qemu-e2k/hw/ppc/spapr_pci.c
Peter Maydell ab16152926 Migration pull 2017-09-27
-----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJZy64HAAoJEAUWMx68W/3nTqwP/A5Gx4Qwkv5KKdpM0YLq//d+
 OODmzl7Ni3a5Up1ETqGdLb84estrgY+5DISp73Rkt4a5tbT7+XKrhb4qD+93NnTe
 zynY9in4C1jGxYm7YzeOhwSeIiuLZMTCLQlGdYw7/nunIFwkItUEvAFx3AG1WCJe
 2Mk0lvmg4LikruDDMdzqZaJu7h5RU5sQjA7SsyrTBdsN7tNWl3rKLYGXwgzv0uz5
 n2xkUgzvvnj1Bk/Adojkn05yxA86xKD/4rhFED9fjNVSjAGHMrHIWOJ70V26Cg5w
 3gJ+5mesWsH+erf0JFYv0S38SyFbmIOE39Nn13D/d0o1x89P8B8cgqbi3ADTKM77
 875wuIVnZzi2vIwVdxXQ9GHQ79cpXwr2fOfQ2rjT6Ll95K+u/MQG86fQiO0eJW+0
 KwQVCwwh+HmCUcCogMuxAc9+F8C8qolwCi/9QXwS2yLBElHKaWDIMyTce36cW9d7
 cZaKIOeSJUGNFoaWZnXN88MRuOYbdywTl+GddVAW3+VJCTYV2oi0o5fsTfxXy5AV
 y7uYo/pcSj2gSZJ5GairMlB6p5iXnE8yusi1e4ZKA1x1TaSHSb6zR59lRUFr+j/L
 JhUCfA85v5/elGqgkYp6UhSzFDJ2ID2oSEMQTIzfVrinOXtnf2KEh33YMbUH5qyo
 yHVEu12uPe9rE6A0vWlu
 =/+LV
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/dgilbert/tags/pull-migration-20170927a' into staging

Migration pull 2017-09-27

# gpg: Signature made Wed 27 Sep 2017 14:56:23 BST
# gpg:                using RSA key 0x0516331EBC5BFDE7
# gpg: Good signature from "Dr. David Alan Gilbert (RH2) <dgilbert@redhat.com>"
# gpg: WARNING: This key is not certified with sufficiently trusted signatures!
# gpg:          It is not certain that the signature belongs to the owner.
# Primary key fingerprint: 45F5 C71B 4A0C B7FB 977A  9FA9 0516 331E BC5B FDE7

* remotes/dgilbert/tags/pull-migration-20170927a:
  migration: Route more error paths
  migration: Route errors up through vmstate_save
  migration: wire vmstate_save_state errors up to vmstate_subsection_save
  migration: Check field save returns
  migration: check pre_save return in vmstate_save_state
  migration: pre_save return int
  migration: disable auto-converge during bulk block migration

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2017-09-27 22:44:51 +01:00

2224 lines
72 KiB
C

/*
* QEMU sPAPR PCI host originated from Uninorth PCI host
*
* Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
* Copyright (C) 2011 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "cpu.h"
#include "hw/hw.h"
#include "hw/sysbus.h"
#include "hw/pci/pci.h"
#include "hw/pci/msi.h"
#include "hw/pci/msix.h"
#include "hw/pci/pci_host.h"
#include "hw/ppc/spapr.h"
#include "hw/pci-host/spapr.h"
#include "exec/address-spaces.h"
#include "exec/ram_addr.h"
#include <libfdt.h>
#include "trace.h"
#include "qemu/error-report.h"
#include "qapi/qmp/qerror.h"
#include "hw/ppc/fdt.h"
#include "hw/pci/pci_bridge.h"
#include "hw/pci/pci_bus.h"
#include "hw/pci/pci_ids.h"
#include "hw/ppc/spapr_drc.h"
#include "sysemu/device_tree.h"
#include "sysemu/kvm.h"
#include "sysemu/hostmem.h"
#include "sysemu/numa.h"
/* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
#define RTAS_QUERY_FN 0
#define RTAS_CHANGE_FN 1
#define RTAS_RESET_FN 2
#define RTAS_CHANGE_MSI_FN 3
#define RTAS_CHANGE_MSIX_FN 4
/* Interrupt types to return on RTAS_CHANGE_* */
#define RTAS_TYPE_MSI 1
#define RTAS_TYPE_MSIX 2
sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
{
sPAPRPHBState *sphb;
QLIST_FOREACH(sphb, &spapr->phbs, list) {
if (sphb->buid != buid) {
continue;
}
return sphb;
}
return NULL;
}
PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
uint32_t config_addr)
{
sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
int bus_num = (config_addr >> 16) & 0xFF;
int devfn = (config_addr >> 8) & 0xFF;
if (!phb) {
return NULL;
}
return pci_find_device(phb->bus, bus_num, devfn);
}
static uint32_t rtas_pci_cfgaddr(uint32_t arg)
{
/* This handles the encoding of extended config space addresses */
return ((arg >> 20) & 0xf00) | (arg & 0xff);
}
static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
uint32_t addr, uint32_t size,
target_ulong rets)
{
PCIDevice *pci_dev;
uint32_t val;
if ((size != 1) && (size != 2) && (size != 4)) {
/* access must be 1, 2 or 4 bytes */
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
pci_dev = spapr_pci_find_dev(spapr, buid, addr);
addr = rtas_pci_cfgaddr(addr);
if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
/* Access must be to a valid device, within bounds and
* naturally aligned */
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
val = pci_host_config_read_common(pci_dev, addr,
pci_config_size(pci_dev), size);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, val);
}
static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint64_t buid;
uint32_t size, addr;
if ((nargs != 4) || (nret != 2)) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
buid = rtas_ldq(args, 1);
size = rtas_ld(args, 3);
addr = rtas_ld(args, 0);
finish_read_pci_config(spapr, buid, addr, size, rets);
}
static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t size, addr;
if ((nargs != 2) || (nret != 2)) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
size = rtas_ld(args, 1);
addr = rtas_ld(args, 0);
finish_read_pci_config(spapr, 0, addr, size, rets);
}
static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
uint32_t addr, uint32_t size,
uint32_t val, target_ulong rets)
{
PCIDevice *pci_dev;
if ((size != 1) && (size != 2) && (size != 4)) {
/* access must be 1, 2 or 4 bytes */
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
pci_dev = spapr_pci_find_dev(spapr, buid, addr);
addr = rtas_pci_cfgaddr(addr);
if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
/* Access must be to a valid device, within bounds and
* naturally aligned */
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
val, size);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
}
static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint64_t buid;
uint32_t val, size, addr;
if ((nargs != 5) || (nret != 1)) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
buid = rtas_ldq(args, 1);
val = rtas_ld(args, 4);
size = rtas_ld(args, 3);
addr = rtas_ld(args, 0);
finish_write_pci_config(spapr, buid, addr, size, val, rets);
}
static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t val, size, addr;
if ((nargs != 3) || (nret != 1)) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
val = rtas_ld(args, 2);
size = rtas_ld(args, 1);
addr = rtas_ld(args, 0);
finish_write_pci_config(spapr, 0, addr, size, val, rets);
}
/*
* Set MSI/MSIX message data.
