qemu-e2k/hw/omap1.c
pbrook 8da3ff1809 Change MMIO callbacks to use offsets, not absolute addresses.
Signed-off-by: Paul Brook <paul@codesourcery.com>


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5849 c046a42c-6fe2-441c-8c8c-71466251a162
2008-12-01 18:59:50 +00:00

4799 lines
132 KiB
C

/*
* TI OMAP processors emulation.
*
* Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include "hw.h"
#include "arm-misc.h"
#include "omap.h"
#include "sysemu.h"
#include "qemu-timer.h"
#include "qemu-char.h"
#include "soc_dma.h"
/* We use pc-style serial ports. */
#include "pc.h"
/* Should signal the TCMI/GPMC */
uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
{
uint8_t ret;
OMAP_8B_REG(addr);
cpu_physical_memory_read(addr, (void *) &ret, 1);
return ret;
}
void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
uint8_t val8 = value;
OMAP_8B_REG(addr);
cpu_physical_memory_write(addr, (void *) &val8, 1);
}
uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
{
uint16_t ret;
OMAP_16B_REG(addr);
cpu_physical_memory_read(addr, (void *) &ret, 2);
return ret;
}
void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
uint16_t val16 = value;
OMAP_16B_REG(addr);
cpu_physical_memory_write(addr, (void *) &val16, 2);
}
uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
{
uint32_t ret;
OMAP_32B_REG(addr);
cpu_physical_memory_read(addr, (void *) &ret, 4);
return ret;
}
void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
OMAP_32B_REG(addr);
cpu_physical_memory_write(addr, (void *) &value, 4);
}
/* Interrupt Handlers */
struct omap_intr_handler_bank_s {
uint32_t irqs;
uint32_t inputs;
uint32_t mask;
uint32_t fiq;
uint32_t sens_edge;
uint32_t swi;
unsigned char priority[32];
};
struct omap_intr_handler_s {
qemu_irq *pins;
qemu_irq parent_intr[2];
unsigned char nbanks;
int level_only;
/* state */
uint32_t new_agr[2];
int sir_intr[2];
int autoidle;
uint32_t mask;
struct omap_intr_handler_bank_s bank[];
};
static void omap_inth_sir_update(struct omap_intr_handler_s *s, int is_fiq)
{
int i, j, sir_intr, p_intr, p, f;
uint32_t level;
sir_intr = 0;
p_intr = 255;
/* Find the interrupt line with the highest dynamic priority.
* Note: 0 denotes the hightest priority.
* If all interrupts have the same priority, the default order is IRQ_N,
* IRQ_N-1,...,IRQ_0. */
for (j = 0; j < s->nbanks; ++j) {
level = s->bank[j].irqs & ~s->bank[j].mask &
(is_fiq ? s->bank[j].fiq : ~s->bank[j].fiq);
for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f,
level >>= f) {
p = s->bank[j].priority[i];
if (p <= p_intr) {
p_intr = p;
sir_intr = 32 * j + i;
}
f = ffs(level >> 1);
}
}
s->sir_intr[is_fiq] = sir_intr;
}
static inline void omap_inth_update(struct omap_intr_handler_s *s, int is_fiq)
{
int i;
uint32_t has_intr = 0;
for (i = 0; i < s->nbanks; ++i)
has_intr |= s->bank[i].irqs & ~s->bank[i].mask &
(is_fiq ? s->bank[i].fiq : ~s->bank[i].fiq);
if (s->new_agr[is_fiq] & has_intr & s->mask) {
s->new_agr[is_fiq] = 0;
omap_inth_sir_update(s, is_fiq);
qemu_set_irq(s->parent_intr[is_fiq], 1);
}
}
#define INT_FALLING_EDGE 0
#define INT_LOW_LEVEL 1
static void omap_set_intr(void *opaque, int irq, int req)
{
struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
uint32_t rise;
struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
int n = irq & 31;
if (req) {
rise = ~bank->irqs & (1 << n);
if (~bank->sens_edge & (1 << n))
rise &= ~bank->inputs;
bank->inputs |= (1 << n);
if (rise) {
bank->irqs |= rise;
omap_inth_update(ih, 0);
omap_inth_update(ih, 1);
}
} else {
rise = bank->sens_edge & bank->irqs & (1 << n);
bank->irqs &= ~rise;
bank->inputs &= ~(1 << n);
}
}
/* Simplified version with no edge detection */
static void omap_set_intr_noedge(void *opaque, int irq, int req)
{
struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
uint32_t rise;
struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
int n = irq & 31;
if (req) {
rise = ~bank->inputs & (1 << n);
if (rise) {
bank->irqs |= bank->inputs |= rise;
omap_inth_update(ih, 0);
omap_inth_update(ih, 1);
}
} else
bank->irqs = (bank->inputs &= ~(1 << n)) | bank->swi;
}
static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
{
struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
int i, offset = addr;
int bank_no = offset >> 8;
int line_no;
struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
offset &= 0xff;
switch (offset) {
case 0x00: /* ITR */
return bank->irqs;
case 0x04: /* MIR */
return bank->mask;
case 0x10: /* SIR_IRQ_CODE */
case 0x14: /* SIR_FIQ_CODE */
if (bank_no != 0)
break;
line_no = s->sir_intr[(offset - 0x10) >> 2];
bank = &s->bank[line_no >> 5];
i = line_no & 31;
if (((bank->sens_edge >> i) & 1) == INT_FALLING_EDGE)
bank->irqs &= ~(1 << i);
return line_no;
case 0x18: /* CONTROL_REG */
if (bank_no != 0)
break;
return 0;
case 0x1c: /* ILR0 */
case 0x20: /* ILR1 */
case 0x24: /* ILR2 */
case 0x28: /* ILR3 */
case 0x2c: /* ILR4 */
case 0x30: /* ILR5 */
case 0x34: /* ILR6 */
case 0x38: /* ILR7 */
case 0x3c: /* ILR8 */
case 0x40: /* ILR9 */
case 0x44: /* ILR10 */
case 0x48: /* ILR11 */
case 0x4c: /* ILR12 */
case 0x50: /* ILR13 */
case 0x54: /* ILR14 */
case 0x58: /* ILR15 */
case 0x5c: /* ILR16 */
case 0x60: /* ILR17 */
case 0x64: /* ILR18 */
case 0x68: /* ILR19 */
case 0x6c: /* ILR20 */
case 0x70: /* ILR21 */
case 0x74: /* ILR22 */
case 0x78: /* ILR23 */
case 0x7c: /* ILR24 */
case 0x80: /* ILR25 */
case 0x84: /* ILR26 */
case 0x88: /* ILR27 */
case 0x8c: /* ILR28 */
case 0x90: /* ILR29 */
case 0x94: /* ILR30 */
case 0x98: /* ILR31 */
i = (offset - 0x1c) >> 2;
return (bank->priority[i] << 2) |
(((bank->sens_edge >> i) & 1) << 1) |
((bank->fiq >> i) & 1);
case 0x9c: /* ISR */
return 0x00000000;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_inth_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
int i, offset = addr;
int bank_no = offset >> 8;
struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
offset &= 0xff;
switch (offset) {
case 0x00: /* ITR */
/* Important: ignore the clearing if the IRQ is level-triggered and
the input bit is 1 */
bank->irqs &= value | (bank->inputs & bank->sens_edge);
return;
case 0x04: /* MIR */
bank->mask = value;
omap_inth_update(s, 0);
omap_inth_update(s, 1);
return;
case 0x10: /* SIR_IRQ_CODE */
case 0x14: /* SIR_FIQ_CODE */
OMAP_RO_REG(addr);
break;
case 0x18: /* CONTROL_REG */
if (bank_no != 0)
break;
if (value & 2) {
qemu_set_irq(s->parent_intr[1], 0);
s->new_agr[1] = ~0;
omap_inth_update(s, 1);
}
if (value & 1) {
qemu_set_irq(s->parent_intr[0], 0);
s->new_agr[0] = ~0;
omap_inth_update(s, 0);
}
return;
case 0x1c: /* ILR0 */
case 0x20: /* ILR1 */
case 0x24: /* ILR2 */
case 0x28: /* ILR3 */
case 0x2c: /* ILR4 */
case 0x30: /* ILR5 */
case 0x34: /* ILR6 */
case 0x38: /* ILR7 */
case 0x3c: /* ILR8 */
case 0x40: /* ILR9 */
case 0x44: /* ILR10 */
case 0x48: /* ILR11 */
case 0x4c: /* ILR12 */
case 0x50: /* ILR13 */
case 0x54: /* ILR14 */
case 0x58: /* ILR15 */
case 0x5c: /* ILR16 */
case 0x60: /* ILR17 */
case 0x64: /* ILR18 */
case 0x68: /* ILR19 */
case 0x6c: /* ILR20 */
case 0x70: /* ILR21 */
case 0x74: /* ILR22 */
case 0x78: /* ILR23 */
case 0x7c: /* ILR24 */
case 0x80: /* ILR25 */
case 0x84: /* ILR26 */
case 0x88: /* ILR27 */
case 0x8c: /* ILR28 */
case 0x90: /* ILR29 */
case 0x94: /* ILR30 */
case 0x98: /* ILR31 */
i = (offset - 0x1c) >> 2;
bank->priority[i] = (value >> 2) & 0x1f;
bank->sens_edge &= ~(1 << i);
bank->sens_edge |= ((value >> 1) & 1) << i;
bank->fiq &= ~(1 << i);
bank->fiq |= (value & 1) << i;
return;
case 0x9c: /* ISR */
for (i = 0; i < 32; i ++)
if (value & (1 << i)) {
omap_set_intr(s, 32 * bank_no + i, 1);
return;
}
return;
}
OMAP_BAD_REG(addr);
}
static CPUReadMemoryFunc *omap_inth_readfn[] = {
omap_badwidth_read32,
omap_badwidth_read32,
omap_inth_read,
};
static CPUWriteMemoryFunc *omap_inth_writefn[] = {
omap_inth_write,
omap_inth_write,
omap_inth_write,
};
void omap_inth_reset(struct omap_intr_handler_s *s)
{
int i;
for (i = 0; i < s->nbanks; ++i){
s->bank[i].irqs = 0x00000000;
s->bank[i].mask = 0xffffffff;
s->bank[i].sens_edge = 0x00000000;
s->bank[i].fiq = 0x00000000;
s->bank[i].inputs = 0x00000000;
s->bank[i].swi = 0x00000000;
memset(s->bank[i].priority, 0, sizeof(s->bank[i].priority));
if (s->level_only)
s->bank[i].sens_edge = 0xffffffff;
}
s->new_agr[0] = ~0;
s->new_agr[1] = ~0;
s->sir_intr[0] = 0;
s->sir_intr[1] = 0;
s->autoidle = 0;
s->mask = ~0;
qemu_set_irq(s->parent_intr[0], 0);
qemu_set_irq(s->parent_intr[1], 0);
}
struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
unsigned long size, unsigned char nbanks, qemu_irq **pins,
qemu_irq parent_irq, qemu_irq parent_fiq, omap_clk clk)
{
int iomemtype;
struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
qemu_mallocz(sizeof(struct omap_intr_handler_s) +
sizeof(struct omap_intr_handler_bank_s) * nbanks);
s->parent_intr[0] = parent_irq;
s->parent_intr[1] = parent_fiq;
s->nbanks = nbanks;
s->pins = qemu_allocate_irqs(omap_set_intr, s, nbanks * 32);
if (pins)
*pins = s->pins;
omap_inth_reset(s);
iomemtype = cpu_register_io_memory(0, omap_inth_readfn,
omap_inth_writefn, s);
cpu_register_physical_memory(base, size, iomemtype);
return s;
}
static uint32_t omap2_inth_read(void *opaque, target_phys_addr_t addr)
{
struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
int offset = addr;
int bank_no, line_no;
struct omap_intr_handler_bank_s *bank = 0;
if ((offset & 0xf80) == 0x80) {
bank_no = (offset & 0x60) >> 5;
if (bank_no < s->nbanks) {
offset &= ~0x60;
bank = &s->bank[bank_no];
}
}
switch (offset) {
case 0x00: /* INTC_REVISION */
return 0x21;
case 0x10: /* INTC_SYSCONFIG */
return (s->autoidle >> 2) & 1;
case 0x14: /* INTC_SYSSTATUS */
return 1; /* RESETDONE */
case 0x40: /* INTC_SIR_IRQ */
return s->sir_intr[0];
case 0x44: /* INTC_SIR_FIQ */
return s->sir_intr[1];
case 0x48: /* INTC_CONTROL */
return (!s->mask) << 2; /* GLOBALMASK */
case 0x4c: /* INTC_PROTECTION */
return 0;
case 0x50: /* INTC_IDLE */
return s->autoidle & 3;
/* Per-bank registers */
case 0x80: /* INTC_ITR */
return bank->inputs;
case 0x84: /* INTC_MIR */
return bank->mask;
case 0x88: /* INTC_MIR_CLEAR */
case 0x8c: /* INTC_MIR_SET */
return 0;
case 0x90: /* INTC_ISR_SET */
return bank->swi;
case 0x94: /* INTC_ISR_CLEAR */
return 0;
case 0x98: /* INTC_PENDING_IRQ */
return bank->irqs & ~bank->mask & ~bank->fiq;
case 0x9c: /* INTC_PENDING_FIQ */
return bank->irqs & ~bank->mask & bank->fiq;
/* Per-line registers */
case 0x100 ... 0x300: /* INTC_ILR */
bank_no = (offset - 0x100) >> 7;
if (bank_no > s->nbanks)
break;
bank = &s->bank[bank_no];
line_no = (offset & 0x7f) >> 2;
return (bank->priority[line_no] << 2) |
((bank->fiq >> line_no) & 1);
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap2_inth_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
int offset = addr;
