qemu-e2k/hw/scsi/scsi-bus.c
Markus Armbruster 54d31236b9 sysemu: Split sysemu/runstate.h off sysemu/sysemu.h
sysemu/sysemu.h is a rather unfocused dumping ground for stuff related
to the system-emulator.  Evidence:

* It's included widely: in my "build everything" tree, changing
  sysemu/sysemu.h still triggers a recompile of some 1100 out of 6600
  objects (not counting tests and objects that don't depend on
  qemu/osdep.h, down from 5400 due to the previous two commits).

* It pulls in more than a dozen additional headers.

Split stuff related to run state management into its own header
sysemu/runstate.h.

Touching sysemu/sysemu.h now recompiles some 850 objects.  qemu/uuid.h
also drops from 1100 to 850, and qapi/qapi-types-run-state.h from 4400
to 4200.  Touching new sysemu/runstate.h recompiles some 500 objects.

Since I'm touching MAINTAINERS to add sysemu/runstate.h anyway, also
add qemu/main-loop.h.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <20190812052359.30071-30-armbru@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
[Unbreak OS-X build]
2019-08-16 13:37:36 +02:00

1735 lines
47 KiB
C

#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "qemu/option.h"
#include "hw/qdev-properties.h"
#include "hw/scsi/scsi.h"
#include "migration/qemu-file-types.h"
#include "migration/vmstate.h"
#include "scsi/constants.h"
#include "sysemu/block-backend.h"
#include "sysemu/blockdev.h"
#include "sysemu/sysemu.h"
#include "sysemu/runstate.h"
#include "trace.h"
#include "sysemu/dma.h"
#include "qemu/cutils.h"
static char *scsibus_get_dev_path(DeviceState *dev);
static char *scsibus_get_fw_dev_path(DeviceState *dev);
static void scsi_req_dequeue(SCSIRequest *req);
static uint8_t *scsi_target_alloc_buf(SCSIRequest *req, size_t len);
static void scsi_target_free_buf(SCSIRequest *req);
static Property scsi_props[] = {
DEFINE_PROP_UINT32("channel", SCSIDevice, channel, 0),
DEFINE_PROP_UINT32("scsi-id", SCSIDevice, id, -1),
DEFINE_PROP_UINT32("lun", SCSIDevice, lun, -1),
DEFINE_PROP_END_OF_LIST(),
};
static void scsi_bus_class_init(ObjectClass *klass, void *data)
{
BusClass *k = BUS_CLASS(klass);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(klass);
k->get_dev_path = scsibus_get_dev_path;
k->get_fw_dev_path = scsibus_get_fw_dev_path;
hc->unplug = qdev_simple_device_unplug_cb;
}
static const TypeInfo scsi_bus_info = {
.name = TYPE_SCSI_BUS,
.parent = TYPE_BUS,
.instance_size = sizeof(SCSIBus),
.class_init = scsi_bus_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ }
}
};
static int next_scsi_bus;
static void scsi_device_realize(SCSIDevice *s, Error **errp)
{
SCSIDeviceClass *sc = SCSI_DEVICE_GET_CLASS(s);
if (sc->realize) {
sc->realize(s, errp);
}
}
int scsi_bus_parse_cdb(SCSIDevice *dev, SCSICommand *cmd, uint8_t *buf,
void *hba_private)
{
SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, dev->qdev.parent_bus);
int rc;
assert(cmd->len == 0);
rc = scsi_req_parse_cdb(dev, cmd, buf);
if (bus->info->parse_cdb) {
rc = bus->info->parse_cdb(dev, cmd, buf, hba_private);
}
return rc;
}
static SCSIRequest *scsi_device_alloc_req(SCSIDevice *s, uint32_t tag, uint32_t lun,
uint8_t *buf, void *hba_private)
{
SCSIDeviceClass *sc = SCSI_DEVICE_GET_CLASS(s);
if (sc->alloc_req) {
return sc->alloc_req(s, tag, lun, buf, hba_private);
}
return NULL;
}
void scsi_device_unit_attention_reported(SCSIDevice *s)
{
SCSIDeviceClass *sc = SCSI_DEVICE_GET_CLASS(s);
if (sc->unit_attention_reported) {
sc->unit_attention_reported(s);
}
}
/* Create a scsi bus, and attach devices to it. */
void scsi_bus_new(SCSIBus *bus, size_t bus_size, DeviceState *host,
const SCSIBusInfo *info, const char *bus_name)
{
qbus_create_inplace(bus, bus_size, TYPE_SCSI_BUS, host, bus_name);
bus->busnr = next_scsi_bus++;
bus->info = info;
qbus_set_bus_hotplug_handler(BUS(bus), &error_abort);
}
static void scsi_dma_restart_bh(void *opaque)
{
SCSIDevice *s = opaque;
SCSIRequest *req, *next;
qemu_bh_delete(s->bh);
s->bh = NULL;
aio_context_acquire(blk_get_aio_context(s->conf.blk));
QTAILQ_FOREACH_SAFE(req, &s->requests, next, next) {
scsi_req_ref(req);
if (req->retry) {
req->retry = false;
switch (req->cmd.mode) {
case SCSI_XFER_FROM_DEV:
case SCSI_XFER_TO_DEV:
scsi_req_continue(req);
break;
case SCSI_XFER_NONE:
scsi_req_dequeue(req);
scsi_req_enqueue(req);
break;
}
}
scsi_req_unref(req);
}
aio_context_release(blk_get_aio_context(s->conf.blk));
}
void scsi_req_retry(SCSIRequest *req)
{
/* No need to save a reference, because scsi_dma_restart_bh just
* looks at the request list. */
req->retry = true;
}
static void scsi_dma_restart_cb(void *opaque, int running, RunState state)
{
SCSIDevice *s = opaque;
if (!running) {
return;
}
if (!s->bh) {
AioContext *ctx = blk_get_aio_context(s->conf.blk);
s->bh = aio_bh_new(ctx, scsi_dma_restart_bh, s);
qemu_bh_schedule(s->bh);
}
}
static void scsi_qdev_realize(DeviceState *qdev, Error **errp)
{
SCSIDevice *dev = SCSI_DEVICE(qdev);
SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, dev->qdev.parent_bus);
SCSIDevice *d;
Error *local_err = NULL;
if (dev->channel > bus->info->max_channel) {
error_setg(errp, "bad scsi channel id: %d", dev->channel);
return;
}
if (dev->id != -1 && dev->id > bus->info->max_target) {
error_setg(errp, "bad scsi device id: %d", dev->id);
return;
}
if (dev->lun != -1 && dev->lun > bus->info->max_lun) {
error_setg(errp, "bad scsi device lun: %d", dev->lun);
return;
}
if (dev->id == -1) {