* This is required for msi_notify()/msix_notify() which
* will write at the addresses via spapr_msi_write().
*
* If hwaddr == 0, all entries will have .data == first_irq i.e.
* table will be reset.
*/
static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
unsigned first_irq, unsigned req_num)
{
unsigned i;
MSIMessage msg = { .address = addr, .data = first_irq };
if (!msix) {
msi_set_message(pdev, msg);
trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
return;
}
for (i = 0; i < req_num; ++i) {
msix_set_message(pdev, i, msg);
trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
if (addr) {
++msg.data;
}
}
}
static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
uint32_t config_addr = rtas_ld(args, 0);
uint64_t buid = rtas_ldq(args, 1);
unsigned int func = rtas_ld(args, 3);
unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
unsigned int seq_num = rtas_ld(args, 5);
unsigned int ret_intr_type;
unsigned int irq, max_irqs = 0;
sPAPRPHBState *phb = NULL;
PCIDevice *pdev = NULL;
spapr_pci_msi *msi;
int *config_addr_key;
Error *err = NULL;
switch (func) {
case RTAS_CHANGE_MSI_FN:
case RTAS_CHANGE_FN:
ret_intr_type = RTAS_TYPE_MSI;
break;
case RTAS_CHANGE_MSIX_FN:
ret_intr_type = RTAS_TYPE_MSIX;
break;
default:
error_report("rtas_ibm_change_msi(%u) is not implemented", func);
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
/* Fins sPAPRPHBState */
phb = spapr_pci_find_phb(spapr, buid);
if (phb) {
pdev = spapr_pci_find_dev(spapr, buid, config_addr);
}
if (!phb || !pdev) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
/* Releasing MSIs */
if (!req_num) {
if (!msi) {
trace_spapr_pci_msi("Releasing wrong config", config_addr);
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
spapr_ics_free(spapr->ics, msi->first_irq, msi->num);
if (msi_present(pdev)) {
spapr_msi_setmsg(pdev, 0, false, 0, 0);
}
if (msix_present(pdev)) {
spapr_msi_setmsg(pdev, 0, true, 0, 0);
}
g_hash_table_remove(phb->msi, &config_addr);
trace_spapr_pci_msi("Released MSIs", config_addr);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, 0);
return;
}
/* Enabling MSI */
/* Check if the device supports as many IRQs as requested */
if (ret_intr_type == RTAS_TYPE_MSI) {
max_irqs = msi_nr_vectors_allocated(pdev);
} else if (ret_intr_type == RTAS_TYPE_MSIX) {
max_irqs = pdev->msix_entries_nr;
}
if (!max_irqs) {
error_report("Requested interrupt type %d is not enabled for device %x",
ret_intr_type, config_addr);
rtas_st(rets, 0, -1); /* Hardware error */
return;
}
/* Correct the number if the guest asked for too many */
if (req_num > max_irqs) {
trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
req_num = max_irqs;
irq = 0; /* to avoid misleading trace */
goto out;
}
/* Allocate MSIs */
irq = spapr_ics_alloc_block(spapr->ics, req_num, false,
ret_intr_type == RTAS_TYPE_MSI, &err);
if (err) {
error_reportf_err(err, "Can't allocate MSIs for device %x: ",
config_addr);
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
/* Release previous MSIs */
if (msi) {
spapr_ics_free(spapr->ics, msi->first_irq, msi->num);
g_hash_table_remove(phb->msi, &config_addr);
}
/* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
irq, req_num);
/* Add MSI device to cache */
msi = g_new(spapr_pci_msi, 1);
msi->first_irq = irq;
msi->num = req_num;
config_addr_key = g_new(int, 1);
*config_addr_key = config_addr;
g_hash_table_insert(phb->msi, config_addr_key, msi);
out:
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, req_num);
rtas_st(rets, 2, ++seq_num);
if (nret > 3) {
rtas_st(rets, 3, ret_intr_type);
}
trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
}
static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token,
uint32_t nargs,
target_ulong args,
uint32_t nret,
target_ulong rets)
{
uint32_t config_addr = rtas_ld(args, 0);
uint64_t buid = rtas_ldq(args, 1);
unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
sPAPRPHBState *phb = NULL;
PCIDevice *pdev = NULL;
spapr_pci_msi *msi;
/* Find sPAPRPHBState */
phb = spapr_pci_find_phb(spapr, buid);
if (phb) {
pdev = spapr_pci_find_dev(spapr, buid, config_addr);
}
if (!phb || !pdev) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
/* Find device descriptor and start IRQ */
msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
trace_spapr_pci_msi("Failed to return vector", config_addr);
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
intr_src_num = msi->first_irq + ioa_intr_num;
trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
intr_src_num);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, intr_src_num);
rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
}
static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
uint32_t addr, option;
uint64_t buid;
int ret;
if ((nargs != 4) || (nret != 1)) {
goto param_error_exit;
}
buid = rtas_ldq(args, 1);
addr = rtas_ld(args, 0);
option = rtas_ld(args, 3);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
if (!spapr_phb_eeh_available(sphb)) {
goto param_error_exit;
}
ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
rtas_st(rets, 0, ret);
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
PCIDevice *pdev;
uint32_t addr, option;
uint64_t buid;
if ((nargs != 4) || (nret != 2)) {
goto param_error_exit;
}
buid = rtas_ldq(args, 1);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
if (!spapr_phb_eeh_available(sphb)) {
goto param_error_exit;
}
/*
* We always have PE address of form "00BB0001". "BB"
* represents the bus number of PE's primary bus.