int bank_no, line_no;
struct omap_intr_handler_bank_s *bank = 0;
if ((offset & 0xf80) == 0x80) {
bank_no = (offset & 0x60) >> 5;
if (bank_no < s->nbanks) {
offset &= ~0x60;
bank = &s->bank[bank_no];
}
}
switch (offset) {
case 0x10: /* INTC_SYSCONFIG */
s->autoidle &= 4;
s->autoidle |= (value & 1) << 2;
if (value & 2) /* SOFTRESET */
omap_inth_reset(s);
return;
case 0x48: /* INTC_CONTROL */
s->mask = (value & 4) ? 0 : ~0; /* GLOBALMASK */
if (value & 2) { /* NEWFIQAGR */
qemu_set_irq(s->parent_intr[1], 0);
s->new_agr[1] = ~0;
omap_inth_update(s, 1);
}
if (value & 1) { /* NEWIRQAGR */
qemu_set_irq(s->parent_intr[0], 0);
s->new_agr[0] = ~0;
omap_inth_update(s, 0);
}
return;
case 0x4c: /* INTC_PROTECTION */
/* TODO: Make a bitmap (or sizeof(char)map) of access privileges
* for every register, see Chapter 3 and 4 for privileged mode. */
if (value & 1)
fprintf(stderr, "%s: protection mode enable attempt\n",
__FUNCTION__);
return;
case 0x50: /* INTC_IDLE */
s->autoidle &= ~3;
s->autoidle |= value & 3;
return;
/* Per-bank registers */
case 0x84: /* INTC_MIR */
bank->mask = value;
omap_inth_update(s, 0);
omap_inth_update(s, 1);
return;
case 0x88: /* INTC_MIR_CLEAR */
bank->mask &= ~value;
omap_inth_update(s, 0);
omap_inth_update(s, 1);
return;
case 0x8c: /* INTC_MIR_SET */
bank->mask |= value;
return;
case 0x90: /* INTC_ISR_SET */
bank->irqs |= bank->swi |= value;
omap_inth_update(s, 0);
omap_inth_update(s, 1);
return;
case 0x94: /* INTC_ISR_CLEAR */
bank->swi &= ~value;
bank->irqs = bank->swi & bank->inputs;
return;
/* Per-line registers */
case 0x100 ... 0x300: /* INTC_ILR */
bank_no = (offset - 0x100) >> 7;
if (bank_no > s->nbanks)
break;
bank = &s->bank[bank_no];
line_no = (offset & 0x7f) >> 2;
bank->priority[line_no] = (value >> 2) & 0x3f;
bank->fiq &= ~(1 << line_no);
bank->fiq |= (value & 1) << line_no;
return;
case 0x00: /* INTC_REVISION */
case 0x14: /* INTC_SYSSTATUS */
case 0x40: /* INTC_SIR_IRQ */
case 0x44: /* INTC_SIR_FIQ */
case 0x80: /* INTC_ITR */
case 0x98: /* INTC_PENDING_IRQ */
case 0x9c: /* INTC_PENDING_FIQ */
OMAP_RO_REG(addr);
return;
}
OMAP_BAD_REG(addr);
}
static CPUReadMemoryFunc *omap2_inth_readfn[] = {
omap_badwidth_read32,
omap_badwidth_read32,
omap2_inth_read,
};
static CPUWriteMemoryFunc *omap2_inth_writefn[] = {
omap2_inth_write,
omap2_inth_write,
omap2_inth_write,
};
struct omap_intr_handler_s *omap2_inth_init(target_phys_addr_t base,
int size, int nbanks, qemu_irq **pins,
qemu_irq parent_irq, qemu_irq parent_fiq,
omap_clk fclk, omap_clk iclk)
{
int iomemtype;
struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
qemu_mallocz(sizeof(struct omap_intr_handler_s) +
sizeof(struct omap_intr_handler_bank_s) * nbanks);
s->parent_intr[0] = parent_irq;
s->parent_intr[1] = parent_fiq;
s->nbanks = nbanks;
s->level_only = 1;
s->pins = qemu_allocate_irqs(omap_set_intr_noedge, s, nbanks * 32);
if (pins)
*pins = s->pins;
omap_inth_reset(s);
iomemtype = cpu_register_io_memory(0, omap2_inth_readfn,
omap2_inth_writefn, s);
cpu_register_physical_memory(base, size, iomemtype);
return s;
}
/* MPU OS timers */
struct omap_mpu_timer_s {
qemu_irq irq;
omap_clk clk;
uint32_t val;
int64_t time;
QEMUTimer *timer;
QEMUBH *tick;
int64_t rate;
int it_ena;
int enable;
int ptv;
int ar;
int st;
uint32_t reset_val;
};
static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
{
uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
if (timer->st && timer->enable && timer->rate)
return timer->val - muldiv64(distance >> (timer->ptv + 1),
timer->rate, ticks_per_sec);
else
return timer->val;
}
static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
{
timer->val = omap_timer_read(timer);
timer->time = qemu_get_clock(vm_clock);
}
static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
{
int64_t expires;
if (timer->enable && timer->st && timer->rate) {
timer->val = timer->reset_val; /* Should skip this on clk enable */
expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
ticks_per_sec, timer->rate);
/* If timer expiry would be sooner than in about 1 ms and
* auto-reload isn't set, then fire immediately. This is a hack
* to make systems like PalmOS run in acceptable time. PalmOS
* sets the interval to a very low value and polls the status bit
* in a busy loop when it wants to sleep just a couple of CPU
* ticks. */
if (expires > (ticks_per_sec >> 10) || timer->ar)
qemu_mod_timer(timer->timer, timer->time + expires);
else
qemu_bh_schedule(timer->tick);
} else
qemu_del_timer(timer->timer);
}
static void omap_timer_fire(void *opaque)
{
struct omap_mpu_timer_s *timer = opaque;
if (!timer->ar) {
timer->val = 0;
timer->st = 0;
}
if (timer->it_ena)
/* Edge-triggered irq */
qemu_irq_pulse(timer->irq);
}
static void omap_timer_tick(void *opaque)
{
struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
omap_timer_sync(timer);
omap_timer_fire(timer);
omap_timer_update(timer);
}
static void omap_timer_clk_update(void *opaque, int line, int on)
{
struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
omap_timer_sync(timer);
timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
omap_timer_update(timer);
}
static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
{
omap_clk_adduser(timer->clk,
qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
timer->rate = omap_clk_getrate(timer->clk);
}
static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
{
struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
switch (addr) {
case 0x00: /* CNTL_TIMER */
return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
case 0x04: /* LOAD_TIM */
break;
case 0x08: /* READ_TIM */
return omap_timer_read(s);
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
switch (addr) {
case 0x00: /* CNTL_TIMER */
omap_timer_sync(s);
s->enable = (value >> 5) & 1;
s->ptv = (value >> 2) & 7;
s->ar = (value >> 1) & 1;
s->st = value & 1;
omap_timer_update(s);
return;
case 0x04: /* LOAD_TIM */
s->reset_val = value;
return;
case 0x08: /* READ_TIM */
OMAP_RO_REG(addr);
break;
default:
OMAP_BAD_REG(addr);
}
}
static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = {
omap_badwidth_read32,
omap_badwidth_read32,
omap_mpu_timer_read,
};
static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = {
omap_badwidth_write32,
omap_badwidth_write32,
omap_mpu_timer_write,
};
static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
{
qemu_del_timer(s->timer);
s->enable = 0;
s->reset_val = 31337;
s->val = 0;
s->ptv = 0;
s->ar = 0;
s->st = 0;
s->it_ena = 1;
}
struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
qemu_irq irq, omap_clk clk)
{
int iomemtype;
struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
qemu_mallocz(sizeof(struct omap_mpu_timer_s));
s->irq = irq;
s->clk = clk;
s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
s->tick = qemu_bh_new(omap_timer_fire, s);
omap_mpu_timer_reset(s);
omap_timer_clk_setup(s);
iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn,
omap_mpu_timer_writefn, s);
cpu_register_physical_memory(base, 0x100, iomemtype);
return s;
}
/* Watchdog timer */
struct omap_watchdog_timer_s {
struct omap_mpu_timer_s timer;
uint8_t last_wr;
int mode;
int free;
int reset;
};
static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
{
struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
switch (addr) {
case 0x00: /* CNTL_TIMER */
return (s->timer.ptv << 9) | (s->timer.ar << 8) |
(s->timer.st << 7) | (s->free << 1);
case 0x04: /* READ_TIMER */
return omap_timer_read(&s->timer);
case 0x08: /* TIMER_MODE */
return s->mode << 15;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
switch (addr) {
case 0x00: /* CNTL_TIMER */
omap_timer_sync(&s->timer);
s->timer.ptv = (value >> 9) & 7;
s->timer.ar = (value >> 8) & 1;
s->timer.st = (value >> 7) & 1;
s->free = (value >> 1) & 1;
omap_timer_update(&s->timer);
break;
case 0x04: /* LOAD_TIMER */
s->timer.reset_val = value & 0xffff;
break;
case 0x08: /* TIMER_MODE */
if (!s->mode && ((value >> 15) & 1))
omap_clk_get(s->timer.clk);
s->mode |= (value >> 15) & 1;
if (s->last_wr == 0xf5) {
if ((value & 0xff) == 0xa0) {
if (s->mode) {
s->mode = 0;
omap_clk_put(s->timer.clk);
}
} else {
/* XXX: on T|E hardware somehow this has no effect,
* on Zire 71 it works as specified. */
s->reset = 1;
qemu_system_reset_request();
}
}
s->last_wr = value & 0xff;
break;
default:
OMAP_BAD_REG(addr);
}
}
static CPUReadMemoryFunc *omap_wd_timer_readfn[] = {
omap_badwidth_read16,
omap_wd_timer_read,
omap_badwidth_read16,
};
static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = {
omap_badwidth_write16,
omap_wd_timer_write,
omap_badwidth_write16,
};
static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
{
qemu_del_timer(s->timer.timer);
if (!s->mode)
omap_clk_get(s->timer.clk);
s->mode = 1;
s->free = 1;
s->reset = 0;
s->timer.enable = 1;
s->timer.it_ena = 1;
s->timer.reset_val = 0xffff;
s->timer.val = 0;
s->timer.st = 0;
s->timer.ptv = 0;
s->timer.ar = 0;
omap_timer_update(&s->timer);
}
struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
qemu_irq irq, omap_clk clk)
{
int iomemtype;
struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
s->timer.irq = irq;
s->timer.clk = clk;
s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
omap_wd_timer_reset(s);
omap_timer_clk_setup(&s->timer);
iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn,
omap_wd_timer_writefn, s);
cpu_register_physical_memory(base, 0x100, iomemtype);
return s;
}
/* 32-kHz timer */
struct omap_32khz_timer_s {
struct omap_mpu_timer_s timer;
};
static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
{
struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
switch (offset) {
case 0x00: /* TVR */
return s->timer.reset_val;
case 0x04: /* TCR */
return omap_timer_read(&s->timer);
case 0x08: /* CR */
return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
default:
break;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
switch (offset) {
case 0x00: /* TVR */
s->timer.reset_val = value & 0x00ffffff;
break;
case 0x04: /* TCR */
OMAP_RO_REG(addr);
break;
case 0x08: /* CR */
s->timer.ar = (value >> 3) & 1;
s->timer.it_ena = (value >> 2) & 1;
if (s->timer.st != (value & 1) || (value & 2)) {
omap_timer_sync(&s->timer);
s->timer.enable = value & 1;
s->timer.st = value & 1;
omap_timer_update(&s->timer);
}
break;
default:
OMAP_BAD_REG(addr);
}
}
static CPUReadMemoryFunc *omap_os_timer_readfn[] = {
omap_badwidth_read32,
omap_badwidth_read32,
omap_os_timer_read,
};
static CPUWriteMemoryFunc *omap_os_timer_writefn[] = {
omap_badwidth_write32,
omap_badwidth_write32,
omap_os_timer_write,
};
static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
{
qemu_del_timer(s->timer.timer);
s->timer.enable = 0;
s->timer.it_ena = 0;
s->timer.reset_val = 0x00ffffff;
s->timer.val = 0;
s->timer.st = 0;
s->timer.ptv = 0;
