2507c12ab0
As stated before, devices can be little, big or native endian. The target endianness is not of their concern, so we need to push things down a level. This patch adds a parameter to cpu_register_io_memory that allows a device to choose its endianness. For now, all devices simply choose native endian, because that's the same behavior as before. Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
491 lines
13 KiB
C
491 lines
13 KiB
C
/*
|
|
* Intel XScale PXA255/270 OS Timers.
|
|
*
|
|
* Copyright (c) 2006 Openedhand Ltd.
|
|
* Copyright (c) 2006 Thorsten Zitterell
|
|
*
|
|
* This code is licenced under the GPL.
|
|
*/
|
|
|
|
#include "hw.h"
|
|
#include "qemu-timer.h"
|
|
#include "sysemu.h"
|
|
#include "pxa.h"
|
|
|
|
#define OSMR0 0x00
|
|
#define OSMR1 0x04
|
|
#define OSMR2 0x08
|
|
#define OSMR3 0x0c
|
|
#define OSMR4 0x80
|
|
#define OSMR5 0x84
|
|
#define OSMR6 0x88
|
|
#define OSMR7 0x8c
|
|
#define OSMR8 0x90
|
|
#define OSMR9 0x94
|
|
#define OSMR10 0x98
|
|
#define OSMR11 0x9c
|
|
#define OSCR 0x10 /* OS Timer Count */
|
|
#define OSCR4 0x40
|
|
#define OSCR5 0x44
|
|
#define OSCR6 0x48
|
|
#define OSCR7 0x4c
|
|
#define OSCR8 0x50
|
|
#define OSCR9 0x54
|
|
#define OSCR10 0x58
|
|
#define OSCR11 0x5c
|
|
#define OSSR 0x14 /* Timer status register */
|
|
#define OWER 0x18
|
|
#define OIER 0x1c /* Interrupt enable register 3-0 to E3-E0 */
|
|
#define OMCR4 0xc0 /* OS Match Control registers */
|
|
#define OMCR5 0xc4
|
|
#define OMCR6 0xc8
|
|
#define OMCR7 0xcc
|
|
#define OMCR8 0xd0
|
|
#define OMCR9 0xd4
|
|
#define OMCR10 0xd8
|
|
#define OMCR11 0xdc
|
|
#define OSNR 0x20
|
|
|
|
#define PXA25X_FREQ 3686400 /* 3.6864 MHz */
|
|
#define PXA27X_FREQ 3250000 /* 3.25 MHz */
|
|
|
|
static int pxa2xx_timer4_freq[8] = {
|
|
[0] = 0,
|
|
[1] = 32768,
|
|
[2] = 1000,
|
|
[3] = 1,
|
|
[4] = 1000000,
|
|
/* [5] is the "Externally supplied clock". Assign if necessary. */
|
|
[5 ... 7] = 0,
|
|
};
|
|
|
|
typedef struct {
|
|
uint32_t value;
|
|
int level;
|
|
qemu_irq irq;
|
|
QEMUTimer *qtimer;
|
|
int num;
|
|
void *info;
|
|
} PXA2xxTimer0;
|
|
|
|
typedef struct {
|
|
PXA2xxTimer0 tm;
|
|
int32_t oldclock;
|
|
int32_t clock;
|
|
uint64_t lastload;
|
|
uint32_t freq;
|
|
uint32_t control;
|
|
} PXA2xxTimer4;
|
|
|
|
typedef struct {
|
|
int32_t clock;
|
|
int32_t oldclock;
|
|
uint64_t lastload;
|
|
uint32_t freq;
|
|
PXA2xxTimer0 timer[4];
|
|
PXA2xxTimer4 *tm4;
|
|
uint32_t events;
|
|
uint32_t irq_enabled;
|
|
uint32_t reset3;
|
|
uint32_t snapshot;
|
|
} pxa2xx_timer_info;
|
|
|
|
static void pxa2xx_timer_update(void *opaque, uint64_t now_qemu)
|
|
{
|
|
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