*/
option = rtas_ld(args, 3);
switch (option) {
case RTAS_GET_PE_ADDR:
addr = rtas_ld(args, 0);
pdev = spapr_pci_find_dev(spapr, buid, addr);
if (!pdev) {
goto param_error_exit;
}
rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
break;
case RTAS_GET_PE_MODE:
rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
break;
default:
goto param_error_exit;
}
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
uint64_t buid;
int state, ret;
if ((nargs != 3) || (nret != 4 && nret != 5)) {
goto param_error_exit;
}
buid = rtas_ldq(args, 1);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
if (!spapr_phb_eeh_available(sphb)) {
goto param_error_exit;
}
ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
rtas_st(rets, 0, ret);
if (ret != RTAS_OUT_SUCCESS) {
return;
}
rtas_st(rets, 1, state);
rtas_st(rets, 2, RTAS_EEH_SUPPORT);
rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
if (nret >= 5) {
rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
}
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
uint32_t option;
uint64_t buid;
int ret;
if ((nargs != 4) || (nret != 1)) {
goto param_error_exit;
}
buid = rtas_ldq(args, 1);
option = rtas_ld(args, 3);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
if (!spapr_phb_eeh_available(sphb)) {
goto param_error_exit;
}
ret = spapr_phb_vfio_eeh_reset(sphb, option);
rtas_st(rets, 0, ret);
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
uint64_t buid;
int ret;
if ((nargs != 3) || (nret != 1)) {
goto param_error_exit;
}
buid = rtas_ldq(args, 1);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
if (!spapr_phb_eeh_available(sphb)) {
goto param_error_exit;
}
ret = spapr_phb_vfio_eeh_configure(sphb);
rtas_st(rets, 0, ret);
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
/* To support it later */
static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
int option;
uint64_t buid;
if ((nargs != 8) || (nret != 1)) {
goto param_error_exit;
}
buid = rtas_ldq(args, 1);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
if (!spapr_phb_eeh_available(sphb)) {
goto param_error_exit;
}
option = rtas_ld(args, 7);
switch (option) {
case RTAS_SLOT_TEMP_ERR_LOG:
case RTAS_SLOT_PERM_ERR_LOG:
break;
default:
goto param_error_exit;
}
/* We don't have error log yet */
rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static int pci_spapr_swizzle(int slot, int pin)
{
return (slot + pin) % PCI_NUM_PINS;
}
static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
{
/*
* Here we need to convert pci_dev + irq_num to some unique value
* which is less than number of IRQs on the specific bus (4). We
* use standard PCI swizzling, that is (slot number + pin number)
* % 4.
*/
return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
}
static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
{
/*
* Here we use the number returned by pci_spapr_map_irq to find a
* corresponding qemu_irq.
*/
sPAPRPHBState *phb = opaque;
trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
}
static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
{
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
PCIINTxRoute route;
route.mode = PCI_INTX_ENABLED;
route.irq = sphb->lsi_table[pin].irq;
return route;
}
/*
* MSI/MSIX memory region implementation.
* The handler handles both MSI and MSIX.
* The vector number is encoded in least bits in data.
*/
static void spapr_msi_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
uint32_t irq = data;
trace_spapr_pci_msi_write(addr, data, irq);
qemu_irq_pulse(xics_get_qirq(XICS_FABRIC(spapr), irq));
}
static const MemoryRegionOps spapr_msi_ops = {
/* There is no .read as the read result is undefined by PCI spec */
.read = NULL,
.write = spapr_msi_write,
.endianness = DEVICE_LITTLE_ENDIAN
};
/*
* PHB PCI device
*/
static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
{
sPAPRPHBState *phb = opaque;
return &phb->iommu_as;
}
static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
{
char *path = NULL, *buf = NULL, *host = NULL;
/* Get the PCI VFIO host id */
host = object_property_get_str(OBJECT(pdev), "host", NULL);
if (!host) {
goto err_out;
}
/* Construct the path of the file that will give us the DT location */
path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
g_free(host);
if (!g_file_get_contents(path, &buf, NULL, NULL)) {
goto err_out;
}
g_free(path);
/* Construct and read from host device tree the loc-code */
path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
g_free(buf);
if (!g_file_get_contents(path, &buf, NULL, NULL)) {
goto err_out;
}
return buf;
err_out:
g_free(path);
return NULL;
}
static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
{
char *buf;
const char *devtype = "qemu";
uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
if (buf) {
return buf;
}
devtype = "vfio";
}
/*
* For emulated devices and VFIO-failure case, make up
* the loc-code.
*/
buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
devtype, pdev->name, sphb->index, busnr,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
return buf;
}
/* Macros to operate with address in OF binding to PCI */
#define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
#define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
#define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
#define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
#define b_ss(x) b_x((x), 24, 2) /* the space code */
#define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
#define b_ddddd(x) b_x((x), 11, 5) /* device number */
#define b_fff(x) b_x((x), 8, 3) /* function number */
#define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
/* for 'reg'/'assigned-addresses' OF properties */
#define RESOURCE_CELLS_SIZE 2
#define RESOURCE_CELLS_ADDRESS 3
typedef struct ResourceFields {
uint32_t phys_hi;
uint32_t phys_mid;
uint32_t phys_lo;
uint32_t size_hi;
uint32_t size_lo;
} QEMU_PACKED ResourceFields;
typedef struct ResourceProps {
ResourceFields reg[8];
ResourceFields assigned[7];
uint32_t reg_len;
uint32_t assigned_len;
} ResourceProps;
/* fill in the 'reg'/'assigned-resources' OF properties for
* a PCI device. 'reg' describes resource requirements for a
* device's IO/MEM regions, 'assigned-addresses' describes the
* actual resource assignments.
*
* the properties are arrays of ('phys-addr', 'size') pairs describing
* the addressable regions of the PCI device, where 'phys-addr' is a
* RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
* (phys.hi, phys.mid, phys.lo), and 'size' is a
* RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
*
* phys.hi = 0xYYXXXXZZ, where:
* 0xYY = npt000ss
* ||| |
* ||| +-- space code
* ||| |
* ||| + 00 if configuration space
* ||| + 01 if IO region,
* ||| + 10 if 32-bit MEM region
* ||| + 11 if 64-bit MEM region
* |||
* ||+------ for non-relocatable IO: 1 if aliased
* || for relocatable IO: 1 if below 64KB
* || for MEM: 1 if below 1MB
* |+------- 1 if region is prefetchable
* +-------- 1 if region is non-relocatable
* 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
* bits respectively
* 0xZZ = rrrrrrrr, the register number of the BAR corresponding
* to the region
*
* phys.mid and phys.lo correspond respectively to the hi/lo portions
* of the actual address of the region.
*
* how the phys-addr/size values are used differ slightly between
* 'reg' and 'assigned-addresses' properties. namely, 'reg' has
* an additional description for the config space region of the
* device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
* to describe the region as relocatable, with an address-mapping
* that corresponds directly to the PHB's address space for the
* resource. 'assigned-addresses' always has n=1 set with an absolute
* address assigned for the resource. in general, 'assigned-addresses'
* won't be populated, since addresses for PCI devices are generally
* unmapped initially and left to the guest to assign.
*
* note also that addresses defined in these properties are, at least
* for PAPR guests, relative to the PHBs IO/MEM windows, and
* correspond directly to the addresses in the BARs.
