qemu-e2k/cpu-all.h
malc e01fe6d575 Fix warnings introduced in r5948
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5976 c046a42c-6fe2-441c-8c8c-71466251a162
2008-12-11 00:14:30 +00:00

1136 lines
28 KiB
C

/*
* defines common to all virtual CPUs
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef CPU_ALL_H
#define CPU_ALL_H
#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
#define WORDS_ALIGNED
#endif
/* some important defines:
*
* WORDS_ALIGNED : if defined, the host cpu can only make word aligned
* memory accesses.
*
* WORDS_BIGENDIAN : if defined, the host cpu is big endian and
* otherwise little endian.
*
* (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
*
* TARGET_WORDS_BIGENDIAN : same for target cpu
*/
#include "bswap.h"
#include "softfloat.h"
#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
#define BSWAP_NEEDED
#endif
#ifdef BSWAP_NEEDED
static inline uint16_t tswap16(uint16_t s)
{
return bswap16(s);
}
static inline uint32_t tswap32(uint32_t s)
{
return bswap32(s);
}
static inline uint64_t tswap64(uint64_t s)
{
return bswap64(s);
}
static inline void tswap16s(uint16_t *s)
{
*s = bswap16(*s);
}
static inline void tswap32s(uint32_t *s)
{
*s = bswap32(*s);
}
static inline void tswap64s(uint64_t *s)
{
*s = bswap64(*s);
}
#else
static inline uint16_t tswap16(uint16_t s)
{
return s;
}
static inline uint32_t tswap32(uint32_t s)
{
return s;
}
static inline uint64_t tswap64(uint64_t s)
{
return s;
}
static inline void tswap16s(uint16_t *s)
{
}
static inline void tswap32s(uint32_t *s)
{
}
static inline void tswap64s(uint64_t *s)
{
}
#endif
#if TARGET_LONG_SIZE == 4
#define tswapl(s) tswap32(s)
#define tswapls(s) tswap32s((uint32_t *)(s))
#define bswaptls(s) bswap32s(s)
#else
#define tswapl(s) tswap64(s)
#define tswapls(s) tswap64s((uint64_t *)(s))
#define bswaptls(s) bswap64s(s)
#endif
typedef union {
float32 f;
uint32_t l;
} CPU_FloatU;
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
endian ! */
typedef union {
float64 d;
#if defined(WORDS_BIGENDIAN) \
|| (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
struct {
uint32_t upper;
uint32_t lower;
} l;
#else
struct {
uint32_t lower;
uint32_t upper;
} l;
#endif
uint64_t ll;
} CPU_DoubleU;
#ifdef TARGET_SPARC
typedef union {
float128 q;
#if defined(WORDS_BIGENDIAN) \
|| (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
struct {
uint32_t upmost;
uint32_t upper;
uint32_t lower;
uint32_t lowest;
} l;
struct {
uint64_t upper;
uint64_t lower;
} ll;
#else
struct {
uint32_t lowest;
uint32_t lower;
uint32_t upper;
uint32_t upmost;
} l;
struct {
uint64_t lower;
uint64_t upper;
} ll;
#endif
} CPU_QuadU;
#endif
/* CPU memory access without any memory or io remapping */
/*
* the generic syntax for the memory accesses is:
*
* load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
*
* store: st{type}{size}{endian}_{access_type}(ptr, val)
*
* type is:
* (empty): integer access
* f : float access
*
* sign is:
* (empty): for floats or 32 bit size
* u : unsigned
* s : signed
*
* size is:
* b: 8 bits
* w: 16 bits
* l: 32 bits
* q: 64 bits
*
* endian is:
* (empty): target cpu endianness or 8 bit access
* r : reversed target cpu endianness (not implemented yet)
* be : big endian (not implemented yet)
* le : little endian (not implemented yet)
*
* access_type is:
* raw : host memory access
* user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU
*/
static inline int ldub_p(const void *ptr)