|
|
int i;
|
|
uint32_t now_vm;
|
|
uint64_t new_qemu;
|
|
|
|
now_vm = s->clock +
|
|
muldiv64(now_qemu - s->lastload, s->freq, get_ticks_per_sec());
|
|
|
|
for (i = 0; i < 4; i ++) {
|
|
new_qemu = now_qemu + muldiv64((uint32_t) (s->timer[i].value - now_vm),
|
|
get_ticks_per_sec(), s->freq);
|
|
qemu_mod_timer(s->timer[i].qtimer, new_qemu);
|
|
}
|
|
}
|
|
|
|
static void pxa2xx_timer_update4(void *opaque, uint64_t now_qemu, int n)
|
|
{
|
|
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
|
|
uint32_t now_vm;
|
|
uint64_t new_qemu;
|
|
static const int counters[8] = { 0, 0, 0, 0, 4, 4, 6, 6 };
|
|
int counter;
|
|
|
|
if (s->tm4[n].control & (1 << 7))
|
|
counter = n;
|
|
else
|
|
counter = counters[n];
|
|
|
|
if (!s->tm4[counter].freq) {
|
|
qemu_del_timer(s->tm4[n].tm.qtimer);
|
|
return;
|
|
}
|
|
|
|
now_vm = s->tm4[counter].clock + muldiv64(now_qemu -
|
|
s->tm4[counter].lastload,
|
|
s->tm4[counter].freq, get_ticks_per_sec());
|
|
|
|
new_qemu = now_qemu + muldiv64((uint32_t) (s->tm4[n].tm.value - now_vm),
|
|
get_ticks_per_sec(), s->tm4[counter].freq);
|
|
qemu_mod_timer(s->tm4[n].tm.qtimer, new_qemu);
|
|
}
|
|
|
|
static uint32_t pxa2xx_timer_read(void *opaque, target_phys_addr_t offset)
|
|
{
|
|
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
|
|
int tm = 0;
|
|
|
|
switch (offset) {
|
|
case OSMR3: tm ++;
|
|
case OSMR2: tm ++;
|
|
case OSMR1: tm ++;
|
|
case OSMR0:
|
|
return s->timer[tm].value;
|
|
case OSMR11: tm ++;
|
|
case OSMR10: tm ++;
|
|
case OSMR9: tm ++;
|
|
case OSMR8: tm ++;
|
|
case OSMR7: tm ++;
|
|
case OSMR6: tm ++;
|
|
case OSMR5: tm ++;
|
|
case OSMR4:
|
|
if (!s->tm4)
|
|
goto badreg;
|
|
return s->tm4[tm].tm.value;
|
|
case OSCR:
|
|
return s->clock + muldiv64(qemu_get_clock(vm_clock) -
|
|
s->lastload, s->freq, get_ticks_per_sec());
|
|
case OSCR11: tm ++;
|
|
case OSCR10: tm ++;
|
|
case OSCR9: tm ++;
|
|
case OSCR8: tm ++;
|
|
case OSCR7: tm ++;
|
|
case OSCR6: tm ++;
|
|
case OSCR5: tm ++;
|
|
case OSCR4:
|
|
if (!s->tm4)
|
|
goto badreg;
|
|
|
|
if ((tm == 9 - 4 || tm == 11 - 4) && (s->tm4[tm].control & (1 << 9))) {
|
|
if (s->tm4[tm - 1].freq)
|
|
s->snapshot = s->tm4[tm - 1].clock + muldiv64(
|
|
qemu_get_clock(vm_clock) -
|
|
s->tm4[tm - 1].lastload,
|
|
s->tm4[tm - 1].freq, get_ticks_per_sec());
|
|
else
|
|
s->snapshot = s->tm4[tm - 1].clock;
|
|
}
|
|
|
|
if (!s->tm4[tm].freq)
|
|
return s->tm4[tm].clock;
|
|
return s->tm4[tm].clock + muldiv64(qemu_get_clock(vm_clock) -
|
|
s->tm4[tm].lastload, s->tm4[tm].freq, get_ticks_per_sec());
|
|
case OIER:
|
|
return s->irq_enabled;
|
|
case OSSR: /* Status register */
|
|
return s->events;
|
|
case OWER:
|
|