*
* in accordance with PCI Bus Binding to Open Firmware,
* IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
* Appendix C.
*/
static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
{
int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
uint32_t dev_id = (b_bbbbbbbb(bus_num) |
b_ddddd(PCI_SLOT(d->devfn)) |
b_fff(PCI_FUNC(d->devfn)));
ResourceFields *reg, *assigned;
int i, reg_idx = 0, assigned_idx = 0;
/* config space region */
reg = &rp->reg[reg_idx++];
reg->phys_hi = cpu_to_be32(dev_id);
reg->phys_mid = 0;
reg->phys_lo = 0;
reg->size_hi = 0;
reg->size_lo = 0;
for (i = 0; i < PCI_NUM_REGIONS; i++) {
if (!d->io_regions[i].size) {
continue;
}
reg = &rp->reg[reg_idx++];
reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
reg->phys_hi |= cpu_to_be32(b_ss(1));
} else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
reg->phys_hi |= cpu_to_be32(b_ss(3));
} else {
reg->phys_hi |= cpu_to_be32(b_ss(2));
}
reg->phys_mid = 0;
reg->phys_lo = 0;
reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
reg->size_lo = cpu_to_be32(d->io_regions[i].size);
if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
continue;
}
assigned = &rp->assigned[assigned_idx++];
assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
assigned->size_hi = reg->size_hi;
assigned->size_lo = reg->size_lo;
}
rp->reg_len = reg_idx * sizeof(ResourceFields);
rp->assigned_len = assigned_idx * sizeof(ResourceFields);
}
typedef struct PCIClass PCIClass;
typedef struct PCISubClass PCISubClass;
typedef struct PCIIFace PCIIFace;
struct PCIIFace {
int iface;
const char *name;
};
struct PCISubClass {
int subclass;
const char *name;
const PCIIFace *iface;
};
struct PCIClass {
const char *name;
const PCISubClass *subc;
};
static const PCISubClass undef_subclass[] = {
{ PCI_CLASS_NOT_DEFINED_VGA, "display", NULL },
{ 0xFF, NULL, NULL },
};
static const PCISubClass mass_subclass[] = {
{ PCI_CLASS_STORAGE_SCSI, "scsi", NULL },
{ PCI_CLASS_STORAGE_IDE, "ide", NULL },
{ PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL },
{ PCI_CLASS_STORAGE_IPI, "ipi", NULL },
{ PCI_CLASS_STORAGE_RAID, "raid", NULL },
{ PCI_CLASS_STORAGE_ATA, "ata", NULL },
{ PCI_CLASS_STORAGE_SATA, "sata", NULL },
{ PCI_CLASS_STORAGE_SAS, "sas", NULL },
{ 0xFF, NULL, NULL },
};
static const PCISubClass net_subclass[] = {
{ PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL },
{ PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL },
{ PCI_CLASS_NETWORK_FDDI, "fddi", NULL },
{ PCI_CLASS_NETWORK_ATM, "atm", NULL },
{ PCI_CLASS_NETWORK_ISDN, "isdn", NULL },
{ PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL },
{ PCI_CLASS_NETWORK_PICMG214, "picmg", NULL },
{ 0xFF, NULL, NULL },
};
static const PCISubClass displ_subclass[] = {
{ PCI_CLASS_DISPLAY_VGA, "vga", NULL },
{ PCI_CLASS_DISPLAY_XGA, "xga", NULL },
{ PCI_CLASS_DISPLAY_3D, "3d-controller", NULL },
{ 0xFF, NULL, NULL },
};
static const PCISubClass media_subclass[] = {
{ PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL },
{ PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL },
{ PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL },
{ 0xFF, NULL, NULL },
};
static const PCISubClass mem_subclass[] = {
{ PCI_CLASS_MEMORY_RAM, "memory", NULL },
{ PCI_CLASS_MEMORY_FLASH, "flash", NULL },
{ 0xFF, NULL, NULL },
};
static const PCISubClass bridg_subclass[] = {
{ PCI_CLASS_BRIDGE_HOST, "host", NULL },
{ PCI_CLASS_BRIDGE_ISA, "isa", NULL },
{ PCI_CLASS_BRIDGE_EISA, "eisa", NULL },
{ PCI_CLASS_BRIDGE_MC, "mca", NULL },
{ PCI_CLASS_BRIDGE_PCI, "pci", NULL },
{ PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL },
{ PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL },
{ PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL },
{ PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL },
{ PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL },
{ PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL },
{ 0xFF, NULL, NULL },
};
static const PCISubClass comm_subclass[] = {
{ PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL },
{ PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL },
{ PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL },
{ PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL },
{ PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL },
{ PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL },
{ 0xFF, NULL, NULL, },
};
static const PCIIFace pic_iface[] = {
{ PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" },
{ PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" },
{ 0xFF, NULL },
};
static const PCISubClass sys_subclass[] = {
{ PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface },
{ PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL },
{ PCI_CLASS_SYSTEM_TIMER, "timer", NULL },
{ PCI_CLASS_SYSTEM_RTC, "rtc", NULL },
{ PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL },
{ PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL },
{ 0xFF, NULL, NULL },
};
static const PCISubClass inp_subclass[] = {
{ PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL },
{ PCI_CLASS_INPUT_PEN, "pen", NULL },
{ PCI_CLASS_INPUT_MOUSE, "mouse", NULL },
{ PCI_CLASS_INPUT_SCANNER, "scanner", NULL },
{ PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL },
{ 0xFF, NULL, NULL },
};
static const PCISubClass dock_subclass[] = {
{ PCI_CLASS_DOCKING_GENERIC, "dock", NULL },
{ 0xFF, NULL, NULL },
};
static const PCISubClass cpu_subclass[] = {
{ PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL },
{ PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL },
{ PCI_CLASS_PROCESSOR_MIPS, "mips", NULL },
{ PCI_CLASS_PROCESSOR_CO, "co-processor", NULL },
{ 0xFF, NULL, NULL },
};
static const PCIIFace usb_iface[] = {
{ PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" },
{ PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", },
{ PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" },
{ PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" },
{ PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" },
{ PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" },
{ 0xFF, NULL },
};
static const PCISubClass ser_subclass[] = {
{ PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL },
{ PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL },
{ PCI_CLASS_SERIAL_SSA, "ssa", NULL },
{ PCI_CLASS_SERIAL_USB, "usb", usb_iface },
{ PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL },
{ PCI_CLASS_SERIAL_SMBUS, "smb", NULL },
{ PCI_CLASS_SERIAL_IB, "infiniband", NULL },
{ PCI_CLASS_SERIAL_IPMI, "ipmi", NULL },
{ PCI_CLASS_SERIAL_SERCOS, "sercos", NULL },
{ PCI_CLASS_SERIAL_CANBUS, "canbus", NULL },
{ 0xFF, NULL, NULL },
};
static const PCISubClass wrl_subclass[] = {
{ PCI_CLASS_WIRELESS_IRDA, "irda", NULL },
{ PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL },
{ PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL },
{ PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL },
{ PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL },
{ 0xFF, NULL, NULL },
};
static const PCISubClass sat_subclass[] = {
{ PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL },
{ PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL },
{ PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL },
{ PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL },
{ 0xFF, NULL, NULL },
};
static const PCISubClass crypt_subclass[] = {
{ PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL },
{ PCI_CLASS_CRYPT_ENTERTAINMENT,
"entertainment-encryption", NULL },
{ 0xFF, NULL, NULL },
};
static const PCISubClass spc_subclass[] = {
{ PCI_CLASS_SP_DPIO, "dpio", NULL },
{ PCI_CLASS_SP_PERF, "counter", NULL },
{ PCI_CLASS_SP_SYNCH, "measurement", NULL },
{ PCI_CLASS_SP_MANAGEMENT, "management-card", NULL },
{ 0xFF, NULL, NULL },
};
static const PCIClass pci_classes[] = {
{ "legacy-device", undef_subclass },
{ "mass-storage", mass_subclass },
{ "network", net_subclass },
{ "display", displ_subclass, },
{ "multimedia-device", media_subclass },
{ "memory-controller", mem_subclass },
{ "unknown-bridge", bridg_subclass },
{ "communication-controller", comm_subclass},
{ "system-peripheral", sys_subclass },
{ "input-controller", inp_subclass },
{ "docking-station", dock_subclass },
{ "cpu", cpu_subclass },
{ "serial-bus", ser_subclass },
{ "wireless-controller", wrl_subclass },
{ "intelligent-io", NULL },
{ "satellite-device", sat_subclass },
{ "encryption", crypt_subclass },
{ "data-processing-controller", spc_subclass },
};
static const char *pci_find_device_name(uint8_t class, uint8_t subclass,
uint8_t iface)
{
const PCIClass *pclass;
const PCISubClass *psubclass;
const PCIIFace *piface;
const char *name;
if (class >= ARRAY_SIZE(pci_classes)) {
return "pci";
}
pclass = pci_classes + class;
name = pclass->name;
if (pclass->subc == NULL) {
return name;
}
psubclass = pclass->subc;
while ((psubclass->subclass & 0xff) != 0xff) {
if ((psubclass->subclass & 0xff) == subclass) {
name = psubclass->name;
break;
}
psubclass++;
}
piface = psubclass->iface;
if (piface == NULL) {
return name;
}
while ((piface->iface & 0xff) != 0xff) {
if ((piface->iface & 0xff) == iface) {
name = piface->name;
break;
}
piface++;
}
return name;
}
static gchar *pci_get_node_name(PCIDevice *dev)
{
int slot = PCI_SLOT(dev->devfn);
int func = PCI_FUNC(dev->devfn);
uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
const char *name;
name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff,
ccode & 0xff);
if (func != 0) {
return g_strdup_printf("%s@%x,%x", name, slot, func);
} else {
return g_strdup_printf("%s@%x", name, slot);
}
}
static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
PCIDevice *pdev);
static void spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
sPAPRPHBState *sphb)
{
ResourceProps rp;
bool is_bridge = false;
int pci_status;
char *buf = NULL;
uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3);
uint32_t max_msi, max_msix;
if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
PCI_HEADER_TYPE_BRIDGE) {
is_bridge = true;
}
/* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
_FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
_FDT(fdt_setprop_cell(fdt, offset, "device-id",
pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
_FDT(fdt_setprop_cell(fdt, offset, "revision-id",
pci_default_read_config(dev, PCI_REVISION_ID, 1)));
_FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode));
if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
_FDT(fdt_setprop_cell(fdt, offset, "interrupts",
pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
}
if (!is_bridge) {
_FDT(fdt_setprop_cell(fdt, offset, "min-grant",
pci_default_read_config(dev, PCI_MIN_GNT, 1)));
_FDT(fdt_setprop_cell(fdt, offset, "max-latency",
pci_default_read_config(dev, PCI_MAX_LAT, 1)));
}
if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
_FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
}
if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
_FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
}
_FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
/* the following fdt cells are masked off the pci status register */
pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
_FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
PCI_STATUS_DEVSEL_MASK & pci_status));
if (pci_status & PCI_STATUS_FAST_BACK) {
_FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
}
if (pci_status & PCI_STATUS_66MHZ) {
_FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
}
if (pci_status & PCI_STATUS_UDF) {
_FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
}
_FDT(fdt_setprop_string(fdt, offset, "name",
pci_find_device_name((ccode >> 16) & 0xff,
(ccode >> 8) & 0xff,
ccode & 0xff)));
buf = spapr_phb_get_loc_code(sphb, dev);
_FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", buf));
g_free(buf);
if (drc_index) {
_FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
}
_FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
RESOURCE_CELLS_ADDRESS));
_FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
RESOURCE_CELLS_SIZE));
max_msi = msi_nr_vectors_allocated(dev);
if (max_msi) {
_FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
}
max_msix = dev->msix_entries_nr;
if (max_msix) {
_FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
}
populate_resource_props(dev, &rp);
_FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
_FDT(fdt_setprop(fdt, offset, "assigned-addresses",
(uint8_t *)rp.assigned, rp.assigned_len));
if (sphb->pcie_ecs && pci_is_express(dev)) {
_FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1));
}
}
/* create OF node for pci device and required OF DT properties */
static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
void *fdt, int node_offset)
{
int offset;
gchar *nodename;
nodename = pci_get_node_name(dev);
_FDT(offset = fdt_add_subnode(fdt, node_offset, nodename));
g_free(nodename);
spapr_populate_pci_child_dt(dev, fdt, offset, phb);
return offset;
}
/* Callback to be called during DRC release. */
void spapr_phb_remove_pci_device_cb(DeviceState *dev)
{
/* some version guests do not wait for completion of a device
* cleanup (generally done asynchronously by the kernel) before
* signaling to QEMU that the device is safe, but instead sleep
* for some 'safe' period of time. unfortunately on a busy host
* this sleep isn't guaranteed to be long enough, resulting in
* bad things like IRQ lines being left asserted during final
* device removal. to deal with this we call reset just prior
* to finalizing the device, which will put the device back into
* an 'idle' state, as the device cleanup code expects.