{
return *(uint8_t *)ptr;
}
static inline int ldsb_p(const void *ptr)
{
return *(int8_t *)ptr;
}
static inline void stb_p(void *ptr, int v)
{
*(uint8_t *)ptr = v;
}
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
kernel handles unaligned load/stores may give better results, but
it is a system wide setting : bad */
#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
/* conservative code for little endian unaligned accesses */
static inline int lduw_le_p(const void *ptr)
{
#ifdef __powerpc__
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
const uint8_t *p = ptr;
return p[0] | (p[1] << 8);
#endif
}
static inline int ldsw_le_p(const void *ptr)
{
#ifdef __powerpc__
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return (int16_t)val;
#else
const uint8_t *p = ptr;
return (int16_t)(p[0] | (p[1] << 8));
#endif
}
static inline int ldl_le_p(const void *ptr)
{
#ifdef __powerpc__
int val;
__asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
const uint8_t *p = ptr;
return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
static inline uint64_t ldq_le_p(const void *ptr)
{
const uint8_t *p = ptr;
uint32_t v1, v2;
v1 = ldl_le_p(p);
v2 = ldl_le_p(p + 4);
return v1 | ((uint64_t)v2 << 32);
}
static inline void stw_le_p(void *ptr, int v)
{
#ifdef __powerpc__
__asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
p[0] = v;
p[1] = v >> 8;
#endif
}
static inline void stl_le_p(void *ptr, int v)
{
#ifdef __powerpc__
__asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
p[0] = v;
p[1] = v >> 8;
p[2] = v >> 16;
p[3] = v >> 24;
#endif
}
static inline void stq_le_p(void *ptr, uint64_t v)
{
uint8_t *p = ptr;
stl_le_p(p, (uint32_t)v);
stl_le_p(p + 4, v >> 32);
}
/* float access */
static inline float32 ldfl_le_p(const void *ptr)
{
union {
float32 f;
uint32_t i;
} u;
u.i = ldl_le_p(ptr);
return u.f;
}
static inline void stfl_le_p(void *ptr, float32 v)
{
union {
float32 f;
uint32_t i;
} u;
u.f = v;
stl_le_p(ptr, u.i);
}
static inline float64 ldfq_le_p(const void *ptr)
{
CPU_DoubleU u;
u.l.lower = ldl_le_p(ptr);
u.l.upper = ldl_le_p(ptr + 4);
return u.d;
}
static inline void stfq_le_p(void *ptr, float64 v)
{
CPU_DoubleU u;
u.d = v;
stl_le_p(ptr, u.l.lower);
stl_le_p(ptr + 4, u.l.upper);
}
#else
static inline int lduw_le_p(const void *ptr)
{
return *(uint16_t *)ptr;
}
static inline int ldsw_le_p(const void *ptr)
{
return *(int16_t *)ptr;
}
static inline int ldl_le_p(const void *ptr)
{
return *(uint32_t *)ptr;
}
static inline uint64_t ldq_le_p(const void *ptr)
{
return *(uint64_t *)ptr;
}
static inline void stw_le_p(void *ptr, int v)
{
*(uint16_t *)ptr = v;
}
static inline void stl_le_p(void *ptr, int v)
{
*(uint32_t *)ptr = v;
}
static inline void stq_le_p(void *ptr, uint64_t v)
{
*(uint64_t *)ptr = v;
}
/* float access */
static inline float32 ldfl_le_p(const void *ptr)
{
return *(float32 *)ptr;
}
static inline float64 ldfq_le_p(const void *ptr)
{
return *(float64 *)ptr;
}
static inline void stfl_le_p(void *ptr, float32 v)
{
*(float32 *)ptr = v;
}
static inline void stfq_le_p(void *ptr, float64 v)
{
*(float64 *)ptr = v;
}
#endif
#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
static inline int lduw_be_p(const void *ptr)
{
#if defined(__i386__)
int val;
asm volatile ("movzwl %1, %0\n"
"xchgb %b0, %h0\n"
: "=q" (val)
: "m" (*(uint16_t *)ptr));
return val;
#else
const uint8_t *b = ptr;
return ((b[0] << 8) | b[1]);
#endif
}