return s->reset3;
|
|
case OMCR11: tm ++;
|
|
case OMCR10: tm ++;
|
|
case OMCR9: tm ++;
|
|
case OMCR8: tm ++;
|
|
case OMCR7: tm ++;
|
|
case OMCR6: tm ++;
|
|
case OMCR5: tm ++;
|
|
case OMCR4:
|
|
if (!s->tm4)
|
|
goto badreg;
|
|
return s->tm4[tm].control;
|
|
case OSNR:
|
|
return s->snapshot;
|
|
default:
|
|
badreg:
|
|
hw_error("pxa2xx_timer_read: Bad offset " REG_FMT "\n", offset);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pxa2xx_timer_write(void *opaque, target_phys_addr_t offset,
|
|
uint32_t value)
|
|
{
|
|
int i, tm = 0;
|
|
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
|
|
|
|
switch (offset) {
|
|
case OSMR3: tm ++;
|
|
case OSMR2: tm ++;
|
|
case OSMR1: tm ++;
|
|
case OSMR0:
|
|
s->timer[tm].value = value;
|
|
pxa2xx_timer_update(s, qemu_get_clock(vm_clock));
|
|
break;
|
|
case OSMR11: tm ++;
|
|
case OSMR10: tm ++;
|
|
case OSMR9: tm ++;
|
|
case OSMR8: tm ++;
|
|
case OSMR7: tm ++;
|
|
case OSMR6: tm ++;
|
|
case OSMR5: tm ++;
|
|
case OSMR4:
|
|
if (!s->tm4)
|
|
goto badreg;
|
|
s->tm4[tm].tm.value = value;
|
|
pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
|
|
break;
|
|
case OSCR:
|
|
s->oldclock = s->clock;
|
|
s->lastload = qemu_get_clock(vm_clock);
|
|
s->clock = value;
|
|
pxa2xx_timer_update(s, s->lastload);
|
|
break;
|
|
case OSCR11: tm ++;
|
|
case OSCR10: tm ++;
|
|
case OSCR9: tm ++;
|
|
case OSCR8: tm ++;
|
|
case OSCR7: tm ++;
|
|
case OSCR6: tm ++;
|
|
case OSCR5: tm ++;
|
|
case OSCR4:
|
|
if (!s->tm4)
|
|
goto badreg;
|
|
s->tm4[tm].oldclock = s->tm4[tm].clock;
|
|
s->tm4[tm].lastload = qemu_get_clock(vm_clock);
|
|
s->tm4[tm].clock = value;
|
|
pxa2xx_timer_update4(s, s->tm4[tm].lastload, tm);
|
|
break;
|
|
case OIER:
|
|
s->irq_enabled = value & 0xfff;
|
|
break;
|
|
case OSSR: /* Status register */
|
|
s->events &= ~value;
|
|
for (i = 0; i < 4; i ++, value >>= 1) {
|
|
if (s->timer[i].level && (value & 1)) {
|
|
s->timer[i].level = 0;
|
|
qemu_irq_lower(s->timer[i].irq);
|
|
}
|
|
}
|
|
if (s->tm4) {
|
|
for (i = 0; i < 8; i ++, value >>= 1)
|
|
if (s->tm4[i].tm.level && (value & 1))
|
|
s->tm4[i].tm.level = 0;
|
|
if (!(s->events & 0xff0))
|
|
qemu_irq_lower(s->tm4->tm.irq);
|
|
}
|
|
break;
|
|
case OWER: /* XXX: Reset on OSMR3 match? */
|
|
s->reset3 = value;
|
|
break;
|
|
case OMCR7: tm ++;
|
|
case OMCR6: tm ++;
|
|
case OMCR5: tm ++;
|
|
case OMCR4:
|
|
if (!s->tm4)
|
|
goto badreg;
|
|
s->tm4[tm].control = value & 0x0ff;
|
|
/* XXX Stop if running (shouldn't happen) */
|
|
if ((value & (1 << 7)) || tm == 0)
|
|
s->tm4[tm].freq = pxa2xx_timer4_freq[value & 7];
|
|
else {
|
|
s->tm4[tm].freq = 0;
|
|
pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