s->timer.ar = 1;
}
struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
qemu_irq irq, omap_clk clk)
{
int iomemtype;
struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
qemu_mallocz(sizeof(struct omap_32khz_timer_s));
s->timer.irq = irq;
s->timer.clk = clk;
s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
omap_os_timer_reset(s);
omap_timer_clk_setup(&s->timer);
iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn,
omap_os_timer_writefn, s);
cpu_register_physical_memory(base, 0x800, iomemtype);
return s;
}
/* Ultra Low-Power Device Module */
static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
uint16_t ret;
switch (addr) {
case 0x14: /* IT_STATUS */
ret = s->ulpd_pm_regs[addr >> 2];
s->ulpd_pm_regs[addr >> 2] = 0;
qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
return ret;
case 0x18: /* Reserved */
case 0x1c: /* Reserved */
case 0x20: /* Reserved */
case 0x28: /* Reserved */
case 0x2c: /* Reserved */
OMAP_BAD_REG(addr);
case 0x00: /* COUNTER_32_LSB */
case 0x04: /* COUNTER_32_MSB */
case 0x08: /* COUNTER_HIGH_FREQ_LSB */
case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
case 0x10: /* GAUGING_CTRL */
case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
case 0x30: /* CLOCK_CTRL */
case 0x34: /* SOFT_REQ */
case 0x38: /* COUNTER_32_FIQ */
case 0x3c: /* DPLL_CTRL */
case 0x40: /* STATUS_REQ */
/* XXX: check clk::usecount state for every clock */
case 0x48: /* LOCL_TIME */
case 0x4c: /* APLL_CTRL */
case 0x50: /* POWER_CTRL */
return s->ulpd_pm_regs[addr >> 2];
}
OMAP_BAD_REG(addr);
return 0;
}
static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
uint16_t diff, uint16_t value)
{
if (diff & (1 << 4)) /* USB_MCLK_EN */
omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
}
static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
uint16_t diff, uint16_t value)
{
if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
if (diff & (1 << 1)) /* SOFT_COM_REQ */
omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
if (diff & (1 << 2)) /* SOFT_SDW_REQ */
omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
if (diff & (1 << 3)) /* SOFT_USB_REQ */
omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
}
static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
int64_t now, ticks;
int div, mult;
static const int bypass_div[4] = { 1, 2, 4, 4 };
uint16_t diff;
switch (addr) {
case 0x00: /* COUNTER_32_LSB */
case 0x04: /* COUNTER_32_MSB */
case 0x08: /* COUNTER_HIGH_FREQ_LSB */
case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
case 0x14: /* IT_STATUS */
case 0x40: /* STATUS_REQ */
OMAP_RO_REG(addr);
break;
case 0x10: /* GAUGING_CTRL */
/* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
now = qemu_get_clock(vm_clock);
if (value & 1)
s->ulpd_gauge_start = now;
else {
now -= s->ulpd_gauge_start;
/* 32-kHz ticks */
ticks = muldiv64(now, 32768, ticks_per_sec);
s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
if (ticks >> 32) /* OVERFLOW_32K */
s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
/* High frequency ticks */
ticks = muldiv64(now, 12000000, ticks_per_sec);
s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
if (ticks >> 32) /* OVERFLOW_HI_FREQ */
s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
}
}
s->ulpd_pm_regs[addr >> 2] = value;
break;
case 0x18: /* Reserved */
case 0x1c: /* Reserved */
case 0x20: /* Reserved */
case 0x28: /* Reserved */
case 0x2c: /* Reserved */
OMAP_BAD_REG(addr);
case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
case 0x38: /* COUNTER_32_FIQ */
case 0x48: /* LOCL_TIME */
case 0x50: /* POWER_CTRL */
s->ulpd_pm_regs[addr >> 2] = value;
break;
case 0x30: /* CLOCK_CTRL */
diff = s->ulpd_pm_regs[addr >> 2] ^ value;
s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
omap_ulpd_clk_update(s, diff, value);
break;
case 0x34: /* SOFT_REQ */
diff = s->ulpd_pm_regs[addr >> 2] ^ value;
s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
omap_ulpd_req_update(s, diff, value);
break;
case 0x3c: /* DPLL_CTRL */
/* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
* omitted altogether, probably a typo. */
/* This register has identical semantics with DPLL(1:3) control
* registers, see omap_dpll_write() */
diff = s->ulpd_pm_regs[addr >> 2] & value;
s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
if (diff & (0x3ff << 2)) {
if (value & (1 << 4)) { /* PLL_ENABLE */
div = ((value >> 5) & 3) + 1; /* PLL_DIV */
mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
} else {
div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
mult = 1;
}
omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
}
/* Enter the desired mode. */
s->ulpd_pm_regs[addr >> 2] =
(s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
/* Act as if the lock is restored. */
s->ulpd_pm_regs[addr >> 2] |= 2;
break;
case 0x4c: /* APLL_CTRL */
diff = s->ulpd_pm_regs[addr >> 2] & value;
s->ulpd_pm_regs[addr >> 2] = value & 0xf;
if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
(value & (1 << 0)) ? "apll" : "dpll4"));
break;
default:
OMAP_BAD_REG(addr);
}
}
static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = {
omap_badwidth_read16,
omap_ulpd_pm_read,
omap_badwidth_read16,
};
static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = {
omap_badwidth_write16,
omap_ulpd_pm_write,
omap_badwidth_write16,
};
static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
{
mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
}
static void omap_ulpd_pm_init(target_phys_addr_t base,
struct omap_mpu_state_s *mpu)
{
int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn,
omap_ulpd_pm_writefn, mpu);
cpu_register_physical_memory(base, 0x800, iomemtype);
omap_ulpd_pm_reset(mpu);
}
/* OMAP Pin Configuration */
static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
switch (addr) {
case 0x00: /* FUNC_MUX_CTRL_0 */
case 0x04: /* FUNC_MUX_CTRL_1 */
case 0x08: /* FUNC_MUX_CTRL_2 */
return s->func_mux_ctrl[addr >> 2];
case 0x0c: /* COMP_MODE_CTRL_0 */
return s->comp_mode_ctrl[0];
case 0x10: /* FUNC_MUX_CTRL_3 */
case 0x14: /* FUNC_MUX_CTRL_4 */
case 0x18: /* FUNC_MUX_CTRL_5 */
case 0x1c: /* FUNC_MUX_CTRL_6 */
case 0x20: /* FUNC_MUX_CTRL_7 */
case 0x24: /* FUNC_MUX_CTRL_8 */
case 0x28: /* FUNC_MUX_CTRL_9 */
case 0x2c: /* FUNC_MUX_CTRL_A */
case 0x30: /* FUNC_MUX_CTRL_B */
case 0x34: /* FUNC_MUX_CTRL_C */
case 0x38: /* FUNC_MUX_CTRL_D */
return s->func_mux_ctrl[(addr >> 2) - 1];
case 0x40: /* PULL_DWN_CTRL_0 */
case 0x44: /* PULL_DWN_CTRL_1 */
case 0x48: /* PULL_DWN_CTRL_2 */
case 0x4c: /* PULL_DWN_CTRL_3 */
return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
case 0x50: /* GATE_INH_CTRL_0 */
return s->gate_inh_ctrl[0];
case 0x60: /* VOLTAGE_CTRL_0 */
return s->voltage_ctrl[0];
case 0x70: /* TEST_DBG_CTRL_0 */
return s->test_dbg_ctrl[0];
case 0x80: /* MOD_CONF_CTRL_0 */
return s->mod_conf_ctrl[0];
}
OMAP_BAD_REG(addr);
return 0;
}
static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
uint32_t diff, uint32_t value)
{
if (s->compat1509) {
if (diff & (1 << 9)) /* BLUETOOTH */
omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
(~value >> 9) & 1);
if (diff & (1 << 7)) /* USB.CLKO */
omap_clk_onoff(omap_findclk(s, "usb.clko"),
(value >> 7) & 1);
}
}
static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
uint32_t diff, uint32_t value)
{
if (s->compat1509) {
if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
(value >> 31) & 1);
if (diff & (1 << 1)) /* CLK32K */
omap_clk_onoff(omap_findclk(s, "clk32k_out"),
(~value >> 1) & 1);
}
}
static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
uint32_t diff, uint32_t value)
{
if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
omap_clk_reparent(omap_findclk(s, "uart3_ck"),
omap_findclk(s, ((value >> 31) & 1) ?
"ck_48m" : "armper_ck"));
if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
omap_clk_reparent(omap_findclk(s, "uart2_ck"),
omap_findclk(s, ((value >> 30) & 1) ?
"ck_48m" : "armper_ck"));
if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
omap_clk_reparent(omap_findclk(s, "uart1_ck"),
omap_findclk(s, ((value >> 29) & 1) ?
"ck_48m" : "armper_ck"));
if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
omap_clk_reparent(omap_findclk(s, "mmc_ck"),
omap_findclk(s, ((value >> 23) & 1) ?
"ck_48m" : "armper_ck"));
if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
omap_findclk(s, ((value >> 12) & 1) ?
"ck_48m" : "armper_ck"));
if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
}
static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
uint32_t diff;
switch (addr) {
case 0x00: /* FUNC_MUX_CTRL_0 */
diff = s->func_mux_ctrl[addr >> 2] ^ value;
s->func_mux_ctrl[addr >> 2] = value;
omap_pin_funcmux0_update(s, diff, value);
return;
case 0x04: /* FUNC_MUX_CTRL_1 */
diff = s->func_mux_ctrl[addr >> 2] ^ value;
s->func_mux_ctrl[addr >> 2] = value;
omap_pin_funcmux1_update(s, diff, value);
return;
case 0x08: /* FUNC_MUX_CTRL_2 */
s->func_mux_ctrl[addr >> 2] = value;
return;
case 0x0c: /* COMP_MODE_CTRL_0 */
s->comp_mode_ctrl[0] = value;
s->compat1509 = (value != 0x0000eaef);
omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
return;
case 0x10: /* FUNC_MUX_CTRL_3 */
case 0x14: /* FUNC_MUX_CTRL_4 */
case 0x18: /* FUNC_MUX_CTRL_5 */
case 0x1c: /* FUNC_MUX_CTRL_6 */
case 0x20: /* FUNC_MUX_CTRL_7 */
case 0x24: /* FUNC_MUX_CTRL_8 */
case 0x28: /* FUNC_MUX_CTRL_9 */
case 0x2c: /* FUNC_MUX_CTRL_A */
case 0x30: /* FUNC_MUX_CTRL_B */
case 0x34: /* FUNC_MUX_CTRL_C */
case 0x38: /* FUNC_MUX_CTRL_D */
s->func_mux_ctrl[(addr >> 2) - 1] = value;
return;
case 0x40: /* PULL_DWN_CTRL_0 */
case 0x44: /* PULL_DWN_CTRL_1 */
case 0x48: /* PULL_DWN_CTRL_2 */
case 0x4c: /* PULL_DWN_CTRL_3 */
s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
return;
case 0x50: /* GATE_INH_CTRL_0 */
s->gate_inh_ctrl[0] = value;
return;
case 0x60: /* VOLTAGE_CTRL_0 */
s->voltage_ctrl[0] = value;
return;
case 0x70: /* TEST_DBG_CTRL_0 */
s->test_dbg_ctrl[0] = value;
return;
case 0x80: /* MOD_CONF_CTRL_0 */
diff = s->mod_conf_ctrl[0] ^ value;
s->mod_conf_ctrl[0] = value;
omap_pin_modconf1_update(s, diff, value);
return;
default:
OMAP_BAD_REG(addr);
}
}
static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = {
omap_badwidth_read32,
omap_badwidth_read32,
omap_pin_cfg_read,
};
static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = {
omap_badwidth_write32,
omap_badwidth_write32,
omap_pin_cfg_write,
};
static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
{
/* Start in Compatibility Mode. */
mpu->compat1509 = 1;
omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
}
static void omap_pin_cfg_init(target_phys_addr_t base,
struct omap_mpu_state_s *mpu)
{
int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn,
omap_pin_cfg_writefn, mpu);
cpu_register_physical_memory(base, 0x800, iomemtype);