static inline int ldsw_be_p(const void *ptr)
{
#if defined(__i386__)
int val;
asm volatile ("movzwl %1, %0\n"
"xchgb %b0, %h0\n"
: "=q" (val)
: "m" (*(uint16_t *)ptr));
return (int16_t)val;
#else
const uint8_t *b = ptr;
return (int16_t)((b[0] << 8) | b[1]);
#endif
}
static inline int ldl_be_p(const void *ptr)
{
#if defined(__i386__) || defined(__x86_64__)
int val;
asm volatile ("movl %1, %0\n"
"bswap %0\n"
: "=r" (val)
: "m" (*(uint32_t *)ptr));
return val;
#else
const uint8_t *b = ptr;
return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
#endif
}
static inline uint64_t ldq_be_p(const void *ptr)
{
uint32_t a,b;
a = ldl_be_p(ptr);
b = ldl_be_p((uint8_t *)ptr + 4);
return (((uint64_t)a<<32)|b);
}
static inline void stw_be_p(void *ptr, int v)
{
#if defined(__i386__)
asm volatile ("xchgb %b0, %h0\n"
"movw %w0, %1\n"
: "=q" (v)
: "m" (*(uint16_t *)ptr), "0" (v));
#else
uint8_t *d = (uint8_t *) ptr;
d[0] = v >> 8;
d[1] = v;
#endif
}
static inline void stl_be_p(void *ptr, int v)
{
#if defined(__i386__) || defined(__x86_64__)
asm volatile ("bswap %0\n"
"movl %0, %1\n"
: "=r" (v)
: "m" (*(uint32_t *)ptr), "0" (v));
#else
uint8_t *d = (uint8_t *) ptr;
d[0] = v >> 24;
d[1] = v >> 16;
d[2] = v >> 8;
d[3] = v;
#endif
}
static inline void stq_be_p(void *ptr, uint64_t v)
{
stl_be_p(ptr, v >> 32);
stl_be_p((uint8_t *)ptr + 4, v);
}
/* float access */
static inline float32 ldfl_be_p(const void *ptr)
{
union {
float32 f;
uint32_t i;
} u;
u.i = ldl_be_p(ptr);
return u.f;
}
static inline void stfl_be_p(void *ptr, float32 v)
{
union {
float32 f;
uint32_t i;
} u;
u.f = v;
stl_be_p(ptr, u.i);
}
static inline float64 ldfq_be_p(const void *ptr)
{
CPU_DoubleU u;
u.l.upper = ldl_be_p(ptr);
u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
return u.d;
}
static inline void stfq_be_p(void *ptr, float64 v)
{
CPU_DoubleU u;
u.d = v;
stl_be_p(ptr, u.l.upper);
stl_be_p((uint8_t *)ptr + 4, u.l.lower);
}
#else
static inline int lduw_be_p(const void *ptr)
{
return *(uint16_t *)ptr;
}
static inline int ldsw_be_p(const void *ptr)
{
return *(int16_t *)ptr;
}
static inline int ldl_be_p(const void *ptr)
{
return *(uint32_t *)ptr;
}
static inline uint64_t ldq_be_p(const void *ptr)
{
return *(uint64_t *)ptr;
}
static inline void stw_be_p(void *ptr, int v)
{
*(uint16_t *)ptr = v;
}
static inline void stl_be_p(void *ptr, int v)
{
*(uint32_t *)ptr = v;
}
static inline void stq_be_p(void *ptr, uint64_t v)
{
*(uint64_t *)ptr = v;
}
/* float access */
static inline float32 ldfl_be_p(const void *ptr)
{
return *(float32 *)ptr;
}
static inline float64 ldfq_be_p(const void *ptr)
{
return *(float64 *)ptr;
}
static inline void stfl_be_p(void *ptr, float32 v)
{
*(float32 *)ptr = v;
}
static inline void stfq_be_p(void *ptr, float64 v)
{
*(float64 *)ptr = v;
}
#endif
/* target CPU memory access functions */
#if defined(TARGET_WORDS_BIGENDIAN)
#define lduw_p(p) lduw_be_p(p)
#define ldsw_p(p) ldsw_be_p(p)
#define ldl_p(p) ldl_be_p(p)
#define ldq_p(p) ldq_be_p(p)
#define ldfl_p(p) ldfl_be_p(p)
#define ldfq_p(p) ldfq_be_p(p)
#define stw_p(p, v) stw_be_p(p, v)
#define stl_p(p, v) stl_be_p(p, v)
#define stq_p(p, v) stq_be_p(p, v)
#define stfl_p(p, v) stfl_be_p(p, v)
#define stfq_p(p, v) stfq_be_p(p, v)
#else
#define lduw_p(p) lduw_le_p(p)
#define ldsw_p(p) ldsw_le_p(p)
#define ldl_p(p) ldl_le_p(p)
#define ldq_p(p) ldq_le_p(p)
#define ldfl_p(p) ldfl_le_p(p)
#define ldfq_p(p) ldfq_le_p(p)