int id = -1;
if (dev->lun == -1) {
dev->lun = 0;
}
do {
d = scsi_device_find(bus, dev->channel, ++id, dev->lun);
} while (d && d->lun == dev->lun && id < bus->info->max_target);
if (d && d->lun == dev->lun) {
error_setg(errp, "no free target");
return;
}
dev->id = id;
} else if (dev->lun == -1) {
int lun = -1;
do {
d = scsi_device_find(bus, dev->channel, dev->id, ++lun);
} while (d && d->lun == lun && lun < bus->info->max_lun);
if (d && d->lun == lun) {
error_setg(errp, "no free lun");
return;
}
dev->lun = lun;
} else {
d = scsi_device_find(bus, dev->channel, dev->id, dev->lun);
assert(d);
if (d->lun == dev->lun && dev != d) {
error_setg(errp, "lun already used by '%s'", d->qdev.id);
return;
}
}
QTAILQ_INIT(&dev->requests);
scsi_device_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
dev->vmsentry = qdev_add_vm_change_state_handler(DEVICE(dev),
scsi_dma_restart_cb, dev);
}
static void scsi_qdev_unrealize(DeviceState *qdev, Error **errp)
{
SCSIDevice *dev = SCSI_DEVICE(qdev);
if (dev->vmsentry) {
qemu_del_vm_change_state_handler(dev->vmsentry);
}
scsi_device_purge_requests(dev, SENSE_CODE(NO_SENSE));
blockdev_mark_auto_del(dev->conf.blk);
}
/* handle legacy '-drive if=scsi,...' cmd line args */
SCSIDevice *scsi_bus_legacy_add_drive(SCSIBus *bus, BlockBackend *blk,
int unit, bool removable, int bootindex,
bool share_rw,
BlockdevOnError rerror,
BlockdevOnError werror,
const char *serial, Error **errp)
{
const char *driver;
char *name;
DeviceState *dev;
Error *err = NULL;
driver = blk_is_sg(blk) ? "scsi-generic" : "scsi-disk";
dev = qdev_create(&bus->qbus, driver);
name = g_strdup_printf("legacy[%d]", unit);
object_property_add_child(OBJECT(bus), name, OBJECT(dev), NULL);
g_free(name);
qdev_prop_set_uint32(dev, "scsi-id", unit);
if (bootindex >= 0) {
object_property_set_int(OBJECT(dev), bootindex, "bootindex",
&error_abort);
}
if (object_property_find(OBJECT(dev), "removable", NULL)) {
qdev_prop_set_bit(dev, "removable", removable);
}
if (serial && object_property_find(OBJECT(dev), "serial", NULL)) {
qdev_prop_set_string(dev, "serial", serial);
}
qdev_prop_set_drive(dev, "drive", blk, &err);
if (err) {
error_propagate(errp, err);
object_unparent(OBJECT(dev));
return NULL;
}
object_property_set_bool(OBJECT(dev), share_rw, "share-rw", &err);
if (err != NULL) {
error_propagate(errp, err);
object_unparent(OBJECT(dev));
return NULL;
}
qdev_prop_set_enum(dev, "rerror", rerror);
qdev_prop_set_enum(dev, "werror", werror);
object_property_set_bool(OBJECT(dev), true, "realized", &err);
if (err != NULL) {
error_propagate(errp, err);
object_unparent(OBJECT(dev));
return NULL;
}
return SCSI_DEVICE(dev);
}
void scsi_bus_legacy_handle_cmdline(SCSIBus *bus)
{
Location loc;
DriveInfo *dinfo;
int unit;
loc_push_none(&loc);
for (unit = 0; unit <= bus->info->max_target; unit++) {
dinfo = drive_get(IF_SCSI, bus->busnr, unit);
if (dinfo == NULL) {
continue;
}
qemu_opts_loc_restore(dinfo->opts);
scsi_bus_legacy_add_drive(bus, blk_by_legacy_dinfo(dinfo),
unit, false, -1, false,
BLOCKDEV_ON_ERROR_AUTO,
BLOCKDEV_ON_ERROR_AUTO,
NULL, &error_fatal);
}
loc_pop(&loc);
}
static int32_t scsi_invalid_field(SCSIRequest *req, uint8_t *buf)
{
scsi_req_build_sense(req, SENSE_CODE(INVALID_FIELD));
scsi_req_complete(req, CHECK_CONDITION);
return 0;
}
static const struct SCSIReqOps reqops_invalid_field = {
.size = sizeof(SCSIRequest),
.send_command = scsi_invalid_field
};
/* SCSIReqOps implementation for invalid commands. */
static int32_t scsi_invalid_command(SCSIRequest *req, uint8_t *buf)
{
scsi_req_build_sense(req, SENSE_CODE(INVALID_OPCODE));
scsi_req_complete(req, CHECK_CONDITION);
return 0;
}
static const struct SCSIReqOps reqops_invalid_opcode = {
.size = sizeof(SCSIRequest),
.send_command = scsi_invalid_command
};
/* SCSIReqOps implementation for unit attention conditions. */
static int32_t scsi_unit_attention(SCSIRequest *req, uint8_t *buf)
{
if (req->dev->unit_attention.key == UNIT_ATTENTION) {
scsi_req_build_sense(req, req->dev->unit_attention);
} else if (req->bus->unit_attention.key == UNIT_ATTENTION) {
scsi_req_build_sense(req, req->bus->unit_attention);
}
scsi_req_complete(req, CHECK_CONDITION);
return 0;
}
static const struct SCSIReqOps reqops_unit_attention = {
.size = sizeof(SCSIRequest),
.send_command = scsi_unit_attention
};
/* SCSIReqOps implementation for REPORT LUNS and for commands sent to
an invalid LUN. */
typedef struct SCSITargetReq SCSITargetReq;
struct SCSITargetReq {
SCSIRequest req;
int len;
uint8_t *buf;
int buf_len;
};
static void store_lun(uint8_t *outbuf, int lun)
{
if (lun < 256) {
outbuf[1] = lun;
return;
}
outbuf[1] = (lun & 255);
outbuf[0] = (lun >> 8) | 0x40;
}
static bool scsi_target_emulate_report_luns(SCSITargetReq *r)
{
BusChild *kid;
int i, len, n;
int channel, id;
bool found_lun0;
if (r->req.cmd.xfer < 16) {
return false;
}
if (r->req.cmd.buf[2] > 2) {
return false;
}
channel = r->req.dev->channel;
id = r->req.dev->id;
found_lun0 = false;
n = 0;
QTAILQ_FOREACH(kid, &r->req.bus->qbus.children, sibling) {
DeviceState *qdev = kid->child;
SCSIDevice *dev = SCSI_DEVICE(qdev);
if (dev->channel == channel && dev->id == id) {
if (dev->lun == 0) {
found_lun0 = true;
}
n += 8;
}
}
if (!found_lun0) {
n += 8;
}
scsi_target_alloc_buf(&r->req, n + 8);
len = MIN(n + 8, r->req.cmd.xfer & ~7);
memset(r->buf, 0, len);
stl_be_p(&r->buf[0], n);
i = found_lun0 ? 8 : 16;
QTAILQ_FOREACH(kid, &r->req.bus->qbus.children, sibling) {