omap_pin_cfg_reset(mpu);
}
/* Device Identification, Die Identification */
static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
switch (addr) {
case 0xfffe1800: /* DIE_ID_LSB */
return 0xc9581f0e;
case 0xfffe1804: /* DIE_ID_MSB */
return 0xa8858bfa;
case 0xfffe2000: /* PRODUCT_ID_LSB */
return 0x00aaaafc;
case 0xfffe2004: /* PRODUCT_ID_MSB */
return 0xcafeb574;
case 0xfffed400: /* JTAG_ID_LSB */
switch (s->mpu_model) {
case omap310:
return 0x03310315;
case omap1510:
return 0x03310115;
default:
cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
}
break;
case 0xfffed404: /* JTAG_ID_MSB */
switch (s->mpu_model) {
case omap310:
return 0xfb57402f;
case omap1510:
return 0xfb47002f;
default:
cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
}
break;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_id_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
OMAP_BAD_REG(addr);
}
static CPUReadMemoryFunc *omap_id_readfn[] = {
omap_badwidth_read32,
omap_badwidth_read32,
omap_id_read,
};
static CPUWriteMemoryFunc *omap_id_writefn[] = {
omap_badwidth_write32,
omap_badwidth_write32,
omap_id_write,
};
static void omap_id_init(struct omap_mpu_state_s *mpu)
{
int iomemtype = cpu_register_io_memory(0, omap_id_readfn,
omap_id_writefn, mpu);
cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype, 0xfffe1800);
cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype, 0xfffed400);
if (!cpu_is_omap15xx(mpu))
cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype, 0xfffe2000);
}
/* MPUI Control (Dummy) */
static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
switch (addr) {
case 0x00: /* CTRL */
return s->mpui_ctrl;
case 0x04: /* DEBUG_ADDR */
return 0x01ffffff;
case 0x08: /* DEBUG_DATA */
return 0xffffffff;
case 0x0c: /* DEBUG_FLAG */
return 0x00000800;
case 0x10: /* STATUS */
return 0x00000000;
/* Not in OMAP310 */
case 0x14: /* DSP_STATUS */
case 0x18: /* DSP_BOOT_CONFIG */
return 0x00000000;
case 0x1c: /* DSP_MPUI_CONFIG */
return 0x0000ffff;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
switch (addr) {
case 0x00: /* CTRL */
s->mpui_ctrl = value & 0x007fffff;
break;
case 0x04: /* DEBUG_ADDR */
case 0x08: /* DEBUG_DATA */
case 0x0c: /* DEBUG_FLAG */
case 0x10: /* STATUS */
/* Not in OMAP310 */
case 0x14: /* DSP_STATUS */
OMAP_RO_REG(addr);
case 0x18: /* DSP_BOOT_CONFIG */
case 0x1c: /* DSP_MPUI_CONFIG */
break;
default:
OMAP_BAD_REG(addr);
}
}
static CPUReadMemoryFunc *omap_mpui_readfn[] = {
omap_badwidth_read32,
omap_badwidth_read32,
omap_mpui_read,
};
static CPUWriteMemoryFunc *omap_mpui_writefn[] = {
omap_badwidth_write32,
omap_badwidth_write32,
omap_mpui_write,
};
static void omap_mpui_reset(struct omap_mpu_state_s *s)
{
s->mpui_ctrl = 0x0003ff1b;
}
static void omap_mpui_init(target_phys_addr_t base,
struct omap_mpu_state_s *mpu)
{
int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn,
omap_mpui_writefn, mpu);
cpu_register_physical_memory(base, 0x100, iomemtype);
omap_mpui_reset(mpu);
}
/* TIPB Bridges */
struct omap_tipb_bridge_s {
qemu_irq abort;
int width_intr;
uint16_t control;
uint16_t alloc;
uint16_t buffer;
uint16_t enh_control;
};
static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
{
struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
switch (addr) {
case 0x00: /* TIPB_CNTL */
return s->control;
case 0x04: /* TIPB_BUS_ALLOC */
return s->alloc;
case 0x08: /* MPU_TIPB_CNTL */
return s->buffer;
case 0x0c: /* ENHANCED_TIPB_CNTL */
return s->enh_control;
case 0x10: /* ADDRESS_DBG */
case 0x14: /* DATA_DEBUG_LOW */
case 0x18: /* DATA_DEBUG_HIGH */
return 0xffff;
case 0x1c: /* DEBUG_CNTR_SIG */
return 0x00f8;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
switch (addr) {
case 0x00: /* TIPB_CNTL */
s->control = value & 0xffff;
break;
case 0x04: /* TIPB_BUS_ALLOC */
s->alloc = value & 0x003f;
break;
case 0x08: /* MPU_TIPB_CNTL */
s->buffer = value & 0x0003;
break;
case 0x0c: /* ENHANCED_TIPB_CNTL */
s->width_intr = !(value & 2);
s->enh_control = value & 0x000f;
break;
case 0x10: /* ADDRESS_DBG */
case 0x14: /* DATA_DEBUG_LOW */
case 0x18: /* DATA_DEBUG_HIGH */
case 0x1c: /* DEBUG_CNTR_SIG */
OMAP_RO_REG(addr);
break;
default:
OMAP_BAD_REG(addr);
}
}
static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = {
omap_badwidth_read16,
omap_tipb_bridge_read,
omap_tipb_bridge_read,
};
static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = {
omap_badwidth_write16,
omap_tipb_bridge_write,
omap_tipb_bridge_write,
};
static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
{
s->control = 0xffff;
s->alloc = 0x0009;
s->buffer = 0x0000;
s->enh_control = 0x000f;
}
struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
qemu_irq abort_irq, omap_clk clk)
{
int iomemtype;
struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
s->abort = abort_irq;
omap_tipb_bridge_reset(s);
iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn,
omap_tipb_bridge_writefn, s);
cpu_register_physical_memory(base, 0x100, iomemtype);
return s;
}
/* Dummy Traffic Controller's Memory Interface */
static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
uint32_t ret;
switch (addr) {
case 0x00: /* IMIF_PRIO */
case 0x04: /* EMIFS_PRIO */
case 0x08: /* EMIFF_PRIO */
case 0x0c: /* EMIFS_CONFIG */
case 0x10: /* EMIFS_CS0_CONFIG */
case 0x14: /* EMIFS_CS1_CONFIG */
case 0x18: /* EMIFS_CS2_CONFIG */
case 0x1c: /* EMIFS_CS3_CONFIG */
case 0x24: /* EMIFF_MRS */
case 0x28: /* TIMEOUT1 */
case 0x2c: /* TIMEOUT2 */
case 0x30: /* TIMEOUT3 */
case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
case 0x40: /* EMIFS_CFG_DYN_WAIT */
return s->tcmi_regs[addr >> 2];
case 0x20: /* EMIFF_SDRAM_CONFIG */
ret = s->tcmi_regs[addr >> 2];
s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
/* XXX: We can try using the VGA_DIRTY flag for this */
return ret;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
switch (addr) {
case 0x00: /* IMIF_PRIO */
case 0x04: /* EMIFS_PRIO */
case 0x08: /* EMIFF_PRIO */
case 0x10: /* EMIFS_CS0_CONFIG */
case 0x14: /* EMIFS_CS1_CONFIG */
case 0x18: /* EMIFS_CS2_CONFIG */
case 0x1c: /* EMIFS_CS3_CONFIG */
case 0x20: /* EMIFF_SDRAM_CONFIG */
case 0x24: /* EMIFF_MRS */
case 0x28: /* TIMEOUT1 */
case 0x2c: /* TIMEOUT2 */
case 0x30: /* TIMEOUT3 */
case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
case 0x40: /* EMIFS_CFG_DYN_WAIT */
s->tcmi_regs[addr >> 2] = value;
break;
case 0x0c: /* EMIFS_CONFIG */
s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
break;
default:
OMAP_BAD_REG(addr);
}
}
static CPUReadMemoryFunc *omap_tcmi_readfn[] = {
omap_badwidth_read32,
omap_badwidth_read32,
omap_tcmi_read,
};
static CPUWriteMemoryFunc *omap_tcmi_writefn[] = {
omap_badwidth_write32,
omap_badwidth_write32,
omap_tcmi_write,
};
static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
{
mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
}
static void omap_tcmi_init(target_phys_addr_t base,
struct omap_mpu_state_s *mpu)
{
int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn,
omap_tcmi_writefn, mpu);
cpu_register_physical_memory(base, 0x100, iomemtype);
omap_tcmi_reset(mpu);
}
/* Digital phase-locked loops control */
static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
{
struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
if (addr == 0x00) /* CTL_REG */
return s->mode;
OMAP_BAD_REG(addr);
return 0;
}
static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
uint16_t diff;
static const int bypass_div[4] = { 1, 2, 4, 4 };
int div, mult;
if (addr == 0x00) { /* CTL_REG */
/* See omap_ulpd_pm_write() too */
diff = s->mode & value;
s->mode = value & 0x2fff;
if (diff & (0x3ff << 2)) {
if (value & (1 << 4)) { /* PLL_ENABLE */
div = ((value >> 5) & 3) + 1; /* PLL_DIV */
mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
} else {
div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
mult = 1;
}
omap_clk_setrate(s->dpll, div, mult);
}
/* Enter the desired mode. */
s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
/* Act as if the lock is restored. */
s->mode |= 2;
} else {
OMAP_BAD_REG(addr);
}
}
static CPUReadMemoryFunc *omap_dpll_readfn[] = {
omap_badwidth_read16,
omap_dpll_read,
omap_badwidth_read16,
};
static CPUWriteMemoryFunc *omap_dpll_writefn[] = {
omap_badwidth_write16,
omap_dpll_write,
omap_badwidth_write16,
};
static void omap_dpll_reset(struct dpll_ctl_s *s)
{
s->mode = 0x2002;
omap_clk_setrate(s->dpll, 1, 1);
}
static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
omap_clk clk)
{
int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn,
omap_dpll_writefn, s);
s->dpll = clk;
omap_dpll_reset(s);
cpu_register_physical_memory(base, 0x100, iomemtype);
}
/* UARTs */
struct omap_uart_s {
target_phys_addr_t base;
SerialState *serial; /* TODO */
struct omap_target_agent_s *ta;
omap_clk fclk;
qemu_irq irq;
uint8_t eblr;
uint8_t syscontrol;
uint8_t wkup;
uint8_t cfps;
uint8_t mdr[2];
uint8_t scr;
};
void omap_uart_reset(struct omap_uart_s *s)
{
s->eblr = 0x00;
s->syscontrol = 0;
s->wkup = 0x3f;
s->cfps = 0x69;
}
struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
qemu_irq irq, omap_clk fclk, omap_clk iclk,
qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
{
struct omap_uart_s *s = (struct omap_uart_s *)
qemu_mallocz(sizeof(struct omap_uart_s));
s->base = base;
s->fclk = fclk;
s->irq = irq;
s->serial = serial_mm_init(base, 2, irq, omap_clk_getrate(fclk)/16,
chr ?: qemu_chr_open("null", "null"), 1);
return s;
}
static uint32_t omap_uart_read(void *opaque, target_phys_addr_t addr)
{
struct omap_uart_s *s = (struct omap_uart_s *) opaque;
addr &= 0xff;
switch (addr) {
case 0x20: /* MDR1 */
return s->mdr[0];
case 0x24: /* MDR2 */
return s->mdr[1];
case 0x40: /* SCR */
return s->scr;
case 0x44: /* SSR */
return 0x0;
case 0x48: /* EBLR */
return s->eblr;
case 0x50: /* MVR */
return 0x30;
case 0x54: /* SYSC */
return s->syscontrol;
case 0x58: /* SYSS */
return 1;
case 0x5c: /* WER */
return s->wkup;
case 0x60: /* CFPS */
return s->cfps;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_uart_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_uart_s *s = (struct omap_uart_s *) opaque;
addr &= 0xff;
switch (addr) {
case 0x20: /* MDR1 */
s->mdr[0] = value & 0x7f;
break;
case 0x24: /* MDR2 */
s->mdr[1] = value & 0xff;
break;
case 0x40: /* SCR */
s->scr = value & 0xff;
break;
case 0x48: /* EBLR */
s->eblr = value & 0xff;
break;
case 0x44: /* SSR */
case 0x50: /* MVR */
case 0x58: /* SYSS */
OMAP_RO_REG(addr);
break;
case 0x54: /* SYSC */
s->syscontrol = value & 0x1d;
if (value & 2)
omap_uart_reset(s);
break;
case 0x5c: /* WER */
s->wkup = value & 0x7f;
break;
case 0x60: /* CFPS */
s->cfps = value & 0xff;
break;
default:
OMAP_BAD_REG(addr);
}
}
static CPUReadMemoryFunc *omap_uart_readfn[] = {
omap_uart_read,
omap_uart_read,