#define stw_p(p, v) stw_le_p(p, v)
#define stl_p(p, v) stl_le_p(p, v)
#define stq_p(p, v) stq_le_p(p, v)
#define stfl_p(p, v) stfl_le_p(p, v)
#define stfq_p(p, v) stfq_le_p(p, v)
#endif
/* MMU memory access macros */
#if defined(CONFIG_USER_ONLY)
#include <assert.h>
#include "qemu-types.h"
/* On some host systems the guest address space is reserved on the host.
* This allows the guest address space to be offset to a convenient location.
*/
//#define GUEST_BASE 0x20000000
#define GUEST_BASE 0
/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
#define h2g(x) ({ \
unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
/* Check if given address fits target address space */ \
assert(__ret == (abi_ulong)__ret); \
(abi_ulong)__ret; \
})
#define h2g_valid(x) ({ \
unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
(__guest == (abi_ulong)__guest); \
})
#define saddr(x) g2h(x)
#define laddr(x) g2h(x)
#else /* !CONFIG_USER_ONLY */
/* NOTE: we use double casts if pointers and target_ulong have
different sizes */
#define saddr(x) (uint8_t *)(long)(x)
#define laddr(x) (uint8_t *)(long)(x)
#endif
#define ldub_raw(p) ldub_p(laddr((p)))
#define ldsb_raw(p) ldsb_p(laddr((p)))
#define lduw_raw(p) lduw_p(laddr((p)))
#define ldsw_raw(p) ldsw_p(laddr((p)))
#define ldl_raw(p) ldl_p(laddr((p)))
#define ldq_raw(p) ldq_p(laddr((p)))
#define ldfl_raw(p) ldfl_p(laddr((p)))
#define ldfq_raw(p) ldfq_p(laddr((p)))
#define stb_raw(p, v) stb_p(saddr((p)), v)
#define stw_raw(p, v) stw_p(saddr((p)), v)
#define stl_raw(p, v) stl_p(saddr((p)), v)
#define stq_raw(p, v) stq_p(saddr((p)), v)
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
#if defined(CONFIG_USER_ONLY)
/* if user mode, no other memory access functions */
#define ldub(p) ldub_raw(p)
#define ldsb(p) ldsb_raw(p)
#define lduw(p) lduw_raw(p)
#define ldsw(p) ldsw_raw(p)
#define ldl(p) ldl_raw(p)
#define ldq(p) ldq_raw(p)
#define ldfl(p) ldfl_raw(p)
#define ldfq(p) ldfq_raw(p)
#define stb(p, v) stb_raw(p, v)
#define stw(p, v) stw_raw(p, v)
#define stl(p, v) stl_raw(p, v)
#define stq(p, v) stq_raw(p, v)
#define stfl(p, v) stfl_raw(p, v)
#define stfq(p, v) stfq_raw(p, v)
#define ldub_code(p) ldub_raw(p)
#define ldsb_code(p) ldsb_raw(p)
#define lduw_code(p) lduw_raw(p)
#define ldsw_code(p) ldsw_raw(p)
#define ldl_code(p) ldl_raw(p)
#define ldq_code(p) ldq_raw(p)
#define ldub_kernel(p) ldub_raw(p)
#define ldsb_kernel(p) ldsb_raw(p)
#define lduw_kernel(p) lduw_raw(p)
#define ldsw_kernel(p) ldsw_raw(p)
#define ldl_kernel(p) ldl_raw(p)
#define ldq_kernel(p) ldq_raw(p)
#define ldfl_kernel(p) ldfl_raw(p)
#define ldfq_kernel(p) ldfq_raw(p)
#define stb_kernel(p, v) stb_raw(p, v)
#define stw_kernel(p, v) stw_raw(p, v)
#define stl_kernel(p, v) stl_raw(p, v)
#define stq_kernel(p, v) stq_raw(p, v)
#define stfl_kernel(p, v) stfl_raw(p, v)
#define stfq_kernel(p, vt) stfq_raw(p, v)
#endif /* defined(CONFIG_USER_ONLY) */
/* page related stuff */
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
/* ??? These should be the larger of unsigned long and target_ulong. */
extern unsigned long qemu_real_host_page_size;
extern unsigned long qemu_host_page_bits;
extern unsigned long qemu_host_page_size;
extern unsigned long qemu_host_page_mask;
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
/* same as PROT_xxx */
#define PAGE_READ 0x0001
#define PAGE_WRITE 0x0002
#define PAGE_EXEC 0x0004
#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID 0x0008