DeviceState *qdev = kid->child;
SCSIDevice *dev = SCSI_DEVICE(qdev);
if (dev->channel == channel && dev->id == id) {
store_lun(&r->buf[i], dev->lun);
i += 8;
}
}
assert(i == n + 8);
r->len = len;
return true;
}
static bool scsi_target_emulate_inquiry(SCSITargetReq *r)
{
assert(r->req.dev->lun != r->req.lun);
scsi_target_alloc_buf(&r->req, SCSI_INQUIRY_LEN);
if (r->req.cmd.buf[1] & 0x2) {
/* Command support data - optional, not implemented */
return false;
}
if (r->req.cmd.buf[1] & 0x1) {
/* Vital product data */
uint8_t page_code = r->req.cmd.buf[2];
r->buf[r->len++] = page_code ; /* this page */
r->buf[r->len++] = 0x00;
switch (page_code) {
case 0x00: /* Supported page codes, mandatory */
{
int pages;
pages = r->len++;
r->buf[r->len++] = 0x00; /* list of supported pages (this page) */
r->buf[pages] = r->len - pages - 1; /* number of pages */
break;
}
default:
return false;
}
/* done with EVPD */
assert(r->len < r->buf_len);
r->len = MIN(r->req.cmd.xfer, r->len);
return true;
}
/* Standard INQUIRY data */
if (r->req.cmd.buf[2] != 0) {
return false;
}
/* PAGE CODE == 0 */
r->len = MIN(r->req.cmd.xfer, SCSI_INQUIRY_LEN);
memset(r->buf, 0, r->len);
if (r->req.lun != 0) {
r->buf[0] = TYPE_NO_LUN;
} else {
r->buf[0] = TYPE_NOT_PRESENT | TYPE_INACTIVE;
r->buf[2] = 5; /* Version */
r->buf[3] = 2 | 0x10; /* HiSup, response data format */
r->buf[4] = r->len - 5; /* Additional Length = (Len - 1) - 4 */
r->buf[7] = 0x10 | (r->req.bus->info->tcq ? 0x02 : 0); /* Sync, TCQ. */
memcpy(&r->buf[8], "QEMU ", 8);
memcpy(&r->buf[16], "QEMU TARGET ", 16);
pstrcpy((char *) &r->buf[32], 4, qemu_hw_version());
}
return true;
}
static size_t scsi_sense_len(SCSIRequest *req)
{
if (req->dev->type == TYPE_SCANNER)
return SCSI_SENSE_LEN_SCANNER;
else
return SCSI_SENSE_LEN;
}
static int32_t scsi_target_send_command(SCSIRequest *req, uint8_t *buf)
{
SCSITargetReq *r = DO_UPCAST(SCSITargetReq, req, req);
int fixed_sense = (req->cmd.buf[1] & 1) == 0;
if (req->lun != 0 &&
buf[0] != INQUIRY && buf[0] != REQUEST_SENSE) {
scsi_req_build_sense(req, SENSE_CODE(LUN_NOT_SUPPORTED));
scsi_req_complete(req, CHECK_CONDITION);
return 0;
}
switch (buf[0]) {
case REPORT_LUNS:
if (!scsi_target_emulate_report_luns(r)) {
goto illegal_request;
}
break;
case INQUIRY:
if (!scsi_target_emulate_inquiry(r)) {
goto illegal_request;
}
break;
case REQUEST_SENSE:
scsi_target_alloc_buf(&r->req, scsi_sense_len(req));
if (req->lun != 0) {
const struct SCSISense sense = SENSE_CODE(LUN_NOT_SUPPORTED);
r->len = scsi_build_sense_buf(r->buf, req->cmd.xfer,
sense, fixed_sense);
} else {
r->len = scsi_device_get_sense(r->req.dev, r->buf,
MIN(req->cmd.xfer, r->buf_len),
fixed_sense);
}
if (r->req.dev->sense_is_ua) {
scsi_device_unit_attention_reported(req->dev);
r->req.dev->sense_len = 0;
r->req.dev->sense_is_ua = false;
}
break;
case TEST_UNIT_READY:
break;
default:
scsi_req_build_sense(req, SENSE_CODE(INVALID_OPCODE));
scsi_req_complete(req, CHECK_CONDITION);
return 0;
illegal_request:
scsi_req_build_sense(req, SENSE_CODE(INVALID_FIELD));
scsi_req_complete(req, CHECK_CONDITION);
return 0;
}
if (!r->len) {
scsi_req_complete(req, GOOD);
}
return r->len;
}
static void scsi_target_read_data(SCSIRequest *req)
{
SCSITargetReq *r = DO_UPCAST(SCSITargetReq, req, req);
uint32_t n;
n = r->len;
if (n > 0) {
r->len = 0;
scsi_req_data(&r->req, n);
} else {
scsi_req_complete(&r->req, GOOD);
}
}
static uint8_t *scsi_target_get_buf(SCSIRequest *req)
{
SCSITargetReq *r = DO_UPCAST(SCSITargetReq, req, req);
return r->buf;
}
static uint8_t *scsi_target_alloc_buf(SCSIRequest *req, size_t len)
{
SCSITargetReq *r = DO_UPCAST(SCSITargetReq, req, req);
r->buf = g_malloc(len);
r->buf_len = len;
return r->buf;
}
static void scsi_target_free_buf(SCSIRequest *req)
{
SCSITargetReq *r = DO_UPCAST(SCSITargetReq, req, req);
g_free(r->buf);
}
static const struct SCSIReqOps reqops_target_command = {
.size = sizeof(SCSITargetReq),
.send_command = scsi_target_send_command,
.read_data = scsi_target_read_data,
.get_buf = scsi_target_get_buf,
.free_req = scsi_target_free_buf,
};
SCSIRequest *scsi_req_alloc(const SCSIReqOps *reqops, SCSIDevice *d,
uint32_t tag, uint32_t lun, void *hba_private)
{
SCSIRequest *req;
SCSIBus *bus = scsi_bus_from_device(d);
BusState *qbus = BUS(bus);
const int memset_off = offsetof(SCSIRequest, sense)
+ sizeof(req->sense);
req = g_malloc(reqops->size);
memset((uint8_t *)req + memset_off, 0, reqops->size - memset_off);
req->refcount = 1;
req->bus = bus;
req->dev = d;
req->tag = tag;
req->lun = lun;
req->hba_private = hba_private;
req->status = -1;
req->ops = reqops;
object_ref(OBJECT(d));
object_ref(OBJECT(qbus->parent));
notifier_list_init(&req->cancel_notifiers);
trace_scsi_req_alloc(req->dev->id, req->lun, req->tag);
return req;
}
SCSIRequest *scsi_req_new(SCSIDevice *d, uint32_t tag, uint32_t lun,
uint8_t *buf, void *hba_private)
{
SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, d->qdev.parent_bus);
const SCSIReqOps *ops;
SCSIDeviceClass *sc = SCSI_DEVICE_GET_CLASS(d);
SCSIRequest *req;
SCSICommand cmd = { .len = 0 };
int ret;
if ((d->unit_attention.key == UNIT_ATTENTION ||
bus->unit_attention.key == UNIT_ATTENTION) &&
(buf[0] != INQUIRY &&
buf[0] != REPORT_LUNS &&
buf[0] != GET_CONFIGURATION &&
buf[0] != GET_EVENT_STATUS_NOTIFICATION &&
/*
* If we already have a pending unit attention condition,
* report this one before triggering another one.