*/
pci_device_reset(PCI_DEVICE(dev));
object_unparent(OBJECT(dev));
}
static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
uint32_t busnr,
int32_t devfn)
{
return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI,
(phb->index << 16) | (busnr << 8) | devfn);
}
static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
PCIDevice *pdev)
{
uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
}
static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
PCIDevice *pdev)
{
sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
if (!drc) {
return 0;
}
return spapr_drc_index(drc);
}
static void spapr_pci_plug(HotplugHandler *plug_handler,
DeviceState *plugged_dev, Error **errp)
{
sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
PCIDevice *pdev = PCI_DEVICE(plugged_dev);
sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
Error *local_err = NULL;
PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
uint32_t slotnr = PCI_SLOT(pdev->devfn);
void *fdt = NULL;
int fdt_start_offset, fdt_size;
/* if DR is disabled we don't need to do anything in the case of
* hotplug or coldplug callbacks
*/
if (!phb->dr_enabled) {
/* if this is a hotplug operation initiated by the user
* we need to let them know it's not enabled
*/
if (plugged_dev->hotplugged) {
error_setg(&local_err, QERR_BUS_NO_HOTPLUG,
object_get_typename(OBJECT(phb)));
}
goto out;
}
g_assert(drc);
/* Following the QEMU convention used for PCIe multifunction
* hotplug, we do not allow functions to be hotplugged to a
* slot that already has function 0 present
*/
if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
PCI_FUNC(pdev->devfn) != 0) {
error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s,"
" additional functions can no longer be exposed to guest.",
slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
goto out;
}
fdt = create_device_tree(&fdt_size);
fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err);
if (local_err) {
goto out;
}
/* If this is function 0, signal hotplug for all the device functions.
* Otherwise defer sending the hotplug event.
*/
if (!spapr_drc_hotplugged(plugged_dev)) {
spapr_drc_reset(drc);
} else if (PCI_FUNC(pdev->devfn) == 0) {
int i;
for (i = 0; i < 8; i++) {
sPAPRDRConnector *func_drc;
sPAPRDRConnectorClass *func_drck;
sPAPRDREntitySense state;
func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
PCI_DEVFN(slotnr, i));
func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
state = func_drck->dr_entity_sense(func_drc);
if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
spapr_hotplug_req_add_by_index(func_drc);
}
}
}
out:
if (local_err) {
error_propagate(errp, local_err);
g_free(fdt);
}
}
static void spapr_pci_unplug_request(HotplugHandler *plug_handler,
DeviceState *plugged_dev, Error **errp)
{
sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
PCIDevice *pdev = PCI_DEVICE(plugged_dev);
sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
if (!phb->dr_enabled) {
error_setg(errp, QERR_BUS_NO_HOTPLUG,
object_get_typename(OBJECT(phb)));
return;
}
g_assert(drc);
g_assert(drc->dev == plugged_dev);
if (!spapr_drc_unplug_requested(drc)) {
PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
uint32_t slotnr = PCI_SLOT(pdev->devfn);
sPAPRDRConnector *func_drc;
sPAPRDRConnectorClass *func_drck;
sPAPRDREntitySense state;
int i;
/* ensure any other present functions are pending unplug */
if (PCI_FUNC(pdev->devfn) == 0) {
for (i = 1; i < 8; i++) {
func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
PCI_DEVFN(slotnr, i));
func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
state = func_drck->dr_entity_sense(func_drc);
if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
&& !spapr_drc_unplug_requested(func_drc)) {
error_setg(errp,
"PCI: slot %d, function %d still present. "
"Must unplug all non-0 functions first.",
slotnr, i);
return;
}
}
}
spapr_drc_detach(drc);
/* if this isn't func 0, defer unplug event. otherwise signal removal
* for all present functions
*/
if (PCI_FUNC(pdev->devfn) == 0) {
for (i = 7; i >= 0; i--) {
func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
PCI_DEVFN(slotnr, i));
func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
state = func_drck->dr_entity_sense(func_drc);
if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
spapr_hotplug_req_remove_by_index(func_drc);
}
}
}
}
}
static void spapr_phb_realize(DeviceState *dev, Error **errp)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
SysBusDevice *s = SYS_BUS_DEVICE(dev);
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
PCIHostState *phb = PCI_HOST_BRIDGE(s);
char *namebuf;
int i;
PCIBus *bus;
uint64_t msi_window_size = 4096;
sPAPRTCETable *tcet;
const unsigned windows_supported =
sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1;
if (sphb->index != (uint32_t)-1) {
sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
Error *local_err = NULL;
smc->phb_placement(spapr, sphb->index,
&sphb->buid, &sphb->io_win_addr,
&sphb->mem_win_addr, &sphb->mem64_win_addr,
windows_supported, sphb->dma_liobn, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
} else {
error_setg(errp, "\"index\" for PAPR PHB is mandatory");
return;
}
if (sphb->mem64_win_size != 0) {
if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx
" (max 2 GiB)", sphb->mem_win_size);
return;
}
/* 64-bit window defaults to identity mapping */
sphb->mem64_win_pciaddr = sphb->mem64_win_addr;
} else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) {
/*
* For compatibility with old configuration, if no 64-bit MMIO
* window is specified, but the ordinary (32-bit) memory
* window is specified as > 2GiB, we treat it as a 2GiB 32-bit
* window, with a 64-bit MMIO window following on immediately
* afterwards
*/
sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE;
sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE;
sphb->mem64_win_pciaddr =
SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE;
sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE;
}
if (spapr_pci_find_phb(spapr, sphb->buid)) {
error_setg(errp, "PCI host bridges must have unique BUIDs");
return;
}
if (sphb->numa_node != -1 &&
(sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) {
error_setg(errp, "Invalid NUMA node ID for PCI host bridge");
return;
}
sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
/* Initialize memory regions */
namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname);
memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
g_free(namebuf);
namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname);
memory_region_init_alias(&sphb->mem32window, OBJECT(sphb),
namebuf, &sphb->memspace,
SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
g_free(namebuf);
memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
&sphb->mem32window);
if (sphb->mem64_win_size != 0) {
namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname);
memory_region_init_alias(&sphb->mem64window, OBJECT(sphb),
namebuf, &sphb->memspace,
sphb->mem64_win_pciaddr, sphb->mem64_win_size);
g_free(namebuf);
memory_region_add_subregion(get_system_memory(),
sphb->mem64_win_addr,
&sphb->mem64window);
}
/* Initialize IO regions */
namebuf = g_strdup_printf("%s.io", sphb->dtbusname);
memory_region_init(&sphb->iospace, OBJECT(sphb),
namebuf, SPAPR_PCI_IO_WIN_SIZE);
g_free(namebuf);
namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname);
memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
&sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
g_free(namebuf);
memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
&sphb->iowindow);
bus = pci_register_bus(dev, NULL,
pci_spapr_set_irq, pci_spapr_map_irq, sphb,
&sphb->memspace, &sphb->iospace,
PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
phb->bus = bus;
qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
/*
* Initialize PHB address space.