/* original state of the write flag (used when tracking self-modifying
code */
#define PAGE_WRITE_ORG 0x0010
#define PAGE_RESERVED 0x0020
void page_dump(FILE *f);
int page_get_flags(target_ulong address);
void page_set_flags(target_ulong start, target_ulong end, int flags);
int page_check_range(target_ulong start, target_ulong len, int flags);
void cpu_exec_init_all(unsigned long tb_size);
CPUState *cpu_copy(CPUState *env);
void cpu_dump_state(CPUState *env, FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
int flags);
void cpu_dump_statistics (CPUState *env, FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
int flags);
void cpu_abort(CPUState *env, const char *fmt, ...)
__attribute__ ((__format__ (__printf__, 2, 3)))
__attribute__ ((__noreturn__));
extern CPUState *first_cpu;
extern CPUState *cpu_single_env;
extern int64_t qemu_icount;
extern int use_icount;
#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
void cpu_interrupt(CPUState *s, int mask);
void cpu_reset_interrupt(CPUState *env, int mask);
/* Breakpoint/watchpoint flags */
#define BP_MEM_READ 0x01
#define BP_MEM_WRITE 0x02
#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
#define BP_STOP_BEFORE_ACCESS 0x04
#define BP_WATCHPOINT_HIT 0x08
#define BP_GDB 0x10
#define BP_CPU 0x20
int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
CPUBreakpoint **breakpoint);
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
void cpu_breakpoint_remove_all(CPUState *env, int mask);
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
int flags, CPUWatchpoint **watchpoint);
int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
target_ulong len, int flags);
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
void cpu_watchpoint_remove_all(CPUState *env, int mask);
#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
void cpu_single_step(CPUState *env, int enabled);
void cpu_reset(CPUState *s);
/* Return the physical page corresponding to a virtual one. Use it
only for debugging because no protection checks are done. Return -1
if no page found. */
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
#define CPU_LOG_TB_OUT_ASM (1 << 0)
#define CPU_LOG_TB_IN_ASM (1 << 1)
#define CPU_LOG_TB_OP (1 << 2)
#define CPU_LOG_TB_OP_OPT (1 << 3)
#define CPU_LOG_INT (1 << 4)
#define CPU_LOG_EXEC (1 << 5)
#define CPU_LOG_PCALL (1 << 6)
#define CPU_LOG_IOPORT (1 << 7)
#define CPU_LOG_TB_CPU (1 << 8)
/* define log items */
typedef struct CPULogItem {
int mask;
const char *name;
const char *help;
} CPULogItem;
extern const CPULogItem cpu_log_items[];
void cpu_set_log(int log_flags);
void cpu_set_log_filename(const char *filename);
int cpu_str_to_log_mask(const char *str);
/* IO ports API */
/* NOTE: as these functions may be even used when there is an isa
brige on non x86 targets, we always defined them */
#ifndef NO_CPU_IO_DEFS
void cpu_outb(CPUState *env, int addr, int val);
void cpu_outw(CPUState *env, int addr, int val);
void cpu_outl(CPUState *env, int addr, int val);
int cpu_inb(CPUState *env, int addr);
int cpu_inw(CPUState *env, int addr);
int cpu_inl(CPUState *env, int addr);
#endif
/* address in the RAM (different from a physical address) */
#ifdef USE_KQEMU
typedef uint32_t ram_addr_t;
#else
typedef unsigned long ram_addr_t;
#endif
/* memory API */
extern ram_addr_t phys_ram_size;
extern int phys_ram_fd;
extern uint8_t *phys_ram_base;
extern uint8_t *phys_ram_dirty;