*/
!(buf[0] == REQUEST_SENSE && d->sense_is_ua))) {
ops = &reqops_unit_attention;
} else if (lun != d->lun ||
buf[0] == REPORT_LUNS ||
(buf[0] == REQUEST_SENSE && d->sense_len)) {
ops = &reqops_target_command;
} else {
ops = NULL;
}
if (ops != NULL || !sc->parse_cdb) {
ret = scsi_req_parse_cdb(d, &cmd, buf);
} else {
ret = sc->parse_cdb(d, &cmd, buf, hba_private);
}
if (ret != 0) {
trace_scsi_req_parse_bad(d->id, lun, tag, buf[0]);
req = scsi_req_alloc(&reqops_invalid_opcode, d, tag, lun, hba_private);
} else {
assert(cmd.len != 0);
trace_scsi_req_parsed(d->id, lun, tag, buf[0],
cmd.mode, cmd.xfer);
if (cmd.lba != -1) {
trace_scsi_req_parsed_lba(d->id, lun, tag, buf[0],
cmd.lba);
}
if (cmd.xfer > INT32_MAX) {
req = scsi_req_alloc(&reqops_invalid_field, d, tag, lun, hba_private);
} else if (ops) {
req = scsi_req_alloc(ops, d, tag, lun, hba_private);
} else {
req = scsi_device_alloc_req(d, tag, lun, buf, hba_private);
}
}
req->cmd = cmd;
req->resid = req->cmd.xfer;
switch (buf[0]) {
case INQUIRY:
trace_scsi_inquiry(d->id, lun, tag, cmd.buf[1], cmd.buf[2]);
break;
case TEST_UNIT_READY:
trace_scsi_test_unit_ready(d->id, lun, tag);
break;
case REPORT_LUNS:
trace_scsi_report_luns(d->id, lun, tag);
break;
case REQUEST_SENSE:
trace_scsi_request_sense(d->id, lun, tag);
break;
default:
break;
}
return req;
}
uint8_t *scsi_req_get_buf(SCSIRequest *req)
{
return req->ops->get_buf(req);
}
static void scsi_clear_unit_attention(SCSIRequest *req)
{
SCSISense *ua;
if (req->dev->unit_attention.key != UNIT_ATTENTION &&
req->bus->unit_attention.key != UNIT_ATTENTION) {
return;
}
/*
* If an INQUIRY command enters the enabled command state,
* the device server shall [not] clear any unit attention condition;
* See also MMC-6, paragraphs 6.5 and 6.6.2.
*/
if (req->cmd.buf[0] == INQUIRY ||
req->cmd.buf[0] == GET_CONFIGURATION ||
req->cmd.buf[0] == GET_EVENT_STATUS_NOTIFICATION) {
return;
}
if (req->dev->unit_attention.key == UNIT_ATTENTION) {
ua = &req->dev->unit_attention;
} else {
ua = &req->bus->unit_attention;
}
/*
* If a REPORT LUNS command enters the enabled command state, [...]
* the device server shall clear any pending unit attention condition
* with an additional sense code of REPORTED LUNS DATA HAS CHANGED.
*/
if (req->cmd.buf[0] == REPORT_LUNS &&
!(ua->asc == SENSE_CODE(REPORTED_LUNS_CHANGED).asc &&
ua->ascq == SENSE_CODE(REPORTED_LUNS_CHANGED).ascq)) {
return;
}
*ua = SENSE_CODE(NO_SENSE);
}
int scsi_req_get_sense(SCSIRequest *req, uint8_t *buf, int len)
{
int ret;
assert(len >= 14);
if (!req->sense_len) {
return 0;
}
ret = scsi_convert_sense(req->sense, req->sense_len, buf, len, true);
/*
* FIXME: clearing unit attention conditions upon autosense should be done
* only if the UA_INTLCK_CTRL field in the Control mode page is set to 00b
* (SAM-5, 5.14).
*
* We assume UA_INTLCK_CTRL to be 00b for HBAs that support autosense, and
* 10b for HBAs that do not support it (do not call scsi_req_get_sense).
* Here we handle unit attention clearing for UA_INTLCK_CTRL == 00b.