* By default there will be at least one subregion for default
* 32bit DMA window.
* Later the guest might want to create another DMA window
* which will become another memory subregion.
*/
namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname);
memory_region_init(&sphb->iommu_root, OBJECT(sphb),
namebuf, UINT64_MAX);
g_free(namebuf);
address_space_init(&sphb->iommu_as, &sphb->iommu_root,
sphb->dtbusname);
/*
* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
* we need to allocate some memory to catch those writes coming
* from msi_notify()/msix_notify().
* As MSIMessage:addr is going to be the same and MSIMessage:data
* is going to be a VIRQ number, 4 bytes of the MSI MR will only
* be used.
*
* For KVM we want to ensure that this memory is a full page so that
* our memory slot is of page size granularity.
*/
#ifdef CONFIG_KVM
if (kvm_enabled()) {
msi_window_size = getpagesize();
}
#endif
memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr,
"msi", msi_window_size);
memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
&sphb->msiwindow);
pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
/* Initialize the LSI table */
for (i = 0; i < PCI_NUM_PINS; i++) {
uint32_t irq;
Error *local_err = NULL;
irq = spapr_ics_alloc_block(spapr->ics, 1, true, false, &local_err);
if (local_err) {
error_propagate(errp, local_err);
error_prepend(errp, "can't allocate LSIs: ");
return;
}
sphb->lsi_table[i].irq = irq;
}
/* allocate connectors for child PCI devices */
if (sphb->dr_enabled) {
for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI,
(sphb->index << 16) | i);
}
}
/* DMA setup */
if (((sphb->page_size_mask & qemu_getrampagesize()) == 0)
&& kvm_enabled()) {
error_report("System page size 0x%lx is not enabled in page_size_mask "
"(0x%"PRIx64"). Performance may be slow",
qemu_getrampagesize(), sphb->page_size_mask);
}
for (i = 0; i < windows_supported; ++i) {
tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
if (!tcet) {
error_setg(errp, "Creating window#%d failed for %s",
i, sphb->dtbusname);
return;
}
memory_region_add_subregion(&sphb->iommu_root, 0,
spapr_tce_get_iommu(tcet));
}
sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
}
static int spapr_phb_children_reset(Object *child, void *opaque)
{
DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
if (dev) {
device_reset(dev);
}
return 0;
}
void spapr_phb_dma_reset(sPAPRPHBState *sphb)
{
int i;
sPAPRTCETable *tcet;
for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
if (tcet && tcet->nb_table) {
spapr_tce_table_disable(tcet);
}
}
/* Register default 32bit DMA window */
tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
}
static void spapr_phb_reset(DeviceState *qdev)
{
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
spapr_phb_dma_reset(sphb);
/* Reset the IOMMU state */
object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
spapr_phb_vfio_reset(qdev);
}
}
static Property spapr_phb_properties[] = {
DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
SPAPR_PCI_MEM32_WIN_SIZE),
DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size,
SPAPR_PCI_MEM64_WIN_SIZE),
DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
SPAPR_PCI_IO_WIN_SIZE),
DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
true),
/* Default DMA window is 0..1GB */
DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr,
0x800000000000000ULL),
DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true),
DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask,
(1ULL << 12) | (1ULL << 16)),
DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1),
DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState,
pre_2_8_migration, false),
DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState,
pcie_ecs, true),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription vmstate_spapr_pci_lsi = {
.name = "spapr_pci/lsi",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_spapr_pci_msi = {
.name = "spapr_pci/msi",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField []) {
VMSTATE_UINT32(key, spapr_pci_msi_mig),
VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
VMSTATE_END_OF_LIST()
},
};
static int spapr_pci_pre_save(void *opaque)
{
sPAPRPHBState *sphb = opaque;
GHashTableIter iter;
gpointer key, value;
int i;
if (sphb->pre_2_8_migration) {
sphb->mig_liobn = sphb->dma_liobn[0];
sphb->mig_mem_win_addr = sphb->mem_win_addr;
sphb->mig_mem_win_size = sphb->mem_win_size;
sphb->mig_io_win_addr = sphb->io_win_addr;
sphb->mig_io_win_size = sphb->io_win_size;
if ((sphb->mem64_win_size != 0)
&& (sphb->mem64_win_addr
== (sphb->mem_win_addr + sphb->mem_win_size))) {
sphb->mig_mem_win_size += sphb->mem64_win_size;
}
}
g_free(sphb->msi_devs);
sphb->msi_devs = NULL;
sphb->msi_devs_num = g_hash_table_size(sphb->msi);
if (!sphb->msi_devs_num) {
return 0;
}
sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
g_hash_table_iter_init(&iter, sphb->msi);
for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
sphb->msi_devs[i].key = *(uint32_t *) key;
sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
}
return 0;
}
static int spapr_pci_post_load(void *opaque, int version_id)
{
sPAPRPHBState *sphb = opaque;
gpointer key, value;
int i;
for (i = 0; i < sphb->msi_devs_num; ++i) {
key = g_memdup(&sphb->msi_devs[i].key,
sizeof(sphb->msi_devs[i].key));
value = g_memdup(&sphb->msi_devs[i].value,
sizeof(sphb->msi_devs[i].value));
g_hash_table_insert(sphb->msi, key, value);
}
g_free(sphb->msi_devs);
sphb->msi_devs = NULL;
sphb->msi_devs_num = 0;
return 0;
}
static bool pre_2_8_migration(void *opaque, int version_id)
{
sPAPRPHBState *sphb = opaque;
return sphb->pre_2_8_migration;
}
static const VMStateDescription vmstate_spapr_pci = {
.name = "spapr_pci",
.version_id = 2,
.minimum_version_id = 2,
.pre_save = spapr_pci_pre_save,
.post_load = spapr_pci_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL),
VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration),
VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration),
VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration),
VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration),
VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration),
VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
vmstate_spapr_pci_msi, spapr_pci_msi_mig),
VMSTATE_END_OF_LIST()
},
};
static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
PCIBus *rootbus)
{
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
return sphb->dtbusname;
}
static void spapr_phb_class_init(ObjectClass *klass, void *data)
{
PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
hc->root_bus_path = spapr_phb_root_bus_path;
dc->realize = spapr_phb_realize;
dc->props = spapr_phb_properties;
dc->reset = spapr_phb_reset;
dc->vmsd = &vmstate_spapr_pci;
/* Supported by TYPE_SPAPR_MACHINE */
dc->user_creatable = true;
set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
hp->plug = spapr_pci_plug;
hp->unplug_request = spapr_pci_unplug_request;
}
static const TypeInfo spapr_phb_info = {
.name = TYPE_SPAPR_PCI_HOST_BRIDGE,
.parent = TYPE_PCI_HOST_BRIDGE,
.instance_size = sizeof(sPAPRPHBState),
.class_init = spapr_phb_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ }
}
};
PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
{
DeviceState *dev;
dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
qdev_prop_set_uint32(dev, "index", index);