omap_badwidth_read8,
};
static CPUWriteMemoryFunc *omap_uart_writefn[] = {
omap_uart_write,
omap_uart_write,
omap_badwidth_write8,
};
struct omap_uart_s *omap2_uart_init(struct omap_target_agent_s *ta,
qemu_irq irq, omap_clk fclk, omap_clk iclk,
qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
{
target_phys_addr_t base = omap_l4_attach(ta, 0, 0);
struct omap_uart_s *s = omap_uart_init(base, irq,
fclk, iclk, txdma, rxdma, chr);
int iomemtype = cpu_register_io_memory(0, omap_uart_readfn,
omap_uart_writefn, s);
s->ta = ta;
cpu_register_physical_memory(base + 0x20, 0x100, iomemtype);
return s;
}
void omap_uart_attach(struct omap_uart_s *s, CharDriverState *chr)
{
/* TODO: Should reuse or destroy current s->serial */
s->serial = serial_mm_init(s->base, 2, s->irq,
omap_clk_getrate(s->fclk) / 16,
chr ?: qemu_chr_open("null", "null"), 1);
}
/* MPU Clock/Reset/Power Mode Control */
static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
switch (addr) {
case 0x00: /* ARM_CKCTL */
return s->clkm.arm_ckctl;
case 0x04: /* ARM_IDLECT1 */
return s->clkm.arm_idlect1;
case 0x08: /* ARM_IDLECT2 */
return s->clkm.arm_idlect2;
case 0x0c: /* ARM_EWUPCT */
return s->clkm.arm_ewupct;
case 0x10: /* ARM_RSTCT1 */
return s->clkm.arm_rstct1;
case 0x14: /* ARM_RSTCT2 */
return s->clkm.arm_rstct2;
case 0x18: /* ARM_SYSST */
return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
case 0x1c: /* ARM_CKOUT1 */
return s->clkm.arm_ckout1;
case 0x20: /* ARM_CKOUT2 */
break;
}
OMAP_BAD_REG(addr);
return 0;
}
static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
uint16_t diff, uint16_t value)
{
omap_clk clk;
if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
if (value & (1 << 14))
/* Reserved */;
else {
clk = omap_findclk(s, "arminth_ck");
omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
}
}
if (diff & (1 << 12)) { /* ARM_TIMXO */
clk = omap_findclk(s, "armtim_ck");
if (value & (1 << 12))
omap_clk_reparent(clk, omap_findclk(s, "clkin"));
else
omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
}
/* XXX: en_dspck */
if (diff & (3 << 10)) { /* DSPMMUDIV */
clk = omap_findclk(s, "dspmmu_ck");
omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
}
if (diff & (3 << 8)) { /* TCDIV */
clk = omap_findclk(s, "tc_ck");
omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
}
if (diff & (3 << 6)) { /* DSPDIV */
clk = omap_findclk(s, "dsp_ck");
omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
}
if (diff & (3 << 4)) { /* ARMDIV */
clk = omap_findclk(s, "arm_ck");
omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
}
if (diff & (3 << 2)) { /* LCDDIV */
clk = omap_findclk(s, "lcd_ck");
omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
}
if (diff & (3 << 0)) { /* PERDIV */
clk = omap_findclk(s, "armper_ck");
omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
}
}
static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
uint16_t diff, uint16_t value)
{
omap_clk clk;
if (value & (1 << 11)) /* SETARM_IDLE */
cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
if (!(value & (1 << 10))) /* WKUP_MODE */
qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
#define SET_CANIDLE(clock, bit) \
if (diff & (1 << bit)) { \
clk = omap_findclk(s, clock); \
omap_clk_canidle(clk, (value >> bit) & 1); \
}
SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
}
static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
uint16_t diff, uint16_t value)
{
omap_clk clk;
#define SET_ONOFF(clock, bit) \
if (diff & (1 << bit)) { \
clk = omap_findclk(s, clock); \
omap_clk_onoff(clk, (value >> bit) & 1); \
}
SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
SET_ONOFF("lb_ck", 4) /* EN_LBCK */
SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
SET_ONOFF("mpui_ck", 6) /* EN_APICK */
SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
}
static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
uint16_t diff, uint16_t value)
{
omap_clk clk;
if (diff & (3 << 4)) { /* TCLKOUT */
clk = omap_findclk(s, "tclk_out");
switch ((value >> 4) & 3) {
case 1:
omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
omap_clk_onoff(clk, 1);
break;
case 2:
omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
omap_clk_onoff(clk, 1);
break;
default:
omap_clk_onoff(clk, 0);
}
}
if (diff & (3 << 2)) { /* DCLKOUT */
clk = omap_findclk(s, "dclk_out");
switch ((value >> 2) & 3) {
case 0:
omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
break;
case 1:
omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
break;
case 2:
omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
break;
case 3:
omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
break;
}
}
if (diff & (3 << 0)) { /* ACLKOUT */
clk = omap_findclk(s, "aclk_out");
switch ((value >> 0) & 3) {
case 1:
omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
omap_clk_onoff(clk, 1);
break;
case 2:
omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
omap_clk_onoff(clk, 1);
break;
case 3:
omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
omap_clk_onoff(clk, 1);
break;
default:
omap_clk_onoff(clk, 0);
}
}
}
static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
uint16_t diff;
omap_clk clk;
static const char *clkschemename[8] = {
"fully synchronous", "fully asynchronous", "synchronous scalable",
"mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
};
switch (addr) {
case 0x00: /* ARM_CKCTL */
diff = s->clkm.arm_ckctl ^ value;
s->clkm.arm_ckctl = value & 0x7fff;
omap_clkm_ckctl_update(s, diff, value);
return;
case 0x04: /* ARM_IDLECT1 */
diff = s->clkm.arm_idlect1 ^ value;
s->clkm.arm_idlect1 = value & 0x0fff;
omap_clkm_idlect1_update(s, diff, value);
return;
case 0x08: /* ARM_IDLECT2 */
diff = s->clkm.arm_idlect2 ^ value;
s->clkm.arm_idlect2 = value & 0x07ff;
omap_clkm_idlect2_update(s, diff, value);
return;
case 0x0c: /* ARM_EWUPCT */
diff = s->clkm.arm_ewupct ^ value;
s->clkm.arm_ewupct = value & 0x003f;
return;
case 0x10: /* ARM_RSTCT1 */
diff = s->clkm.arm_rstct1 ^ value;
s->clkm.arm_rstct1 = value & 0x0007;
if (value & 9) {
qemu_system_reset_request();
s->clkm.cold_start = 0xa;
}
if (diff & ~value & 4) { /* DSP_RST */
omap_mpui_reset(s);
omap_tipb_bridge_reset(s->private_tipb);
omap_tipb_bridge_reset(s->public_tipb);
}
if (diff & 2) { /* DSP_EN */
clk = omap_findclk(s, "dsp_ck");
omap_clk_canidle(clk, (~value >> 1) & 1);
}
return;
case 0x14: /* ARM_RSTCT2 */
s->clkm.arm_rstct2 = value & 0x0001;
return;
case 0x18: /* ARM_SYSST */
if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
s->clkm.clocking_scheme = (value >> 11) & 7;
printf("%s: clocking scheme set to %s\n", __FUNCTION__,
clkschemename[s->clkm.clocking_scheme]);
}
s->clkm.cold_start &= value & 0x3f;
return;
case 0x1c: /* ARM_CKOUT1 */
diff = s->clkm.arm_ckout1 ^ value;
s->clkm.arm_ckout1 = value & 0x003f;
omap_clkm_ckout1_update(s, diff, value);
return;
case 0x20: /* ARM_CKOUT2 */
default:
OMAP_BAD_REG(addr);
}
}
static CPUReadMemoryFunc *omap_clkm_readfn[] = {
omap_badwidth_read16,
omap_clkm_read,
omap_badwidth_read16,
};
static CPUWriteMemoryFunc *omap_clkm_writefn[] = {
omap_badwidth_write16,
omap_clkm_write,
omap_badwidth_write16,
};
static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
switch (addr) {
case 0x04: /* DSP_IDLECT1 */
return s->clkm.dsp_idlect1;
case 0x08: /* DSP_IDLECT2 */
return s->clkm.dsp_idlect2;
case 0x14: /* DSP_RSTCT2 */
return s->clkm.dsp_rstct2;
case 0x18: /* DSP_SYSST */
return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
(s->env->halted << 6); /* Quite useless... */
}
OMAP_BAD_REG(addr);
return 0;
}
static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
uint16_t diff, uint16_t value)
{
omap_clk clk;
SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
}
static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
uint16_t diff, uint16_t value)
{
omap_clk clk;
SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
}
static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
uint16_t diff;
switch (addr) {
case 0x04: /* DSP_IDLECT1 */
diff = s->clkm.dsp_idlect1 ^ value;
s->clkm.dsp_idlect1 = value & 0x01f7;
omap_clkdsp_idlect1_update(s, diff, value);
break;
case 0x08: /* DSP_IDLECT2 */
s->clkm.dsp_idlect2 = value & 0x0037;
diff = s->clkm.dsp_idlect1 ^ value;
omap_clkdsp_idlect2_update(s, diff, value);
break;
case 0x14: /* DSP_RSTCT2 */
s->clkm.dsp_rstct2 = value & 0x0001;
break;
case 0x18: /* DSP_SYSST */
s->clkm.cold_start &= value & 0x3f;
break;
default:
OMAP_BAD_REG(addr);
}
}
static CPUReadMemoryFunc *omap_clkdsp_readfn[] = {
omap_badwidth_read16,
omap_clkdsp_read,
omap_badwidth_read16,
};
static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = {
omap_badwidth_write16,
omap_clkdsp_write,
omap_badwidth_write16,
};
static void omap_clkm_reset(struct omap_mpu_state_s *s)
{
if (s->wdt && s->wdt->reset)
s->clkm.cold_start = 0x6;
s->clkm.clocking_scheme = 0;
omap_clkm_ckctl_update(s, ~0, 0x3000);
s->clkm.arm_ckctl = 0x3000;
omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
s->clkm.arm_idlect1 = 0x0400;
omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
s->clkm.arm_idlect2 = 0x0100;
s->clkm.arm_ewupct = 0x003f;
s->clkm.arm_rstct1 = 0x0000;
s->clkm.arm_rstct2 = 0x0000;
s->clkm.arm_ckout1 = 0x0015;
s->clkm.dpll1_mode = 0x2002;
omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
s->clkm.dsp_idlect1 = 0x0040;
omap_clkdsp_idlect2_update(s, ~0, 0x0000);
s->clkm.dsp_idlect2 = 0x0000;
s->clkm.dsp_rstct2 = 0x0000;
}
static void omap_clkm_init(target_phys_addr_t mpu_base,
target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
{
int iomemtype[2] = {
cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s),
cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s),
};
s->clkm.arm_idlect1 = 0x03ff;
s->clkm.arm_idlect2 = 0x0100;
s->clkm.dsp_idlect1 = 0x0002;
omap_clkm_reset(s);
s->clkm.cold_start = 0x3a;
cpu_register_physical_memory(mpu_base, 0x100, iomemtype[0]);
cpu_register_physical_memory(dsp_base, 0x1000, iomemtype[1]);
}
/* MPU I/O */
struct omap_mpuio_s {
qemu_irq irq;
qemu_irq kbd_irq;
qemu_irq *in;
qemu_irq handler[16];
qemu_irq wakeup;
uint16_t inputs;
uint16_t outputs;
uint16_t dir;
uint16_t edge;
uint16_t mask;
uint16_t ints;
uint16_t debounce;
uint16_t latch;
uint8_t event;
uint8_t buttons[5];
uint8_t row_latch;
uint8_t cols;
int kbd_mask;
int clk;
};
static void omap_mpuio_set(void *opaque, int line, int level)
{
struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
uint16_t prev = s->inputs;
if (level)
s->inputs |= 1 << line;
else
s->inputs &= ~(1 << line);
if (((1 << line) & s->dir & ~s->mask) && s->clk) {
if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
s->ints |= 1 << line;
qemu_irq_raise(s->irq);
/* TODO: wakeup */
}
if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
(s->event >> 1) == line) /* PIN_SELECT */