*/
if (req->dev->sense_is_ua) {
scsi_device_unit_attention_reported(req->dev);
req->dev->sense_len = 0;
req->dev->sense_is_ua = false;
}
return ret;
}
int scsi_device_get_sense(SCSIDevice *dev, uint8_t *buf, int len, bool fixed)
{
return scsi_convert_sense(dev->sense, dev->sense_len, buf, len, fixed);
}
void scsi_req_build_sense(SCSIRequest *req, SCSISense sense)
{
trace_scsi_req_build_sense(req->dev->id, req->lun, req->tag,
sense.key, sense.asc, sense.ascq);
req->sense_len = scsi_build_sense(req->sense, sense);
}
static void scsi_req_enqueue_internal(SCSIRequest *req)
{
assert(!req->enqueued);
scsi_req_ref(req);
if (req->bus->info->get_sg_list) {
req->sg = req->bus->info->get_sg_list(req);
} else {
req->sg = NULL;
}
req->enqueued = true;
QTAILQ_INSERT_TAIL(&req->dev->requests, req, next);
}
int32_t scsi_req_enqueue(SCSIRequest *req)
{
int32_t rc;
assert(!req->retry);
scsi_req_enqueue_internal(req);
scsi_req_ref(req);
rc = req->ops->send_command(req, req->cmd.buf);
scsi_req_unref(req);
return rc;
}
static void scsi_req_dequeue(SCSIRequest *req)
{
trace_scsi_req_dequeue(req->dev->id, req->lun, req->tag);
req->retry = false;
if (req->enqueued) {
QTAILQ_REMOVE(&req->dev->requests, req, next);
req->enqueued = false;
scsi_req_unref(req);
}
}
static int scsi_get_performance_length(int num_desc, int type, int data_type)
{
/* MMC-6, paragraph 6.7. */
switch (type) {
case 0:
if ((data_type & 3) == 0) {
/* Each descriptor is as in Table 295 - Nominal performance. */
return 16 * num_desc + 8;
} else {
/* Each descriptor is as in Table 296 - Exceptions. */
return 6 * num_desc + 8;
}
case 1:
case 4:
case 5:
return 8 * num_desc + 8;
case 2:
return 2048 * num_desc + 8;
case 3:
return 16 * num_desc + 8;
default:
return 8;
}
}
static int ata_passthrough_xfer_unit(SCSIDevice *dev, uint8_t *buf)
{
int byte_block = (buf[2] >> 2) & 0x1;
int type = (buf[2] >> 4) & 0x1;
int xfer_unit;
if (byte_block) {
if (type) {
xfer_unit = dev->blocksize;
} else {
xfer_unit = 512;
}
} else {
xfer_unit = 1;
}
return xfer_unit;
}
static int ata_passthrough_12_xfer(SCSIDevice *dev, uint8_t *buf)
{
int length = buf[2] & 0x3;
int xfer;
int unit = ata_passthrough_xfer_unit(dev, buf);
switch (length) {
case 0:
case 3: /* USB-specific. */
default:
xfer = 0;
break;
case 1:
xfer = buf[3];
break;
case 2:
xfer = buf[4];
break;
}
return xfer * unit;
}
static int ata_passthrough_16_xfer(SCSIDevice *dev, uint8_t *buf)
{
int extend = buf[1] & 0x1;
int length = buf[2] & 0x3;
int xfer;
int unit = ata_passthrough_xfer_unit(dev, buf);
switch (length) {
case 0:
case 3: /* USB-specific. */
default:
xfer = 0;
break;
case 1:
xfer = buf[4];
xfer |= (extend ? buf[3] << 8 : 0);
break;
case 2:
xfer = buf[6];
xfer |= (extend ? buf[5] << 8 : 0);
break;
}
return xfer * unit;
}
static int scsi_req_xfer(SCSICommand *cmd, SCSIDevice *dev, uint8_t *buf)
{
cmd->xfer = scsi_cdb_xfer(buf);
switch (buf[0]) {
case TEST_UNIT_READY:
case REWIND:
case START_STOP:
case SET_CAPACITY:
case WRITE_FILEMARKS:
case WRITE_FILEMARKS_16:
case SPACE:
case RESERVE:
case RELEASE:
case ERASE:
case ALLOW_MEDIUM_REMOVAL:
case SEEK_10:
case SYNCHRONIZE_CACHE:
case SYNCHRONIZE_CACHE_16:
case LOCATE_16:
case LOCK_UNLOCK_CACHE:
case SET_CD_SPEED:
case SET_LIMITS:
case WRITE_LONG_10:
case UPDATE_BLOCK:
case RESERVE_TRACK:
case SET_READ_AHEAD:
case PRE_FETCH:
case PRE_FETCH_16:
case ALLOW_OVERWRITE:
cmd->xfer = 0;
break;
case VERIFY_10:
case VERIFY_12:
case VERIFY_16:
if ((buf[1] & 2) == 0) {
cmd->xfer = 0;
} else if ((buf[1] & 4) != 0) {
cmd->xfer = 1;
}
cmd->xfer *= dev->blocksize;
break;
case MODE_SENSE:
break;
case WRITE_SAME_10:
case WRITE_SAME_16:
cmd->xfer = buf[1] & 1 ? 0 : dev->blocksize;
break;
case READ_CAPACITY_10:
cmd->xfer = 8;
break;
case READ_BLOCK_LIMITS:
cmd->xfer = 6;
break;
case SEND_VOLUME_TAG:
/* GPCMD_SET_STREAMING from multimedia commands. */
if (dev->type == TYPE_ROM) {
cmd->xfer = buf[10] | (buf[9] << 8);
} else {
cmd->xfer = buf[9] | (buf[8] << 8);
}
break;
case WRITE_6:
/* length 0 means 256 blocks */
if (cmd->xfer == 0) {
cmd->xfer = 256;
}
/* fall through */
case WRITE_10:
case WRITE_VERIFY_10:
case WRITE_12:
case WRITE_VERIFY_12:
case WRITE_16:
case WRITE_VERIFY_16:
cmd->xfer *= dev->blocksize;
break;
case READ_6:
case READ_REVERSE:
/* length 0 means 256 blocks */
if (cmd->xfer == 0) {
cmd->xfer = 256;
}
/* fall through */
case READ_10:
case READ_12:
case READ_16:
cmd->xfer *= dev->blocksize;
break;
case FORMAT_UNIT:
/* MMC mandates the parameter list to be 12-bytes long. Parameters
* for block devices are restricted to the header right now. */
if (dev->type == TYPE_ROM && (buf[1] & 16)) {
cmd->xfer = 12;
} else {
cmd->xfer = (buf[1] & 16) == 0 ? 0 : (buf[1] & 32 ? 8 : 4);
}
break;
case INQUIRY:
case RECEIVE_DIAGNOSTIC:
case SEND_DIAGNOSTIC:
cmd->xfer = buf[4] | (buf[3] << 8);
break;
case READ_CD:
case READ_BUFFER:
case WRITE_BUFFER:
case SEND_CUE_SHEET:
cmd->xfer = buf[8] | (buf[7] << 8) | (buf[6] << 16);
break;
case PERSISTENT_RESERVE_OUT:
cmd->xfer = ldl_be_p(&buf[5]) & 0xffffffffULL;
break;
case ERASE_12:
if (dev->type == TYPE_ROM) {
/* MMC command GET PERFORMANCE. */
cmd->xfer = scsi_get_performance_length(buf[9] | (buf[8] << 8),
buf[10], buf[1] & 0x1f);
}
break;
case MECHANISM_STATUS:
case READ_DVD_STRUCTURE:
case SEND_DVD_STRUCTURE:
case MAINTENANCE_OUT:
case MAINTENANCE_IN:
if (dev->type == TYPE_ROM) {
/* GPCMD_REPORT_KEY and GPCMD_SEND_KEY from multi media commands */
cmd->xfer = buf[9] | (buf[8] << 8);
}
break;
case ATA_PASSTHROUGH_12:
if (dev->type == TYPE_ROM) {
/* BLANK command of MMC */
cmd->xfer = 0;
} else {
cmd->xfer = ata_passthrough_12_xfer(dev, buf);
}
break;
case ATA_PASSTHROUGH_16:
cmd->xfer = ata_passthrough_16_xfer(dev, buf);
break;
}
return 0;
}
static int scsi_req_stream_xfer(SCSICommand *cmd, SCSIDevice *dev, uint8_t *buf)
{
switch (buf[0]) {
/* stream commands */
case ERASE_12:
case ERASE_16:
cmd->xfer = 0;
break;
case READ_6:
case READ_REVERSE:
case RECOVER_BUFFERED_DATA:
case WRITE_6:
cmd->xfer = buf[4] | (buf[3] << 8) | (buf[2] << 16);
if (buf[1] & 0x01) { /* fixed */
cmd->xfer *= dev->blocksize;
}
break;
case READ_16:
case READ_REVERSE_16:
case VERIFY_16:
case WRITE_16:
cmd->xfer = buf[14] | (buf[13] << 8) | (buf[12] << 16);
if (buf[1] & 0x01) { /* fixed */
cmd->xfer *= dev->blocksize;
}
break;
case REWIND:
case LOAD_UNLOAD:
cmd->xfer = 0;
break;
case SPACE_16:
cmd->xfer = buf[13] | (buf[12] << 8);
break;
case READ_POSITION:
switch (buf[1] & 0x1f) /* operation code */ {
case SHORT_FORM_BLOCK_ID:
case SHORT_FORM_VENDOR_SPECIFIC:
cmd->xfer = 20;
break;
case LONG_FORM:
cmd->xfer = 32;
break;
case EXTENDED_FORM:
cmd->xfer = buf[8] | (buf[7] << 8);
break;
default:
return -1;
}
break;
case FORMAT_UNIT:
cmd->xfer = buf[4] | (buf[3] << 8);
break;
/* generic commands */
default:
return scsi_req_xfer(cmd, dev, buf);
}
return 0;
}
static int scsi_req_medium_changer_xfer(SCSICommand *cmd, SCSIDevice *dev, uint8_t *buf)
{
switch (buf[0]) {
/* medium changer commands */
case EXCHANGE_MEDIUM:
case INITIALIZE_ELEMENT_STATUS:
case INITIALIZE_ELEMENT_STATUS_WITH_RANGE:
case MOVE_MEDIUM:
case POSITION_TO_ELEMENT:
cmd->xfer = 0;
break;
case READ_ELEMENT_STATUS:
cmd->xfer = buf[9] | (buf[8] << 8) | (buf[7] << 16);
break;
/* generic commands */
default:
return scsi_req_xfer(cmd, dev, buf);
}
return 0;
}
static int scsi_req_scanner_length(SCSICommand *cmd, SCSIDevice *dev, uint8_t *buf)
{
switch (buf[0]) {
/* Scanner commands */
case OBJECT_POSITION:
cmd->xfer = 0;
break;
case SCAN:
cmd->xfer = buf[4];
break;
case READ_10:
case SEND:
case GET_WINDOW:
case SET_WINDOW:
cmd->xfer = buf[8] | (buf[7] << 8) | (buf[6] << 16);
break;
default:
/* GET_DATA_BUFFER_STATUS xfer handled by scsi_req_xfer */
return scsi_req_xfer(cmd, dev, buf);
}
return 0;
}
static void scsi_cmd_xfer_mode(SCSICommand *cmd)
{
if (!cmd->xfer) {
cmd->mode = SCSI_XFER_NONE;
return;
}
switch (cmd->buf[0]) {
case WRITE_6:
case WRITE_10:
case WRITE_VERIFY_10:
case WRITE_12:
case WRITE_VERIFY_12:
case WRITE_16:
case WRITE_VERIFY_16:
case VERIFY_10:
case VERIFY_12:
case VERIFY_16:
case COPY:
case COPY_VERIFY:
case COMPARE:
case CHANGE_DEFINITION:
case LOG_SELECT:
case MODE_SELECT:
case MODE_SELECT_10:
case SEND_DIAGNOSTIC:
case WRITE_BUFFER:
case FORMAT_UNIT:
case REASSIGN_BLOCKS:
case SEARCH_EQUAL:
case SEARCH_HIGH:
case SEARCH_LOW:
case UPDATE_BLOCK:
case WRITE_LONG_10:
case WRITE_SAME_10:
case WRITE_SAME_16:
case UNMAP:
case SEARCH_HIGH_12:
case SEARCH_EQUAL_12:
case SEARCH_LOW_12:
case MEDIUM_SCAN:
case SEND_VOLUME_TAG:
case SEND_CUE_SHEET:
case SEND_DVD_STRUCTURE:
case PERSISTENT_RESERVE_OUT:
case MAINTENANCE_OUT:
case SET_WINDOW:
case SCAN:
/* SCAN conflicts with START_STOP. START_STOP has cmd->xfer set to 0 for
* non-scanner devices, so we only get here for SCAN and not for START_STOP.
*/
cmd->mode = SCSI_XFER_TO_DEV;
break;
case ATA_PASSTHROUGH_12:
case ATA_PASSTHROUGH_16:
/* T_DIR */
cmd->mode = (cmd->buf[2] & 0x8) ?
SCSI_XFER_FROM_DEV : SCSI_XFER_TO_DEV;
break;
default:
cmd->mode = SCSI_XFER_FROM_DEV;
break;
}
}
int scsi_req_parse_cdb(SCSIDevice *dev, SCSICommand *cmd, uint8_t *buf)
{
int rc;
int len;
cmd->lba = -1;
len = scsi_cdb_length(buf);
if (len < 0) {
return -1;
}
cmd->len = len;
switch (dev->type) {
case TYPE_TAPE:
rc = scsi_req_stream_xfer(cmd, dev, buf);
break;
case TYPE_MEDIUM_CHANGER:
rc = scsi_req_medium_changer_xfer(cmd, dev, buf);
break;
case TYPE_SCANNER:
rc = scsi_req_scanner_length(cmd, dev, buf);
break;
default:
rc = scsi_req_xfer(cmd, dev, buf);
break;
}
if (rc != 0)
return rc;
memcpy(cmd->buf, buf, cmd->len);
scsi_cmd_xfer_mode(cmd);
cmd->lba = scsi_cmd_lba(cmd);
return 0;
}
void scsi_device_report_change(SCSIDevice *dev, SCSISense sense)
{
SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, dev->qdev.parent_bus);
scsi_device_set_ua(dev, sense);
if (bus->info->change) {
bus->info->change(bus, dev, sense);
}
}
SCSIRequest *scsi_req_ref(SCSIRequest *req)
{
assert(req->refcount > 0);
req->refcount++;
return req;
}
void scsi_req_unref(SCSIRequest *req)
{
assert(req->refcount > 0);
if (--req->refcount == 0) {
BusState *qbus = req->dev->qdev.parent_bus;
SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, qbus);
if (bus->info->free_request && req->hba_private) {
bus->info->free_request(bus, req->hba_private);
}
if (req->ops->free_req) {
req->ops->free_req(req);
}
object_unref(OBJECT(req->dev));
object_unref(OBJECT(qbus->parent));
g_free(req);
}
}
/* Tell the device that we finished processing this chunk of I/O. It
will start the next chunk or complete the command. */
void scsi_req_continue(SCSIRequest *req)
{
if (req->io_canceled) {
trace_scsi_req_continue_canceled(req->dev->id, req->lun, req->tag);
return;
}
trace_scsi_req_continue(req->dev->id, req->lun, req->tag);
if (req->cmd.mode == SCSI_XFER_TO_DEV) {
req->ops->write_data(req);
} else {
req->ops->read_data(req);
}
}
/* Called by the devices when data is ready for the HBA. The HBA should
start a DMA operation to read or fill the device's data buffer.