|
|
}
|
|
break;
|
|
case OMCR11: tm ++;
|
|
case OMCR10: tm ++;
|
|
case OMCR9: tm ++;
|
|
case OMCR8: tm += 4;
|
|
if (!s->tm4)
|
|
goto badreg;
|
|
s->tm4[tm].control = value & 0x3ff;
|
|
/* XXX Stop if running (shouldn't happen) */
|
|
if ((value & (1 << 7)) || !(tm & 1))
|
|
s->tm4[tm].freq =
|
|
pxa2xx_timer4_freq[(value & (1 << 8)) ? 0 : (value & 7)];
|
|
else {
|
|
s->tm4[tm].freq = 0;
|
|
pxa2xx_timer_update4(s, qemu_get_clock(vm_clock), tm);
|
|
}
|
|
break;
|
|
default:
|
|
badreg:
|
|
hw_error("pxa2xx_timer_write: Bad offset " REG_FMT "\n", offset);
|
|
}
|
|
}
|
|
|
|
static CPUReadMemoryFunc * const pxa2xx_timer_readfn[] = {
|
|
pxa2xx_timer_read,
|
|
pxa2xx_timer_read,
|
|
pxa2xx_timer_read,
|
|
};
|
|
|
|
static CPUWriteMemoryFunc * const pxa2xx_timer_writefn[] = {
|
|
pxa2xx_timer_write,
|
|
pxa2xx_timer_write,
|
|
pxa2xx_timer_write,
|
|
};
|
|
|
|
static void pxa2xx_timer_tick(void *opaque)
|
|
{
|
|
PXA2xxTimer0 *t = (PXA2xxTimer0 *) opaque;
|
|
pxa2xx_timer_info *i = (pxa2xx_timer_info *) t->info;
|
|
|
|
if (i->irq_enabled & (1 << t->num)) {
|
|
t->level = 1;
|
|
i->events |= 1 << t->num;
|
|
qemu_irq_raise(t->irq);
|
|
}
|
|
|
|
if (t->num == 3)
|
|
if (i->reset3 & 1) {
|
|
i->reset3 = 0;
|
|
qemu_system_reset_request();
|
|
}
|
|
}
|
|
|
|
static void pxa2xx_timer_tick4(void *opaque)
|
|
{
|
|
PXA2xxTimer4 *t = (PXA2xxTimer4 *) opaque;
|
|
pxa2xx_timer_info *i = (pxa2xx_timer_info *) t->tm.info;
|
|
|
|
pxa2xx_timer_tick(&t->tm);
|
|
if (t->control & (1 << 3))
|
|
t->clock = 0;
|
|
if (t->control & (1 << 6))
|
|
pxa2xx_timer_update4(i, qemu_get_clock(vm_clock), t->tm.num - 4);
|
|
}
|
|
|
|
static void pxa2xx_timer_save(QEMUFile *f, void *opaque)
|
|
{
|
|
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
|
|
int i;
|
|
|
|
qemu_put_be32s(f, (uint32_t *) &s->clock);
|
|
qemu_put_be32s(f, (uint32_t *) &s->oldclock);
|
|
qemu_put_be64s(f, &s->lastload);
|
|
|
|
for (i = 0; i < 4; i ++) {
|
|
qemu_put_be32s(f, &s->timer[i].value);
|
|
qemu_put_be32(f, s->timer[i].level);
|
|
}
|
|
if (s->tm4)
|
|
for (i = 0; i < 8; i ++) {
|
|
qemu_put_be32s(f, &s->tm4[i].tm.value);
|
|
qemu_put_be32(f, s->tm4[i].tm.level);
|
|
qemu_put_sbe32s(f, &s->tm4[i].oldclock);
|
|
qemu_put_sbe32s(f, &s->tm4[i].clock);
|
|
qemu_put_be64s(f, &s->tm4[i].lastload);
|
|
qemu_put_be32s(f, &s->tm4[i].freq);
|
|
qemu_put_be32s(f, &s->tm4[i].control);
|
|
}
|
|
|
|
qemu_put_be32s(f, &s->events);
|
|
qemu_put_be32s(f, &s->irq_enabled);
|
|
qemu_put_be32s(f, &s->reset3);
|
|
qemu_put_be32s(f, &s->snapshot);
|
|
}
|
|
|
|
static int pxa2xx_timer_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
pxa2xx_timer_info *s = (pxa2xx_timer_info *) opaque;