s->latch = s->inputs;
}
}
static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
{
int i;
uint8_t *row, rows = 0, cols = ~s->cols;
for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
if (*row & cols)
rows |= i;
qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
s->row_latch = ~rows;
}
static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
{
struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
uint16_t ret;
switch (offset) {
case 0x00: /* INPUT_LATCH */
return s->inputs;
case 0x04: /* OUTPUT_REG */
return s->outputs;
case 0x08: /* IO_CNTL */
return s->dir;
case 0x10: /* KBR_LATCH */
return s->row_latch;
case 0x14: /* KBC_REG */
return s->cols;
case 0x18: /* GPIO_EVENT_MODE_REG */
return s->event;
case 0x1c: /* GPIO_INT_EDGE_REG */
return s->edge;
case 0x20: /* KBD_INT */
return (~s->row_latch & 0x1f) && !s->kbd_mask;
case 0x24: /* GPIO_INT */
ret = s->ints;
s->ints &= s->mask;
if (ret)
qemu_irq_lower(s->irq);
return ret;
case 0x28: /* KBD_MASKIT */
return s->kbd_mask;
case 0x2c: /* GPIO_MASKIT */
return s->mask;
case 0x30: /* GPIO_DEBOUNCING_REG */
return s->debounce;
case 0x34: /* GPIO_LATCH_REG */
return s->latch;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
uint16_t diff;
int ln;
switch (offset) {
case 0x04: /* OUTPUT_REG */
diff = (s->outputs ^ value) & ~s->dir;
s->outputs = value;
while ((ln = ffs(diff))) {
ln --;
if (s->handler[ln])
qemu_set_irq(s->handler[ln], (value >> ln) & 1);
diff &= ~(1 << ln);
}
break;
case 0x08: /* IO_CNTL */
diff = s->outputs & (s->dir ^ value);
s->dir = value;
value = s->outputs & ~s->dir;
while ((ln = ffs(diff))) {
ln --;
if (s->handler[ln])
qemu_set_irq(s->handler[ln], (value >> ln) & 1);
diff &= ~(1 << ln);
}
break;
case 0x14: /* KBC_REG */
s->cols = value;
omap_mpuio_kbd_update(s);
break;
case 0x18: /* GPIO_EVENT_MODE_REG */
s->event = value & 0x1f;
break;
case 0x1c: /* GPIO_INT_EDGE_REG */
s->edge = value;
break;
case 0x28: /* KBD_MASKIT */
s->kbd_mask = value & 1;
omap_mpuio_kbd_update(s);
break;
case 0x2c: /* GPIO_MASKIT */
s->mask = value;
break;
case 0x30: /* GPIO_DEBOUNCING_REG */
s->debounce = value & 0x1ff;
break;
case 0x00: /* INPUT_LATCH */
case 0x10: /* KBR_LATCH */
case 0x20: /* KBD_INT */
case 0x24: /* GPIO_INT */
case 0x34: /* GPIO_LATCH_REG */
OMAP_RO_REG(addr);
return;
default:
OMAP_BAD_REG(addr);
return;
}
}
static CPUReadMemoryFunc *omap_mpuio_readfn[] = {
omap_badwidth_read16,
omap_mpuio_read,
omap_badwidth_read16,
};
static CPUWriteMemoryFunc *omap_mpuio_writefn[] = {
omap_badwidth_write16,
omap_mpuio_write,
omap_badwidth_write16,
};
static void omap_mpuio_reset(struct omap_mpuio_s *s)
{
s->inputs = 0;
s->outputs = 0;
s->dir = ~0;
s->event = 0;
s->edge = 0;
s->kbd_mask = 0;
s->mask = 0;
s->debounce = 0;
s->latch = 0;
s->ints = 0;
s->row_latch = 0x1f;
s->clk = 1;
}
static void omap_mpuio_onoff(void *opaque, int line, int on)
{
struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
s->clk = on;
if (on)
omap_mpuio_kbd_update(s);
}
struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
omap_clk clk)
{
int iomemtype;
struct omap_mpuio_s *s = (struct omap_mpuio_s *)
qemu_mallocz(sizeof(struct omap_mpuio_s));
s->irq = gpio_int;
s->kbd_irq = kbd_int;
s->wakeup = wakeup;
s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
omap_mpuio_reset(s);
iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn,
omap_mpuio_writefn, s);
cpu_register_physical_memory(base, 0x800, iomemtype);
omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
return s;
}
qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
{
return s->in;
}
void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
{
if (line >= 16 || line < 0)
cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
s->handler[line] = handler;
}
void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
{
if (row >= 5 || row < 0)
cpu_abort(cpu_single_env, "%s: No key %i-%i\n",
__FUNCTION__, col, row);
if (down)
s->buttons[row] |= 1 << col;
else
s->buttons[row] &= ~(1 << col);
omap_mpuio_kbd_update(s);
}
/* General-Purpose I/O */
struct omap_gpio_s {
qemu_irq irq;
qemu_irq *in;
qemu_irq handler[16];
uint16_t inputs;
uint16_t outputs;
uint16_t dir;
uint16_t edge;
uint16_t mask;
uint16_t ints;
uint16_t pins;
};
static void omap_gpio_set(void *opaque, int line, int level)
{
struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
uint16_t prev = s->inputs;
if (level)
s->inputs |= 1 << line;
else
s->inputs &= ~(1 << line);
if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
(1 << line) & s->dir & ~s->mask) {
s->ints |= 1 << line;
qemu_irq_raise(s->irq);
}
}
static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
{
struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
switch (offset) {
case 0x00: /* DATA_INPUT */
return s->inputs & s->pins;
case 0x04: /* DATA_OUTPUT */
return s->outputs;
case 0x08: /* DIRECTION_CONTROL */
return s->dir;
case 0x0c: /* INTERRUPT_CONTROL */
return s->edge;
case 0x10: /* INTERRUPT_MASK */
return s->mask;
case 0x14: /* INTERRUPT_STATUS */
return s->ints;
case 0x18: /* PIN_CONTROL (not in OMAP310) */
OMAP_BAD_REG(addr);
return s->pins;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
uint16_t diff;
int ln;
switch (offset) {
case 0x00: /* DATA_INPUT */
OMAP_RO_REG(addr);
return;
case 0x04: /* DATA_OUTPUT */
diff = (s->outputs ^ value) & ~s->dir;
s->outputs = value;
while ((ln = ffs(diff))) {
ln --;
if (s->handler[ln])
qemu_set_irq(s->handler[ln], (value >> ln) & 1);
diff &= ~(1 << ln);
}
break;
case 0x08: /* DIRECTION_CONTROL */
diff = s->outputs & (s->dir ^ value);
s->dir = value;
value = s->outputs & ~s->dir;
while ((ln = ffs(diff))) {
ln --;
if (s->handler[ln])
qemu_set_irq(s->handler[ln], (value >> ln) & 1);
diff &= ~(1 << ln);
}
break;
case 0x0c: /* INTERRUPT_CONTROL */
s->edge = value;
break;
case 0x10: /* INTERRUPT_MASK */
s->mask = value;
break;
case 0x14: /* INTERRUPT_STATUS */
s->ints &= ~value;
if (!s->ints)
qemu_irq_lower(s->irq);
break;
case 0x18: /* PIN_CONTROL (not in OMAP310 TRM) */
OMAP_BAD_REG(addr);
s->pins = value;
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
/* *Some* sources say the memory region is 32-bit. */
static CPUReadMemoryFunc *omap_gpio_readfn[] = {
omap_badwidth_read16,
omap_gpio_read,
omap_badwidth_read16,
};
static CPUWriteMemoryFunc *omap_gpio_writefn[] = {
omap_badwidth_write16,
omap_gpio_write,
omap_badwidth_write16,
};
static void omap_gpio_reset(struct omap_gpio_s *s)
{
s->inputs = 0;
s->outputs = ~0;
s->dir = ~0;
s->edge = ~0;
s->mask = ~0;
s->ints = 0;
s->pins = ~0;
}
struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
qemu_irq irq, omap_clk clk)
{
int iomemtype;
struct omap_gpio_s *s = (struct omap_gpio_s *)
qemu_mallocz(sizeof(struct omap_gpio_s));
s->irq = irq;
s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
omap_gpio_reset(s);
iomemtype = cpu_register_io_memory(0, omap_gpio_readfn,
omap_gpio_writefn, s);
cpu_register_physical_memory(base, 0x1000, iomemtype);
return s;
}
qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
{
return s->in;
}
void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
{
if (line >= 16 || line < 0)
cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
s->handler[line] = handler;
}
/* MicroWire Interface */
struct omap_uwire_s {
qemu_irq txirq;
qemu_irq rxirq;
qemu_irq txdrq;
uint16_t txbuf;
uint16_t rxbuf;
uint16_t control;
uint16_t setup[5];
struct uwire_slave_s *chip[4];
};
static void omap_uwire_transfer_start(struct omap_uwire_s *s)
{
int chipselect = (s->control >> 10) & 3; /* INDEX */
struct uwire_slave_s *slave = s->chip[chipselect];
if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
if (s->control & (1 << 12)) /* CS_CMD */
if (slave && slave->send)
slave->send(slave->opaque,
s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
s->control &= ~(1 << 14); /* CSRB */
/* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
* a DRQ. When is the level IRQ supposed to be reset? */
}
if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
if (s->control & (1 << 12)) /* CS_CMD */
if (slave && slave->receive)
s->rxbuf = slave->receive(slave->opaque);
s->control |= 1 << 15; /* RDRB */
/* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
* a DRQ. When is the level IRQ supposed to be reset? */
}
}
static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
{
struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
switch (offset) {
case 0x00: /* RDR */
s->control &= ~(1 << 15); /* RDRB */
return s->rxbuf;
case 0x04: /* CSR */
return s->control;
case 0x08: /* SR1 */
return s->setup[0];
case 0x0c: /* SR2 */
return s->setup[1];
case 0x10: /* SR3 */
return s->setup[2];
case 0x14: /* SR4 */
return s->setup[3];
case 0x18: /* SR5 */
return s->setup[4];
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
switch (offset) {
case 0x00: /* TDR */
s->txbuf = value; /* TD */
if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
(s->control & (1 << 12)))) { /* CS_CMD */
s->control |= 1 << 14; /* CSRB */
omap_uwire_transfer_start(s);
}
break;
case 0x04: /* CSR */
s->control = value & 0x1fff;
if (value & (1 << 13)) /* START */
omap_uwire_transfer_start(s);
break;
case 0x08: /* SR1 */
s->setup[0] = value & 0x003f;
break;
case 0x0c: /* SR2 */
s->setup[1] = value & 0x0fc0;
break;
case 0x10: /* SR3 */
s->setup[2] = value & 0x0003;
break;
case 0x14: /* SR4 */
s->setup[3] = value & 0x0001;
break;
case 0x18: /* SR5 */
s->setup[4] = value & 0x000f;
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
static CPUReadMemoryFunc *omap_uwire_readfn[] = {
omap_badwidth_read16,
omap_uwire_read,
omap_badwidth_read16,
};
static CPUWriteMemoryFunc *omap_uwire_writefn[] = {
omap_badwidth_write16,
omap_uwire_write,
omap_badwidth_write16,
};
static void omap_uwire_reset(struct omap_uwire_s *s)
{
s->control = 0;
s->setup[0] = 0;
s->setup[1] = 0;
s->setup[2] = 0;
s->setup[3] = 0;
s->setup[4] = 0;
}
struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
qemu_irq *irq, qemu_irq dma, omap_clk clk)
{
int iomemtype;
struct omap_uwire_s *s = (struct omap_uwire_s *)
qemu_mallocz(sizeof(struct omap_uwire_s));
s->txirq = irq[0];
s->rxirq = irq[1];
s->txdrq = dma;
omap_uwire_reset(s);
iomemtype = cpu_register_io_memory(0, omap_uwire_readfn,
omap_uwire_writefn, s);
cpu_register_physical_memory(base, 0x800, iomemtype);
return s;
}
void omap_uwire_attach(struct omap_uwire_s *s,
struct uwire_slave_s *slave, int chipselect)
{
if (chipselect < 0 || chipselect > 3) {
fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
exit(-1);
}
s->chip[chipselect] = slave;
}
/* Pseudonoise Pulse-Width Light Modulator */
static void omap_pwl_update(struct omap_mpu_state_s *s)
{
int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
if (output != s->pwl.output) {
s->pwl.output = output;
printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
}
}
static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
switch (offset) {
case 0x00: /* PWL_LEVEL */
return s->pwl.level;
case 0x04: /* PWL_CTRL */
return s->pwl.enable;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
switch (offset) {
case 0x00: /* PWL_LEVEL */
s->pwl.level = value;
omap_pwl_update(s);
break;
case 0x04: /* PWL_CTRL */
s->pwl.enable = value & 1;
omap_pwl_update(s);
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
static CPUReadMemoryFunc *omap_pwl_readfn[] = {
omap_pwl_read,
omap_badwidth_read8,
omap_badwidth_read8,
};
static CPUWriteMemoryFunc *omap_pwl_writefn[] = {
omap_pwl_write,
omap_badwidth_write8,
omap_badwidth_write8,
};
static void omap_pwl_reset(struct omap_mpu_state_s *s)
{
s->pwl.output = 0;
s->pwl.level = 0;
s->pwl.enable = 0;
s->pwl.clk = 1;
omap_pwl_update(s);
}
static void omap_pwl_clk_update(void *opaque, int line, int on)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
s->pwl.clk = on;
omap_pwl_update(s);
}
static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
omap_clk clk)
{
int iomemtype;
omap_pwl_reset(s);
iomemtype = cpu_register_io_memory(0, omap_pwl_readfn,
omap_pwl_writefn, s);
cpu_register_physical_memory(base, 0x800, iomemtype);
omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
}
/* Pulse-Width Tone module */
static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
switch (offset) {
case 0x00: /* FRC */
return s->pwt.frc;
case 0x04: /* VCR */
return s->pwt.vrc;
case 0x08: /* GCR */
return s->pwt.gcr;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
switch (offset) {
case 0x00: /* FRC */
s->pwt.frc = value & 0x3f;
break;
case 0x04: /* VRC */
if ((value ^ s->pwt.vrc) & 1) {
if (value & 1)
printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
/* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
((omap_clk_getrate(s->pwt.clk) >> 3) /
/* Pre-multiplexer divider */
((s->pwt.gcr & 2) ? 1 : 154) /
/* Octave multiplexer */
(2 << (value & 3)) *
/* 101/107 divider */
((value & (1 << 2)) ? 101 : 107) *
/* 49/55 divider */
((value & (1 << 3)) ? 49 : 55) *
/* 50/63 divider */
((value & (1 << 4)) ? 50 : 63) *
/* 80/127 divider */
((value & (1 << 5)) ? 80 : 127) /
(107 * 55 * 63 * 127)));
else
printf("%s: silence!\n", __FUNCTION__);
}
s->pwt.vrc = value & 0x7f;
break;
case 0x08: /* GCR */
s->pwt.gcr = value & 3;
break;
default:
OMAP_BAD_REG(addr);
return;
}
}
static CPUReadMemoryFunc *omap_pwt_readfn[] = {
omap_pwt_read,
omap_badwidth_read8,
omap_badwidth_read8,
};
static CPUWriteMemoryFunc *omap_pwt_writefn[] = {
omap_pwt_write,
omap_badwidth_write8,
omap_badwidth_write8,
};
static void omap_pwt_reset(struct omap_mpu_state_s *s)
{
s->pwt.frc = 0;
s->pwt.vrc = 0;
s->pwt.gcr = 0;
}
static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
omap_clk clk)
{
int iomemtype;
s->pwt.clk = clk;
omap_pwt_reset(s);
iomemtype = cpu_register_io_memory(0, omap_pwt_readfn,
omap_pwt_writefn, s);
cpu_register_physical_memory(base, 0x800, iomemtype);
}
/* Real-time Clock module */
struct omap_rtc_s {
qemu_irq irq;
qemu_irq alarm;
QEMUTimer *clk;
uint8_t interrupts;
uint8_t status;
int16_t comp_reg;
int running;
int pm_am;
int auto_comp;
int round;
struct tm alarm_tm;
time_t alarm_ti;
struct tm current_tm;
time_t ti;
uint64_t tick;
};
static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
{
/* s->alarm is level-triggered */
qemu_set_irq(s->alarm, (s->status >> 6) & 1);
}
static void omap_rtc_alarm_update(struct omap_rtc_s *s)
{
s->alarm_ti = mktime(&s->alarm_tm);
if (s->alarm_ti == -1)
printf("%s: conversion failed\n", __FUNCTION__);
}
static inline uint8_t omap_rtc_bcd(int num)
{
return ((num / 10) << 4) | (num % 10);
}
static inline int omap_rtc_bin(uint8_t num)
{
return (num & 15) + 10 * (num >> 4);
}
static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
{
struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
uint8_t i;
switch (offset) {
case 0x00: /* SECONDS_REG */
return omap_rtc_bcd(s->current_tm.tm_sec);
case 0x04: /* MINUTES_REG */
return omap_rtc_bcd(s->current_tm.tm_min);
case 0x08: /* HOURS_REG */
if (s->pm_am)
return ((s->current_tm.tm_hour > 11) << 7) |
omap_rtc_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
else
return omap_rtc_bcd(s->current_tm.tm_hour);
case 0x0c: /* DAYS_REG */
return omap_rtc_bcd(s->current_tm.tm_mday);
case 0x10: /* MONTHS_REG */
return omap_rtc_bcd(s->current_tm.tm_mon + 1);
case 0x14: /* YEARS_REG */
return omap_rtc_bcd(s->current_tm.tm_year % 100);
case 0x18: /* WEEK_REG */
return s->current_tm.tm_wday;
case 0x20: /* ALARM_SECONDS_REG */
return omap_rtc_bcd(s->alarm_tm.tm_sec);
case 0x24: /* ALARM_MINUTES_REG */
return omap_rtc_bcd(s->alarm_tm.tm_min);
case 0x28: /* ALARM_HOURS_REG */
if (s->pm_am)
return ((s->alarm_tm.tm_hour > 11) << 7) |
omap_rtc_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
else
return omap_rtc_bcd(s->alarm_tm.tm_hour);
case 0x2c: /* ALARM_DAYS_REG */
return omap_rtc_bcd(s->alarm_tm.tm_mday);
case 0x30: /* ALARM_MONTHS_REG */
return omap_rtc_bcd(s->alarm_tm.tm_mon + 1);
case 0x34: /* ALARM_YEARS_REG */
return omap_rtc_bcd(s->alarm_tm.tm_year % 100);
case 0x40: /* RTC_CTRL_REG */
return (s->pm_am << 3) | (s->auto_comp << 2) |
(s->round << 1) | s->running;
case 0x44: /* RTC_STATUS_REG */
i = s->status;
s->status &= ~0x3d;
return i;
case 0x48: /* RTC_INTERRUPTS_REG */
return s->interrupts;
case 0x4c: /* RTC_COMP_LSB_REG */
return ((uint16_t) s->comp_reg) & 0xff;
case 0x50: /* RTC_COMP_MSB_REG */
return ((uint16_t) s->comp_reg) >> 8;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
struct tm new_tm;
time_t ti[2];
switch (offset) {
case 0x00: /* SECONDS_REG */
#ifdef ALMDEBUG
printf("RTC SEC_REG <-- %02x\n", value);
#endif
s->ti -= s->current_tm.tm_sec;
s->ti += omap_rtc_bin(value);
return;
case 0x04: /* MINUTES_REG */
#ifdef ALMDEBUG
printf("RTC MIN_REG <-- %02x\n", value);
#endif
s->ti -= s->current_tm.tm_min * 60;
s->ti += omap_rtc_bin(value) * 60;
return;
case 0x08: /* HOURS_REG */
#ifdef ALMDEBUG
printf("RTC HRS_REG <-- %02x\n", value);
#endif
s->ti -= s->current_tm.tm_hour * 3600;
if (s->pm_am) {
s->ti += (omap_rtc_bin(value & 0x3f) & 12) * 3600;
s->ti += ((value >> 7) & 1) * 43200;
} else
s->ti += omap_rtc_bin(value & 0x3f) * 3600;
return;
case 0x0c: /* DAYS_REG */
#ifdef ALMDEBUG
printf("RTC DAY_REG <-- %02x\n", value);
#endif
s->ti -= s->current_tm.tm_mday * 86400;
s->ti += omap_rtc_bin(value) * 86400;
return;
case 0x10: /* MONTHS_REG */
#ifdef ALMDEBUG
printf("RTC MTH_REG <-- %02x\n", value);
#endif
memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
new_tm.tm_mon = omap_rtc_bin(value);
ti[0] = mktime(&s->current_tm);
ti[1] = mktime(&new_tm);
if (ti[0] != -1 && ti[1] != -1) {
s->ti -= ti[0];
s->ti += ti[1];
} else {
/* A less accurate version */
s->ti -= s->current_tm.tm_mon * 2592000;
s->ti += omap_rtc_bin(value) * 2592000;
}
return;
case 0x14: /* YEARS_REG */
#ifdef ALMDEBUG
printf("RTC YRS_REG <-- %02x\n", value);
#endif
memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
new_tm.tm_year += omap_rtc_bin(value) - (new_tm.tm_year % 100);
ti[0] = mktime(&s->current_tm);
ti[1] = mktime(&new_tm);
if (ti[0] != -1 && ti[1] != -1) {
s->ti -= ti[0];
s->ti += ti[1];
} else {
/* A less accurate version */
s->ti -= (s->current_tm.tm_year % 100) * 31536000;
s->ti += omap_rtc_bin(value) * 31536000;
}
return;
case 0x18: /* WEEK_REG */
return; /* Ignored */
case 0x20: /* ALARM_SECONDS_REG */
#ifdef ALMDEBUG
printf("ALM SEC_REG <-- %02x\n", value);
#endif
s->alarm_tm.tm_sec = omap_rtc_bin(value);
omap_rtc_alarm_update(s);
return;
case 0x24: /* ALARM_MINUTES_REG */
#ifdef ALMDEBUG
printf("ALM MIN_REG <-- %02x\n", value);
#endif
s->alarm_tm.tm_min = omap_rtc_bin(value);
omap_rtc_alarm_update(s);
return;
case 0x28: /* ALARM_HOURS_REG */
#ifdef ALMDEBUG
printf("ALM HRS_REG <-- %02x\n", value);
#endif
if (s->pm_am)
s->alarm_tm.tm_hour =
((omap_rtc_bin(value & 0x3f)) % 12) +
((value >> 7) & 1) * 12;
else
s->alarm_tm.tm_hour = omap_rtc_bin(value);
omap_rtc_alarm_update(s);
return;
case 0x2c: /* ALARM_DAYS_REG */
#ifdef ALMDEBUG
printf("ALM DAY_REG <-- %02x\n", value);
#endif
s->alarm_tm.tm_mday = omap_rtc_bin(value);
omap_rtc_alarm_update(s);
return;
case 0x30: /* ALARM_MONTHS_REG */
#ifdef ALMDEBUG
printf("ALM MON_REG <-- %02x\n", value);
#endif
s->alarm_tm.tm_mon = omap_rtc_bin(value);
omap_rtc_alarm_update(s);
return;
case 0x34: /* ALARM_YEARS_REG */
#ifdef ALMDEBUG
printf("ALM YRS_REG <-- %02x\n", value);
#endif
s->alarm_tm.tm_year = omap_rtc_bin(value);
omap_rtc_alarm_update(s);
return;
case 0x40: /* RTC_CTRL_REG */
#ifdef ALMDEBUG
printf("RTC CONTROL <-- %02x\n", value);
#endif
s->pm_am = (value >> 3) & 1;
s->auto_comp = (value >> 2) & 1;
s->round = (value >> 1) & 1;
s->running = value & 1;
s->status &= 0xfd;
s->status |= s->running << 1;
return;
case 0x44: /* RTC_STATUS_REG */
#ifdef ALMDEBUG
printf("RTC STATUSL <-- %02x\n", value);
#endif
s->status &= ~((value & 0xc0) ^ 0x80);
omap_rtc_interrupts_update(s);
return;
case 0x48: /* RTC_INTERRUPTS_REG */
#ifdef ALMDEBUG
printf("RTC INTRS <-- %02x\n", value);
#endif
s->interrupts = value;
return;
case 0x4c: /* RTC_COMP_LSB_REG */
#ifdef ALMDEBUG
printf("RTC COMPLSB <-- %02x\n", value);
#endif
s->comp_reg &= 0xff00;
s->comp_reg |= 0x00ff & value;
return;
case 0x50: /* RTC_COMP_MSB_REG */
#ifdef ALMDEBUG
printf("RTC COMPMSB <-- %02x\n", value);
#endif
s->comp_reg &= 0x00ff;
s->comp_reg |= 0xff00 & (value << 8);
return;
default:
OMAP_BAD_REG(addr);
return;
}
}
static CPUReadMemoryFunc *omap_rtc_readfn[] = {
omap_rtc_read,
omap_badwidth_read8,
omap_badwidth_read8,
};
static CPUWriteMemoryFunc *omap_rtc_writefn[] = {
omap_rtc_write,
omap_badwidth_write8,
omap_badwidth_write8,
};
static void omap_rtc_tick(void *opaque)
{
struct omap_rtc_s *s = opaque;
if (s->round) {
/* Round to nearest full minute. */
if (s->current_tm.tm_sec < 30)
s->ti -= s->current_tm.tm_sec;
else
s->ti += 60 - s->current_tm.tm_sec;
s->round = 0;
}
memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
s->status |= 0x40;
omap_rtc_interrupts_update(s);
}
if (s->interrupts & 0x04)
switch (s->interrupts & 3) {
case 0:
s->status |= 0x04;
qemu_irq_pulse(s->irq);
break;
case 1:
if (s->current_tm.tm_sec)
break;
s->status |= 0x08;
qemu_irq_pulse(s->irq);
break;
case 2:
if (s->current_tm.tm_sec || s->current_tm.tm_min)
break;
s->status |= 0x10;
qemu_irq_pulse(s->irq);
break;
case 3:
if (s->current_tm.tm_sec ||
s->current_tm.tm_min || s->current_tm.tm_hour)
break;
s->status |= 0x20;
qemu_irq_pulse(s->irq);
break;
}
/* Move on */
if (s->running)
s->ti ++;
s->tick += 1000;
/*
* Every full hour add a rough approximation of the compensation
* register to the 32kHz Timer (which drives the RTC) value.