extern ram_addr_t ram_size;
/* physical memory access */
/* MMIO pages are identified by a combination of an IO device index and
3 flags. The ROMD code stores the page ram offset in iotlb entry,
so only a limited number of ids are avaiable. */
#define IO_MEM_SHIFT 3
#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
#define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
/* Acts like a ROM when read and like a device when written. */
#define IO_MEM_ROMD (1)
#define IO_MEM_SUBPAGE (2)
#define IO_MEM_SUBWIDTH (4)
/* Flags stored in the low bits of the TLB virtual address. These are
defined so that fast path ram access is all zeros. */
/* Zero if TLB entry is valid. */
#define TLB_INVALID_MASK (1 << 3)
/* Set if TLB entry references a clean RAM page. The iotlb entry will
contain the page physical address. */
#define TLB_NOTDIRTY (1 << 4)
/* Set if TLB entry is an IO callback. */
#define TLB_MMIO (1 << 5)
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
ram_addr_t size,
ram_addr_t phys_offset,
ram_addr_t region_offset);
static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
ram_addr_t size,
ram_addr_t phys_offset)
{
cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
}
ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
ram_addr_t qemu_ram_alloc(ram_addr_t);
void qemu_ram_free(ram_addr_t addr);
int cpu_register_io_memory(int io_index,
CPUReadMemoryFunc **mem_read,
CPUWriteMemoryFunc **mem_write,
void *opaque);
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
int len, int is_write);
static inline void cpu_physical_memory_read(target_phys_addr_t addr,
uint8_t *buf, int len)
{
cpu_physical_memory_rw(addr, buf, len, 0);
}
static inline void cpu_physical_memory_write(target_phys_addr_t addr,
const uint8_t *buf, int len)
{
cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
}
uint32_t ldub_phys(target_phys_addr_t addr);
uint32_t lduw_phys(target_phys_addr_t addr);
uint32_t ldl_phys(target_phys_addr_t addr);
uint64_t ldq_phys(target_phys_addr_t addr);
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
void stb_phys(target_phys_addr_t addr, uint32_t val);
void stw_phys(target_phys_addr_t addr, uint32_t val);
void stl_phys(target_phys_addr_t addr, uint32_t val);
void stq_phys(target_phys_addr_t addr, uint64_t val);
void cpu_physical_memory_write_rom(target_phys_addr_t addr,
const uint8_t *buf, int len);
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
uint8_t *buf, int len, int is_write);
#define VGA_DIRTY_FLAG 0x01
#define CODE_DIRTY_FLAG 0x02
#define KQEMU_DIRTY_FLAG 0x04
#define MIGRATION_DIRTY_FLAG 0x08
/* read dirty bit (return 0 or 1) */
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
{
return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
}
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
int dirty_flags)
{
return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
}
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
{
phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
}
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
int dirty_flags);
void cpu_tlb_update_dirty(CPUState *env);
int cpu_physical_memory_set_dirty_tracking(int enable);
int cpu_physical_memory_get_dirty_tracking(void);
void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
void dump_exec_info(FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
/* Coalesced MMIO regions are areas where write operations can be reordered.
