm ++;
case OMCR6: tm ++;
case OMCR5: tm ++;
case OMCR4:
if (!s->tm4)
goto badreg;
return s->tm4[tm].control;
case OSNR:
return s->snapshot;
default:
badreg:
hw_error("pxa2xx_timer_read: Bad offset " REG_FMT "\n", offset);
}
return 0;
}
static void pxa2xx_timer_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
int i, tm = 0;
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
switch (offset) {
case OSMR3: tm ++;
case OSMR2: tm ++;
case OSMR1: tm ++;
case OSMR0:
s->timer[tm].value = value;
pxa2xx_timer_update(s, qemu_get_clock(vm_clock));
break;
case OSMR11: tm ++;
case OSMR10: tm ++;
case OSMR9: tm ++;
case OSMR8: tm ++;
case OSMR7: tm ++;
case OSMR6: tm ++;
case OSMR5: tm ++;
case OSMR4:
if (!s->tm4)
goto badreg;
s->tm4[tm].tm.value = value;
pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
break;
case OSCR:
s->oldclock = s->clock;
s->lastload = qemu_get_clock(vm_clock);
s->clock = value;
pxa2xx_timer_update(s, s->lastload);
break;
case OSCR11: tm ++;
case OSCR10: tm ++;
case OSCR9: tm ++;
case OSCR8: tm ++;
case OSCR7: tm ++;
case OSCR6: tm ++;
case OSCR5: tm ++;
case OSCR4:
if (!s->tm4)
goto badreg;
s->tm4[tm].oldclock = s->tm4[tm].clock;
s->tm4[tm].lastload = qemu_get_clock(vm_clock);
s->tm4[tm].clock = value;
pxa2xx_timer_update4(s, s->tm4[tm].lastload, tm);
break;
case OIER:
s->irq_enabled = value & 0xfff;
break;
case OSSR: /* Status register */
s->events &= ~value;
for (i = 0; i < 4; i ++, value >>= 1) {
if (s->timer[i].level && (value & 1)) {
s->timer[i].level = 0;
qemu_irq_lower(s->timer[i].irq);
}
}
if (s->tm4) {
for (i = 0; i < 8; i ++, value >>= 1)
if (s->tm4[i].tm.level && (value & 1))
s->tm4[i].tm.level = 0;
if (!(s->events & 0xff0))
qemu_irq_lower(s->tm4->tm.irq);
}
break;
case OWER: /* XXX: Reset on OSMR3 match? */
s->reset3 = value;
break;
case OMCR7: tm ++;
case OMCR6: tm ++;
case OMCR5: tm ++;
case OMCR4:
if (!s->tm4)
goto badreg;
s->tm4[tm].control = value & 0x0ff;
/* XXX Stop if running (shouldn't happen) */
if ((value & (1 << 7)) || tm == 0)
s->tm4[tm].freq = pxa2xx_timer4_freq[value & 7];
else {
s->tm4[tm].freq = 0;
pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
}
break;
case OMCR11: tm ++;
case OMCR10: tm ++;
case OMCR9: tm ++;
case OMCR8: tm += 4;
if (!s->tm4)
goto badreg;
s->tm4[tm].control = value & 0x3ff;
/* XXX Stop if running (shouldn't happen) */
if ((value & (1 << 7)) || !(tm & 1))
s->tm4[tm].freq =
pxa2xx_timer4_freq[(value & (1 << 8)) ? 0 : (value & 7)];
else {
s->tm4[tm].freq = 0;
pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
}
break;
default:
badreg:
hw_error("pxa2xx_timer_write: Bad offset " REG_FMT "\n", offset);
}
}
static CPUReadMemoryFunc * const pxa2xx_timer_readfn[] = {
pxa2xx_timer_read,
pxa2xx_timer_read,
pxa2xx_timer_read,
};
static CPUWriteMemoryFunc * const pxa2xx_timer_writefn[] = {
pxa2xx_timer_write,
pxa2xx_timer_write,
pxa2xx_timer_write,
};
static void pxa2xx_timer_tick(void *opaque)
{
PXA2xxTimer0 *t = (PXA2xxTimer0 *) opaque;
pxa2xx_timer_info *i = (pxa2xx_timer_info *) t->info;
if (i->irq_enabled & (1 << t->num)) {
t->level = 1;
i->events |= 1 << t->num;
qemu_irq_raise(t->irq);
}
if (t->num == 3)
if (i->reset3 & 1) {
i->reset3 = 0;
qemu_system_reset_request();
}
}
static void pxa2xx_timer_tick4(void *opaque)
{
PXA2xxTimer4 *t = (PXA2xxTimer4 *) opaque;
pxa2xx_timer_info *i = (pxa2xx_timer_info *) t->tm.info;