qdev_init_nofail(dev);
return PCI_HOST_BRIDGE(dev);
}
typedef struct sPAPRFDT {
void *fdt;
int node_off;
sPAPRPHBState *sphb;
} sPAPRFDT;
static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
void *opaque)
{
PCIBus *sec_bus;
sPAPRFDT *p = opaque;
int offset;
sPAPRFDT s_fdt;
offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
if (!offset) {
error_report("Failed to create pci child device tree node");
return;
}
if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
PCI_HEADER_TYPE_BRIDGE)) {
return;
}
sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
if (!sec_bus) {
return;
}
s_fdt.fdt = p->fdt;
s_fdt.node_off = offset;
s_fdt.sphb = p->sphb;
pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus),
spapr_populate_pci_devices_dt,
&s_fdt);
}
static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
void *opaque)
{
unsigned int *bus_no = opaque;
unsigned int primary = *bus_no;
unsigned int subordinate = 0xff;
PCIBus *sec_bus = NULL;
if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
PCI_HEADER_TYPE_BRIDGE)) {
return;
}
(*bus_no)++;
pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
if (!sec_bus) {
return;
}
pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
spapr_phb_pci_enumerate_bridge, bus_no);
pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
}
static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
{
PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
unsigned int bus_no = 0;
pci_for_each_device(bus, pci_bus_num(bus),
spapr_phb_pci_enumerate_bridge,
&bus_no);
}
int spapr_populate_pci_dt(sPAPRPHBState *phb,
uint32_t xics_phandle,
void *fdt)
{
int bus_off, i, j, ret;
gchar *nodename;
uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
struct {
uint32_t hi;
uint64_t child;
uint64_t parent;
uint64_t size;
} QEMU_PACKED ranges[] = {
{
cpu_to_be32(b_ss(1)), cpu_to_be64(0),
cpu_to_be64(phb->io_win_addr),
cpu_to_be64(memory_region_size(&phb->iospace)),
},
{
cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
cpu_to_be64(phb->mem_win_addr),
cpu_to_be64(phb->mem_win_size),
},
{
cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr),
cpu_to_be64(phb->mem64_win_addr),
cpu_to_be64(phb->mem64_win_size),
},
};
const unsigned sizeof_ranges =
(phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]);
uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
uint32_t interrupt_map_mask[] = {
cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
uint32_t ddw_applicable[] = {
cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
};
uint32_t ddw_extensions[] = {
cpu_to_be32(1),
cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
};
uint32_t associativity[] = {cpu_to_be32(0x4),
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(phb->numa_node)};
sPAPRTCETable *tcet;
PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
sPAPRFDT s_fdt;
/* Start populating the FDT */
nodename = g_strdup_printf("pci@%" PRIx64, phb->buid);
_FDT(bus_off = fdt_add_subnode(fdt, 0, nodename));
g_free(nodename);
/* Write PHB properties */
_FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
_FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
_FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
_FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
_FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
_FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
_FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
_FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
_FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
_FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
_FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR));
/* Dynamic DMA window */
if (phb->ddw_enabled) {
_FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
sizeof(ddw_applicable)));
_FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
&ddw_extensions, sizeof(ddw_extensions)));
}
/* Advertise NUMA via ibm,associativity */
if (phb->numa_node != -1) {
_FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
sizeof(associativity)));
}
/* Build the interrupt-map, this must matches what is done
* in pci_spapr_map_irq
*/
_FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
&interrupt_map_mask, sizeof(interrupt_map_mask)));
for (i = 0; i < PCI_SLOT_MAX; i++) {
for (j = 0; j < PCI_NUM_PINS; j++) {
uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
int lsi_num = pci_spapr_swizzle(i, j);
irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
irqmap[1] = 0;
irqmap[2] = 0;
irqmap[3] = cpu_to_be32(j+1);
irqmap[4] = cpu_to_be32(xics_phandle);
irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
irqmap[6] = cpu_to_be32(0x8);
}
}
/* Write interrupt map */
_FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
sizeof(interrupt_map)));
tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
if (!tcet) {
return -1;
}
spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
tcet->liobn, tcet->bus_offset,
tcet->nb_table << tcet->page_shift);
/* Walk the bridges and program the bus numbers*/
spapr_phb_pci_enumerate(phb);
_FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
/* Populate tree nodes with PCI devices attached */
s_fdt.fdt = fdt;
s_fdt.node_off = bus_off;
s_fdt.sphb = phb;
pci_for_each_device_reverse(bus, pci_bus_num(bus),
spapr_populate_pci_devices_dt,
&s_fdt);
ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
SPAPR_DR_CONNECTOR_TYPE_PCI);
if (ret) {
return ret;
}
return 0;
}
void spapr_pci_rtas_init(void)
{
spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
rtas_read_pci_config);
spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
rtas_write_pci_config);
spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
rtas_ibm_read_pci_config);
spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
rtas_ibm_write_pci_config);
if (msi_nonbroken) {
spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
"ibm,query-interrupt-source-number",
rtas_ibm_query_interrupt_source_number);
spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
rtas_ibm_change_msi);
}
spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
"ibm,set-eeh-option",
rtas_ibm_set_eeh_option);
spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
"ibm,get-config-addr-info2",
rtas_ibm_get_config_addr_info2);
spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
"ibm,read-slot-reset-state2",
rtas_ibm_read_slot_reset_state2);
spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
"ibm,set-slot-reset",
rtas_ibm_set_slot_reset);
spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
"ibm,configure-pe",
rtas_ibm_configure_pe);
spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
"ibm,slot-error-detail",
rtas_ibm_slot_error_detail);
}
static void spapr_pci_register_types(void)
{
type_register_static(&spapr_phb_info);
}
type_init(spapr_pci_register_types)
static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
{
bool be = *(bool *)opaque;
if (object_dynamic_cast(OBJECT(dev), "VGA")
|| object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
&error_abort);
}
return 0;
}
void spapr_pci_switch_vga(bool big_endian)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
sPAPRPHBState *sphb;
/*
* For backward compatibility with existing guests, we switch
* the endianness of the VGA controller when changing the guest
* interrupt mode
*/
QLIST_FOREACH(sphb, &spapr->phbs, list) {
BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
&big_endian);
}
}