|
|
int64_t now;
|
|
int i;
|
|
|
|
qemu_get_be32s(f, (uint32_t *) &s->clock);
|
|
qemu_get_be32s(f, (uint32_t *) &s->oldclock);
|
|
qemu_get_be64s(f, &s->lastload);
|
|
|
|
now = qemu_get_clock(vm_clock);
|
|
for (i = 0; i < 4; i ++) {
|
|
qemu_get_be32s(f, &s->timer[i].value);
|
|
s->timer[i].level = qemu_get_be32(f);
|
|
}
|
|
pxa2xx_timer_update(s, now);
|
|
|
|
if (s->tm4)
|
|
for (i = 0; i < 8; i ++) {
|
|
qemu_get_be32s(f, &s->tm4[i].tm.value);
|
|
s->tm4[i].tm.level = qemu_get_be32(f);
|
|
qemu_get_sbe32s(f, &s->tm4[i].oldclock);
|
|
qemu_get_sbe32s(f, &s->tm4[i].clock);
|
|
qemu_get_be64s(f, &s->tm4[i].lastload);
|
|
qemu_get_be32s(f, &s->tm4[i].freq);
|
|
qemu_get_be32s(f, &s->tm4[i].control);
|
|
pxa2xx_timer_update4(s, now, i);
|
|
}
|
|
|
|
qemu_get_be32s(f, &s->events);
|
|
qemu_get_be32s(f, &s->irq_enabled);
|
|
qemu_get_be32s(f, &s->reset3);
|
|
qemu_get_be32s(f, &s->snapshot);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static pxa2xx_timer_info *pxa2xx_timer_init(target_phys_addr_t base,
|
|
qemu_irq *irqs)
|
|
{
|
|
int i;
|
|
int iomemtype;
|
|
pxa2xx_timer_info *s;
|
|
|
|
s = (pxa2xx_timer_info *) qemu_mallocz(sizeof(pxa2xx_timer_info));
|
|
s->irq_enabled = 0;
|
|
s->oldclock = 0;
|
|
s->clock = 0;
|
|
s->lastload = qemu_get_clock(vm_clock);
|
|
s->reset3 = 0;
|
|
|
|
for (i = 0; i < 4; i ++) {
|
|
s->timer[i].value = 0;
|
|
s->timer[i].irq = irqs[i];
|
|
s->timer[i].info = s;
|
|
s->timer[i].num = i;
|
|
s->timer[i].level = 0;
|
|
s->timer[i].qtimer = qemu_new_timer(vm_clock,
|
|
pxa2xx_timer_tick, &s->timer[i]);
|
|
}
|
|
|
|
iomemtype = cpu_register_io_memory(pxa2xx_timer_readfn,
|
|
pxa2xx_timer_writefn, s, DEVICE_NATIVE_ENDIAN);
|
|
cpu_register_physical_memory(base, 0x00001000, iomemtype);
|
|
|
|
register_savevm(NULL, "pxa2xx_timer", 0, 0,
|
|
pxa2xx_timer_save, pxa2xx_timer_load, s);
|
|
|
|
return s;
|
|
}
|
|
|
|
void pxa25x_timer_init(target_phys_addr_t base, qemu_irq *irqs)
|
|
{
|
|
pxa2xx_timer_info *s = pxa2xx_timer_init(base, irqs);
|
|
s->freq = PXA25X_FREQ;
|
|
s->tm4 = NULL;
|
|
}
|
|
|
|
void pxa27x_timer_init(target_phys_addr_t base,
|
|
qemu_irq *irqs, qemu_irq irq4)
|
|
{
|
|
pxa2xx_timer_info *s = pxa2xx_timer_init(base, irqs);
|
|
int i;
|
|
s->freq = PXA27X_FREQ;
|
|
s->tm4 = (PXA2xxTimer4 *) qemu_mallocz(8 *
|
|
sizeof(PXA2xxTimer4));
|
|
for (i = 0; i < 8; i ++) {
|
|
s->tm4[i].tm.value = 0;
|
|
s->tm4[i].tm.irq = irq4;
|
|
s->tm4[i].tm.info = s;
|
|
s->tm4[i].tm.num = i + 4;
|
|
s->tm4[i].tm.level = 0;
|
|
s->tm4[i].freq = 0;
|
|
s->tm4[i].control = 0x0;
|
|
s->tm4[i].tm.qtimer = qemu_new_timer(vm_clock,
|
|
pxa2xx_timer_tick4, &s->tm4[i]);
|
|
}
|
|
}
|