pxa2xx_timer_tick(&t->tm);
if (t->control & (1 << 3))
t->clock = 0;
if (t->control & (1 << 6))
pxa2xx_timer_update4(i, qemu_get_clock(vm_clock), t->tm.num - 4);
}
static void pxa2xx_timer_save(QEMUFile *f, void *opaque)
{
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
int i;
qemu_put_be32s(f, (uint32_t *) &s->clock);
qemu_put_be32s(f, (uint32_t *) &s->oldclock);
qemu_put_be64s(f, &s->lastload);
for (i = 0; i < 4; i ++) {
qemu_put_be32s(f, &s->timer[i].value);
qemu_put_be32(f, s->timer[i].level);
}
if (s->tm4)
for (i = 0; i < 8; i ++) {
qemu_put_be32s(f, &s->tm4[i].tm.value);
qemu_put_be32(f, s->tm4[i].tm.level);
qemu_put_sbe32s(f, &s->tm4[i].oldclock);
qemu_put_sbe32s(f, &s->tm4[i].clock);
qemu_put_be64s(f, &s->tm4[i].lastload);
qemu_put_be32s(f, &s->tm4[i].freq);
qemu_put_be32s(f, &s->tm4[i].control);
}
qemu_put_be32s(f, &s->events);
qemu_put_be32s(f, &s->irq_enabled);
qemu_put_be32s(f, &s->reset3);
qemu_put_be32s(f, &s->snapshot);
}
static int pxa2xx_timer_load(QEMUFile *f, void *opaque, int version_id)
{
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
int64_t now;
int i;
qemu_get_be32s(f, (uint32_t *) &s->clock);
qemu_get_be32s(f, (uint32_t *) &s->oldclock);
qemu_get_be64s(f, &s->lastload);
now = qemu_get_clock(vm_clock);
for (i = 0; i < 4; i ++) {
qemu_get_be32s(f, &s->timer[i].value);
s->timer[i].level = qemu_get_be32(f);
}
pxa2xx_timer_update(s, now);
if (s->tm4)
for (i = 0; i < 8; i ++) {
qemu_get_be32s(f, &s->tm4[i].tm.value);
s->tm4[i].tm.level = qemu_get_be32(f);
qemu_get_sbe32s(f, &s->tm4[i].oldclock);
qemu_get_sbe32s(f, &s->tm4[i].clock);
qemu_get_be64s(f, &s->tm4[i].lastload);
qemu_get_be32s(f, &s->tm4[i].freq);
qemu_get_be32s(f, &s->tm4[i].control);
pxa2xx_timer_update4(s, now, i);
}
qemu_get_be32s(f, &s->events);
qemu_get_be32s(f, &s->irq_enabled);
qemu_get_be32s(f, &s->reset3);
qemu_get_be32s(f, &s->snapshot);
return 0;
}
static pxa2xx_timer_info *pxa2xx_timer_init(target_phys_addr_t base,
qemu_irq *irqs)
{
int i;
int iomemtype;
pxa2xx_timer_info *s;
s = (pxa2xx_timer_info *) qemu_mallocz(sizeof(pxa2xx_timer_info));
s->irq_enabled = 0;
s->oldclock = 0;
s->clock = 0;
s->lastload = qemu_get_clock(vm_clock);
s->reset3 = 0;
for (i = 0; i < 4; i ++) {
s->timer[i].value = 0;
s->timer[i].irq = irqs[i];
s->timer[i].info = s;
s->timer[i].num = i;
s->timer[i].level = 0;
s->timer[i].qtimer = qemu_new_timer(vm_clock,
pxa2xx_timer_tick, &s->timer[i]);
}
iomemtype = cpu_register_io_memory(pxa2xx_timer_readfn,
pxa2xx_timer_writefn, s, DEVICE_NATIVE_ENDIAN);
cpu_register_physical_memory(base, 0x00001000, iomemtype);
register_savevm(NULL, "pxa2xx_timer", 0, 0,
pxa2xx_timer_save, pxa2xx_timer_load, s);
return s;
}
void pxa25x_timer_init(target_phys_addr_t base, qemu_irq *irqs)
{
pxa2xx_timer_info *s = pxa2xx_timer_init(base, irqs);
s->freq = PXA25X_FREQ;
s->tm4 = NULL;
}
void pxa27x_timer_init(target_phys_addr_t base,
qemu_irq *irqs, qemu_irq irq4)
{
pxa2xx_timer_info *s = pxa2xx_timer_init(base, irqs);
int i;
s->freq = PXA27X_FREQ;
s->tm4 = (PXA2xxTimer4 *) qemu_mallocz(8 *
sizeof(PXA2xxTimer4));
for (i = 0; i < 8; i ++) {
s->tm4[i].tm.value = 0;
s->tm4[i].tm.irq = irq4;
s->tm4[i].tm.info = s;
s->tm4[i].tm.num = i + 4;
s->tm4[i].tm.level = 0;
s->tm4[i].freq = 0;
s->tm4[i].control = 0x0;
s->tm4[i].tm.qtimer = qemu_new_timer(vm_clock,
pxa2xx_timer_tick4, &s->tm4[i]);
}
}