Once it completes, calling scsi_req_continue will restart I/O. */
void scsi_req_data(SCSIRequest *req, int len)
{
uint8_t *buf;
if (req->io_canceled) {
trace_scsi_req_data_canceled(req->dev->id, req->lun, req->tag, len);
return;
}
trace_scsi_req_data(req->dev->id, req->lun, req->tag, len);
assert(req->cmd.mode != SCSI_XFER_NONE);
if (!req->sg) {
req->resid -= len;
req->bus->info->transfer_data(req, len);
return;
}
/* If the device calls scsi_req_data and the HBA specified a
* scatter/gather list, the transfer has to happen in a single
* step. */
assert(!req->dma_started);
req->dma_started = true;
buf = scsi_req_get_buf(req);
if (req->cmd.mode == SCSI_XFER_FROM_DEV) {
req->resid = dma_buf_read(buf, len, req->sg);
} else {
req->resid = dma_buf_write(buf, len, req->sg);
}
scsi_req_continue(req);
}
void scsi_req_print(SCSIRequest *req)
{
FILE *fp = stderr;
int i;
fprintf(fp, "[%s id=%d] %s",
req->dev->qdev.parent_bus->name,
req->dev->id,
scsi_command_name(req->cmd.buf[0]));
for (i = 1; i < req->cmd.len; i++) {
fprintf(fp, " 0x%02x", req->cmd.buf[i]);
}
switch (req->cmd.mode) {
case SCSI_XFER_NONE:
fprintf(fp, " - none\n");
break;
case SCSI_XFER_FROM_DEV:
fprintf(fp, " - from-dev len=%zd\n", req->cmd.xfer);
break;
case SCSI_XFER_TO_DEV:
fprintf(fp, " - to-dev len=%zd\n", req->cmd.xfer);
break;
default:
fprintf(fp, " - Oops\n");
break;
}
}
void scsi_req_complete(SCSIRequest *req, int status)
{
assert(req->status == -1);
req->status = status;
assert(req->sense_len <= sizeof(req->sense));
if (status == GOOD) {
req->sense_len = 0;
}
if (req->sense_len) {
memcpy(req->dev->sense, req->sense, req->sense_len);
req->dev->sense_len = req->sense_len;
req->dev->sense_is_ua = (req->ops == &reqops_unit_attention);
} else {
req->dev->sense_len = 0;
req->dev->sense_is_ua = false;
}
/*
* Unit attention state is now stored in the device's sense buffer
* if the HBA didn't do autosense. Clear the pending unit attention
* flags.
*/
scsi_clear_unit_attention(req);
scsi_req_ref(req);
scsi_req_dequeue(req);
req->bus->info->complete(req, req->status, req->resid);
/* Cancelled requests might end up being completed instead of cancelled */
notifier_list_notify(&req->cancel_notifiers, req);
scsi_req_unref(req);
}
/* Called by the devices when the request is canceled. */
void scsi_req_cancel_complete(SCSIRequest *req)
{
assert(req->io_canceled);
if (req->bus->info->cancel) {
req->bus->info->cancel(req);
}
notifier_list_notify(&req->cancel_notifiers, req);
scsi_req_unref(req);
}
/* Cancel @req asynchronously. @notifier is added to @req's cancellation
* notifier list, the bus will be notified the requests cancellation is
* completed.
* */
void scsi_req_cancel_async(SCSIRequest *req, Notifier *notifier)
{
trace_scsi_req_cancel(req->dev->id, req->lun, req->tag);
if (notifier) {
notifier_list_add(&req->cancel_notifiers, notifier);
}
if (req->io_canceled) {
/* A blk_aio_cancel_async is pending; when it finishes,
* scsi_req_cancel_complete will be called and will
* call the notifier we just added. Just wait for that.
*/
assert(req->aiocb);
return;
}
/* Dropped in scsi_req_cancel_complete. */
scsi_req_ref(req);
scsi_req_dequeue(req);
req->io_canceled = true;
if (req->aiocb) {
blk_aio_cancel_async(req->aiocb);
} else {
scsi_req_cancel_complete(req);
}
}
void scsi_req_cancel(SCSIRequest *req)
{
trace_scsi_req_cancel(req->dev->id, req->lun, req->tag);
if (!req->enqueued) {
return;
}
assert(!req->io_canceled);
/* Dropped in scsi_req_cancel_complete. */
scsi_req_ref(req);
scsi_req_dequeue(req);
req->io_canceled = true;
if (req->aiocb) {
blk_aio_cancel(req->aiocb);
} else {
scsi_req_cancel_complete(req);
}
}
static int scsi_ua_precedence(SCSISense sense)
{
if (sense.key != UNIT_ATTENTION) {
return INT_MAX;
}
if (sense.asc == 0x29 && sense.ascq == 0x04) {
/* DEVICE INTERNAL RESET goes with POWER ON OCCURRED */
return 1;
} else if (sense.asc == 0x3F && sense.ascq == 0x01) {
/* MICROCODE HAS BEEN CHANGED goes with SCSI BUS RESET OCCURRED */
return 2;
} else if (sense.asc == 0x29 && (sense.ascq == 0x05 || sense.ascq == 0x06)) {
/* These two go with "all others". */
;
} else if (sense.asc == 0x29 && sense.ascq <= 0x07) {
/* POWER ON, RESET OR BUS DEVICE RESET OCCURRED = 0
* POWER ON OCCURRED = 1
* SCSI BUS RESET OCCURRED = 2
* BUS DEVICE RESET FUNCTION OCCURRED = 3
* I_T NEXUS LOSS OCCURRED = 7
*/
return sense.ascq;
} else if (sense.asc == 0x2F && sense.ascq == 0x01) {
/* COMMANDS CLEARED BY POWER LOSS NOTIFICATION */
return 8;
}
return (sense.asc << 8) | sense.ascq;
}
void scsi_device_set_ua(SCSIDevice *sdev, SCSISense sense)
{
int prec1, prec2;
if (sense.key != UNIT_ATTENTION) {
return;
}
trace_scsi_device_set_ua(sdev->id, sdev->lun, sense.key,
sense.asc, sense.ascq);
/*
* Override a pre-existing unit attention condition, except for a more
* important reset condition.