* This usually implies that write operations are side-effect free. This allows
* batching which can make a major impact on performance when using
* virtualization.
*/
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
/*******************************************/
/* host CPU ticks (if available) */
#if defined(__powerpc__)
static inline uint32_t get_tbl(void)
{
uint32_t tbl;
asm volatile("mftb %0" : "=r" (tbl));
return tbl;
}
static inline uint32_t get_tbu(void)
{
uint32_t tbl;
asm volatile("mftbu %0" : "=r" (tbl));
return tbl;
}
static inline int64_t cpu_get_real_ticks(void)
{
uint32_t l, h, h1;
/* NOTE: we test if wrapping has occurred */
do {
h = get_tbu();
l = get_tbl();
h1 = get_tbu();
} while (h != h1);
return ((int64_t)h << 32) | l;
}
#elif defined(__i386__)
static inline int64_t cpu_get_real_ticks(void)
{
int64_t val;
asm volatile ("rdtsc" : "=A" (val));
return val;
}
#elif defined(__x86_64__)
static inline int64_t cpu_get_real_ticks(void)
{
uint32_t low,high;
int64_t val;
asm volatile("rdtsc" : "=a" (low), "=d" (high));
val = high;
val <<= 32;
val |= low;
return val;
}
#elif defined(__hppa__)
static inline int64_t cpu_get_real_ticks(void)
{
int val;
asm volatile ("mfctl %%cr16, %0" : "=r"(val));
return val;
}
#elif defined(__ia64)
static inline int64_t cpu_get_real_ticks(void)
{
int64_t val;
asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
return val;
}
#elif defined(__s390__)
static inline int64_t cpu_get_real_ticks(void)
{
int64_t val;
asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
return val;
}
#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
static inline int64_t cpu_get_real_ticks (void)
{
#if defined(_LP64)
uint64_t rval;
asm volatile("rd %%tick,%0" : "=r"(rval));
return rval;
#else
union {
uint64_t i64;
struct {
uint32_t high;
uint32_t low;
} i32;
} rval;
asm volatile("rd %%tick,%1; srlx %1,32,%0"
: "=r"(rval.i32.high), "=r"(rval.i32.low));
return rval.i64;
#endif
}
#elif defined(__mips__)
static inline int64_t cpu_get_real_ticks(void)
{
#if __mips_isa_rev >= 2
uint32_t count;
static uint32_t cyc_per_count = 0;
if (!cyc_per_count)
__asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
__asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
return (int64_t)(count * cyc_per_count);
#else
/* FIXME */
static int64_t ticks = 0;
return ticks++;
#endif
}
#else
/* The host CPU doesn't have an easily accessible cycle counter.
Just return a monotonically increasing value. This will be
totally wrong, but hopefully better than nothing. */
static inline int64_t cpu_get_real_ticks (void)
{
static int64_t ticks = 0;
return ticks++;
}
#endif
/* profiling */
#ifdef CONFIG_PROFILER
static inline int64_t profile_getclock(void)
{
return cpu_get_real_ticks();
}
extern int64_t kqemu_time, kqemu_time_start;
extern int64_t qemu_time, qemu_time_start;
extern int64_t tlb_flush_time;
extern int64_t kqemu_exec_count;
extern int64_t dev_time;
extern int64_t kqemu_ret_int_count;
extern int64_t kqemu_ret_excp_count;
extern int64_t kqemu_ret_intr_count;
#endif
#endif /* CPU_ALL_H */