*/
prec1 = scsi_ua_precedence(sdev->unit_attention);
prec2 = scsi_ua_precedence(sense);
if (prec2 < prec1) {
sdev->unit_attention = sense;
}
}
void scsi_device_purge_requests(SCSIDevice *sdev, SCSISense sense)
{
SCSIRequest *req;
aio_context_acquire(blk_get_aio_context(sdev->conf.blk));
while (!QTAILQ_EMPTY(&sdev->requests)) {
req = QTAILQ_FIRST(&sdev->requests);
scsi_req_cancel_async(req, NULL);
}
blk_drain(sdev->conf.blk);
aio_context_release(blk_get_aio_context(sdev->conf.blk));
scsi_device_set_ua(sdev, sense);
}
static char *scsibus_get_dev_path(DeviceState *dev)
{
SCSIDevice *d = SCSI_DEVICE(dev);
DeviceState *hba = dev->parent_bus->parent;
char *id;
char *path;
id = qdev_get_dev_path(hba);
if (id) {
path = g_strdup_printf("%s/%d:%d:%d", id, d->channel, d->id, d->lun);
} else {
path = g_strdup_printf("%d:%d:%d", d->channel, d->id, d->lun);
}
g_free(id);
return path;
}
static char *scsibus_get_fw_dev_path(DeviceState *dev)
{
SCSIDevice *d = SCSI_DEVICE(dev);
return g_strdup_printf("channel@%x/%s@%x,%x", d->channel,
qdev_fw_name(dev), d->id, d->lun);
}
SCSIDevice *scsi_device_find(SCSIBus *bus, int channel, int id, int lun)
{
BusChild *kid;
SCSIDevice *target_dev = NULL;
QTAILQ_FOREACH_REVERSE(kid, &bus->qbus.children, sibling) {
DeviceState *qdev = kid->child;
SCSIDevice *dev = SCSI_DEVICE(qdev);
if (dev->channel == channel && dev->id == id) {
if (dev->lun == lun) {
return dev;
}
target_dev = dev;
}
}
return target_dev;
}
/* SCSI request list. For simplicity, pv points to the whole device */
static int put_scsi_requests(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, QJSON *vmdesc)
{
SCSIDevice *s = pv;
SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, s->qdev.parent_bus);
SCSIRequest *req;
QTAILQ_FOREACH(req, &s->requests, next) {
assert(!req->io_canceled);
assert(req->status == -1);
assert(req->enqueued);
qemu_put_sbyte(f, req->retry ? 1 : 2);
qemu_put_buffer(f, req->cmd.buf, sizeof(req->cmd.buf));
qemu_put_be32s(f, &req->tag);
qemu_put_be32s(f, &req->lun);
if (bus->info->save_request) {
bus->info->save_request(f, req);
}
if (req->ops->save_request) {
req->ops->save_request(f, req);
}
}
qemu_put_sbyte(f, 0);
return 0;
}
static int get_scsi_requests(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
SCSIDevice *s = pv;
SCSIBus *bus = DO_UPCAST(SCSIBus, qbus, s->qdev.parent_bus);
int8_t sbyte;
while ((sbyte = qemu_get_sbyte(f)) > 0) {
uint8_t buf[SCSI_CMD_BUF_SIZE];
uint32_t tag;
uint32_t lun;
SCSIRequest *req;
qemu_get_buffer(f, buf, sizeof(buf));
qemu_get_be32s(f, &tag);
qemu_get_be32s(f, &lun);
req = scsi_req_new(s, tag, lun, buf, NULL);
req->retry = (sbyte == 1);
if (bus->info->load_request) {
req->hba_private = bus->info->load_request(f, req);
}
if (req->ops->load_request) {
req->ops->load_request(f, req);
}
/* Just restart it later. */
scsi_req_enqueue_internal(req);
/* At this point, the request will be kept alive by the reference
* added by scsi_req_enqueue_internal, so we can release our reference.
* The HBA of course will add its own reference in the load_request
* callback if it needs to hold on the SCSIRequest.
*/
scsi_req_unref(req);
}
return 0;
}
static const VMStateInfo vmstate_info_scsi_requests = {
.name = "scsi-requests",
.get = get_scsi_requests,
.put = put_scsi_requests,
};
static bool scsi_sense_state_needed(void *opaque)
{
SCSIDevice *s = opaque;
return s->sense_len > SCSI_SENSE_BUF_SIZE_OLD;
}
static const VMStateDescription vmstate_scsi_sense_state = {
.name = "SCSIDevice/sense",
.version_id = 1,
.minimum_version_id = 1,
.needed = scsi_sense_state_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT8_SUB_ARRAY(sense, SCSIDevice,
SCSI_SENSE_BUF_SIZE_OLD,
SCSI_SENSE_BUF_SIZE - SCSI_SENSE_BUF_SIZE_OLD),
VMSTATE_END_OF_LIST()
}
};
const VMStateDescription vmstate_scsi_device = {
.name = "SCSIDevice",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8(unit_attention.key, SCSIDevice),
VMSTATE_UINT8(unit_attention.asc, SCSIDevice),
VMSTATE_UINT8(unit_attention.ascq, SCSIDevice),
VMSTATE_BOOL(sense_is_ua, SCSIDevice),
VMSTATE_UINT8_SUB_ARRAY(sense, SCSIDevice, 0, SCSI_SENSE_BUF_SIZE_OLD),
VMSTATE_UINT32(sense_len, SCSIDevice),
{
.name = "requests",
.version_id = 0,
.field_exists = NULL,
.size = 0, /* ouch */
.info = &vmstate_info_scsi_requests,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_scsi_sense_state,
NULL
}
};
static void scsi_device_class_init(ObjectClass *klass, void *data)
{
DeviceClass *k = DEVICE_CLASS(klass);
set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
k->bus_type = TYPE_SCSI_BUS;
k->realize = scsi_qdev_realize;
k->unrealize = scsi_qdev_unrealize;
k->props = scsi_props;
}
static void scsi_dev_instance_init(Object *obj)
{
DeviceState *dev = DEVICE(obj);
SCSIDevice *s = SCSI_DEVICE(dev);
device_add_bootindex_property(obj, &s->conf.bootindex,
"bootindex", NULL,
&s->qdev, NULL);
}
static const TypeInfo scsi_device_type_info = {
.name = TYPE_SCSI_DEVICE,
.parent = TYPE_DEVICE,
.instance_size = sizeof(SCSIDevice),
.abstract = true,
.class_size = sizeof(SCSIDeviceClass),
.class_init = scsi_device_class_init,
.instance_init = scsi_dev_instance_init,
};
static void scsi_register_types(void)
{
type_register_static(&scsi_bus_info);
type_register_static(&scsi_device_type_info);
}
type_init(scsi_register_types)