*/
if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
s->tick += s->comp_reg * 1000 / 32768;
qemu_mod_timer(s->clk, s->tick);
}
static void omap_rtc_reset(struct omap_rtc_s *s)
{
struct tm tm;
s->interrupts = 0;
s->comp_reg = 0;
s->running = 0;
s->pm_am = 0;
s->auto_comp = 0;
s->round = 0;
s->tick = qemu_get_clock(rt_clock);
memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
s->alarm_tm.tm_mday = 0x01;
s->status = 1 << 7;
qemu_get_timedate(&tm, 0);
s->ti = mktime(&tm);
omap_rtc_alarm_update(s);
omap_rtc_tick(s);
}
struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
qemu_irq *irq, omap_clk clk)
{
int iomemtype;
struct omap_rtc_s *s = (struct omap_rtc_s *)
qemu_mallocz(sizeof(struct omap_rtc_s));
s->irq = irq[0];
s->alarm = irq[1];
s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
omap_rtc_reset(s);
iomemtype = cpu_register_io_memory(0, omap_rtc_readfn,
omap_rtc_writefn, s);
cpu_register_physical_memory(base, 0x800, iomemtype);
return s;
}
/* Multi-channel Buffered Serial Port interfaces */
struct omap_mcbsp_s {
qemu_irq txirq;
qemu_irq rxirq;
qemu_irq txdrq;
qemu_irq rxdrq;
uint16_t spcr[2];
uint16_t rcr[2];
uint16_t xcr[2];
uint16_t srgr[2];
uint16_t mcr[2];
uint16_t pcr;
uint16_t rcer[8];
uint16_t xcer[8];
int tx_rate;
int rx_rate;
int tx_req;
int rx_req;
struct i2s_codec_s *codec;
QEMUTimer *source_timer;
QEMUTimer *sink_timer;
};
static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
{
int irq;
switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
case 0:
irq = (s->spcr[0] >> 1) & 1; /* RRDY */
break;
case 3:
irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
break;
default:
irq = 0;
break;
}
if (irq)
qemu_irq_pulse(s->rxirq);
switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
case 0:
irq = (s->spcr[1] >> 1) & 1; /* XRDY */
break;
case 3:
irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
break;
default:
irq = 0;
break;
}
if (irq)
qemu_irq_pulse(s->txirq);
}
static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
{
if ((s->spcr[0] >> 1) & 1) /* RRDY */
s->spcr[0] |= 1 << 2; /* RFULL */
s->spcr[0] |= 1 << 1; /* RRDY */
qemu_irq_raise(s->rxdrq);
omap_mcbsp_intr_update(s);
}
static void omap_mcbsp_source_tick(void *opaque)
{
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
if (!s->rx_rate)
return;
if (s->rx_req)
printf("%s: Rx FIFO overrun\n", __FUNCTION__);
s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
omap_mcbsp_rx_newdata(s);
qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
}
static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
{
if (!s->codec || !s->codec->rts)
omap_mcbsp_source_tick(s);
else if (s->codec->in.len) {
s->rx_req = s->codec->in.len;
omap_mcbsp_rx_newdata(s);
}
}
static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
{
qemu_del_timer(s->source_timer);
}
static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
{
s->spcr[0] &= ~(1 << 1); /* RRDY */
qemu_irq_lower(s->rxdrq);
omap_mcbsp_intr_update(s);
}
static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
{
s->spcr[1] |= 1 << 1; /* XRDY */
qemu_irq_raise(s->txdrq);
omap_mcbsp_intr_update(s);
}
static void omap_mcbsp_sink_tick(void *opaque)
{
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
if (!s->tx_rate)
return;
if (s->tx_req)
printf("%s: Tx FIFO underrun\n", __FUNCTION__);
s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
omap_mcbsp_tx_newdata(s);
qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
}
static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
{
if (!s->codec || !s->codec->cts)
omap_mcbsp_sink_tick(s);
else if (s->codec->out.size) {
s->tx_req = s->codec->out.size;
omap_mcbsp_tx_newdata(s);
}
}
static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
{
s->spcr[1] &= ~(1 << 1); /* XRDY */
qemu_irq_lower(s->txdrq);
omap_mcbsp_intr_update(s);
if (s->codec && s->codec->cts)
s->codec->tx_swallow(s->codec->opaque);
}
static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
{
s->tx_req = 0;
omap_mcbsp_tx_done(s);
qemu_del_timer(s->sink_timer);
}
static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
{
int prev_rx_rate, prev_tx_rate;
int rx_rate = 0, tx_rate = 0;
int cpu_rate = 1500000; /* XXX */
/* TODO: check CLKSTP bit */
if (s->spcr[1] & (1 << 6)) { /* GRST */
if (s->spcr[0] & (1 << 0)) { /* RRST */
if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
(s->pcr & (1 << 8))) { /* CLKRM */
if (~s->pcr & (1 << 7)) /* SCLKME */
rx_rate = cpu_rate /
((s->srgr[0] & 0xff) + 1); /* CLKGDV */
} else
if (s->codec)
rx_rate = s->codec->rx_rate;
}
if (s->spcr[1] & (1 << 0)) { /* XRST */
if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
(s->pcr & (1 << 9))) { /* CLKXM */
if (~s->pcr & (1 << 7)) /* SCLKME */
tx_rate = cpu_rate /
((s->srgr[0] & 0xff) + 1); /* CLKGDV */
} else
if (s->codec)
tx_rate = s->codec->tx_rate;
}
}
prev_tx_rate = s->tx_rate;
prev_rx_rate = s->rx_rate;
s->tx_rate = tx_rate;
s->rx_rate = rx_rate;
if (s->codec)
s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
if (!prev_tx_rate && tx_rate)
omap_mcbsp_tx_start(s);
else if (s->tx_rate && !tx_rate)
omap_mcbsp_tx_stop(s);
if (!prev_rx_rate && rx_rate)
omap_mcbsp_rx_start(s);
else if (prev_tx_rate && !tx_rate)
omap_mcbsp_rx_stop(s);
}
static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
{
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
uint16_t ret;
switch (offset) {
case 0x00: /* DRR2 */
if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
return 0x0000;
/* Fall through. */
case 0x02: /* DRR1 */
if (s->rx_req < 2) {
printf("%s: Rx FIFO underrun\n", __FUNCTION__);
omap_mcbsp_rx_done(s);
} else {
s->tx_req -= 2;
if (s->codec && s->codec->in.len >= 2) {
ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
ret |= s->codec->in.fifo[s->codec->in.start ++];
s->codec->in.len -= 2;
} else
ret = 0x0000;
if (!s->tx_req)
omap_mcbsp_rx_done(s);
return ret;
}
return 0x0000;
case 0x04: /* DXR2 */
case 0x06: /* DXR1 */
return 0x0000;
case 0x08: /* SPCR2 */
return s->spcr[1];
case 0x0a: /* SPCR1 */
return s->spcr[0];
case 0x0c: /* RCR2 */
return s->rcr[1];
case 0x0e: /* RCR1 */
return s->rcr[0];
case 0x10: /* XCR2 */
return s->xcr[1];
case 0x12: /* XCR1 */
return s->xcr[0];
case 0x14: /* SRGR2 */
return s->srgr[1];
case 0x16: /* SRGR1 */
return s->srgr[0];
case 0x18: /* MCR2 */
return s->mcr[1];
case 0x1a: /* MCR1 */
return s->mcr[0];
case 0x1c: /* RCERA */
return s->rcer[0];
case 0x1e: /* RCERB */
return s->rcer[1];
case 0x20: /* XCERA */
return s->xcer[0];
case 0x22: /* XCERB */
return s->xcer[1];
case 0x24: /* PCR0 */
return s->pcr;
case 0x26: /* RCERC */
return s->rcer[2];
case 0x28: /* RCERD */
return s->rcer[3];
case 0x2a: /* XCERC */
return s->xcer[2];
case 0x2c: /* XCERD */
return s->xcer[3];
case 0x2e: /* RCERE */
return s->rcer[4];
case 0x30: /* RCERF */
return s->rcer[5];
case 0x32: /* XCERE */
return s->xcer[4];
case 0x34: /* XCERF */
return s->xcer[5];
case 0x36: /* RCERG */
return s->rcer[6];
case 0x38: /* RCERH */
return s->rcer[7];
case 0x3a: /* XCERG */
return s->xcer[6];
case 0x3c: /* XCERH */
return s->xcer[7];
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
switch (offset) {
case 0x00: /* DRR2 */
case 0x02: /* DRR1 */
OMAP_RO_REG(addr);
return;
case 0x04: /* DXR2 */
if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
return;
/* Fall through. */
case 0x06: /* DXR1 */
if (s->tx_req > 1) {
s->tx_req -= 2;
if (s->codec && s->codec->cts) {
s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
}
if (s->tx_req < 2)
omap_mcbsp_tx_done(s);
} else
printf("%s: Tx FIFO overrun\n", __FUNCTION__);
return;
case 0x08: /* SPCR2 */
s->spcr[1] &= 0x0002;
s->spcr[1] |= 0x03f9 & value;
s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
if (~value & 1) /* XRST */
s->spcr[1] &= ~6;
omap_mcbsp_req_update(s);
return;
case 0x0a: /* SPCR1 */
s->spcr[0] &= 0x0006;
s->spcr[0] |= 0xf8f9 & value;
if (value & (1 << 15)) /* DLB */
printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
if (~value & 1) { /* RRST */
s->spcr[0] &= ~6;
s->rx_req = 0;
omap_mcbsp_rx_done(s);
}
omap_mcbsp_req_update(s);
return;
case 0x0c: /* RCR2 */
s->rcr[1] = value & 0xffff;
return;
case 0x0e: /* RCR1 */
s->rcr[0] = value & 0x7fe0;
return;
case 0x10: /* XCR2 */
s->xcr[1] = value & 0xffff;
return;
case 0x12: /* XCR1 */
s->xcr[0] = value & 0x7fe0;
return;
case 0x14: /* SRGR2 */
s->srgr[1] = value & 0xffff;
omap_mcbsp_req_update(s);
return;
case 0x16: /* SRGR1 */
s->srgr[0] = value & 0xffff;
omap_mcbsp_req_update(s);
return;
case 0x18: /* MCR2 */
s->mcr[1] = value & 0x03e3;
if (value & 3) /* XMCM */
printf("%s: Tx channel selection mode enable attempt\n",
__FUNCTION__);
return;
case 0x1a: /* MCR1 */
s->mcr[0] = value & 0x03e1;
if (value & 1) /* RMCM */
printf("%s: Rx channel selection mode enable attempt\n",
__FUNCTION__);
return;
case 0x1c: /* RCERA */
s->rcer[0] = value & 0xffff;
return;
case 0x1e: /* RCERB */
s->rcer[1] = value & 0xffff;
return;
case 0x20: /* XCERA */
s->xcer[0] = value & 0xffff;
return;
case 0x22: /* XCERB */
s->xcer[1] = value & 0xffff;
return;
case 0x24: /* PCR0 */
s->pcr = value & 0x7faf;
return;
case 0x26: /* RCERC */
s->rcer[2] = value & 0xffff;
return;
case 0x28: /* RCERD */
s->rcer[3] = value & 0xffff;
return;
case 0x2a: /* XCERC */
s->xcer[2] = value & 0xffff;
return;
case 0x2c: /* XCERD */
s->xcer[3] = value & 0xffff;
return;
case 0x2e: /* RCERE */
s->rcer[4] = value & 0xffff;
return;
case 0x30: /* RCERF */
s->rcer[5] = value & 0xffff;
return;
case 0x32: /* XCERE */
s->xcer[4] = value & 0xffff;
return;
case 0x34: /* XCERF */
s->xcer[5] = value & 0xffff;
return;
case 0x36: /* RCERG */
s->rcer[6] = value & 0xffff;
return;
case 0x38: /* RCERH */
s->rcer[7] = value & 0xffff;
return;
case 0x3a: /* XCERG */
s->xcer[6] = value & 0xffff;
return;
case 0x3c: /* XCERH */
s->xcer[7] = value & 0xffff;
return;
}
OMAP_BAD_REG(addr);
}
static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
if (offset == 0x04) { /* DXR */
if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
return;
if (s->tx_req > 3) {
s->tx_req -= 4;
if (s->codec && s->codec->cts) {
s->codec->out.fifo[s->codec->out.len ++] =
(value >> 24) & 0xff;
s->codec->out.fifo[s->codec->out.len ++] =
(value >> 16) & 0xff;
s->codec->out.fifo[s->codec->out.len ++] =
(value >> 8) & 0xff;
s->codec->out.fifo[s->codec->out.len ++] =
(value >> 0) & 0xff;
}
if (s->tx_req < 4)
omap_mcbsp_tx_done(s);
} else
printf("%s: Tx FIFO overrun\n", __FUNCTION__);
return;
}
omap_badwidth_write16(opaque, addr, value);
}
static CPUReadMemoryFunc *omap_mcbsp_readfn[] = {
omap_badwidth_read16,
omap_mcbsp_read,
omap_badwidth_read16,
};
static CPUWriteMemoryFunc *omap_mcbsp_writefn[] = {
omap_badwidth_write16,
omap_mcbsp_writeh,
omap_mcbsp_writew,
};
static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
{
memset(&s->spcr, 0, sizeof(s->spcr));
memset(&s->rcr, 0, sizeof(s->rcr));
memset(&s->xcr, 0, sizeof(s->xcr));
s->srgr[0] = 0x0001;
s->srgr[1] = 0x2000;
memset(&s->mcr, 0, sizeof(s->mcr));
memset(&s->pcr, 0, sizeof(s->pcr));
memset(&s->rcer, 0, sizeof(s->rcer));
memset(&s->xcer, 0, sizeof(s->xcer));
s->tx_req = 0;
s->rx_req = 0;
s->tx_rate = 0;
s->rx_rate = 0;
qemu_del_timer(s->source_timer);
qemu_del_timer(s->sink_timer);
}
struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
qemu_irq *irq, qemu_irq *dma, omap_clk clk)
{
int iomemtype;
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
qemu_mallocz(sizeof(struct omap_mcbsp_s));
s->txirq = irq[0];
s->rxirq = irq[1];
s->txdrq = dma[0];
s->rxdrq = dma[1];
s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s);
s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s);
omap_mcbsp_reset(s);
iomemtype = cpu_register_io_memory(0, omap_mcbsp_readfn,
omap_mcbsp_writefn, s);
cpu_register_physical_memory(base, 0x800, iomemtype);
return s;
}
static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
{
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
if (s->rx_rate) {
s->rx_req = s->codec->in.len;
omap_mcbsp_rx_newdata(s);
}
}
static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
{
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
if (s->tx_rate) {
s->tx_req = s->codec->out.size;
omap_mcbsp_tx_newdata(s);
}
}
void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, struct i2s_codec_s *slave)
{
s->codec = slave;
slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
}
/* LED Pulse Generators */
struct omap_lpg_s {
QEMUTimer *tm;
uint8_t control;
uint8_t power;
int64_t on;
int64_t period;
int clk;
int cycle;
};
static void omap_lpg_tick(void *opaque)
{
struct omap_lpg_s *s = opaque;
if (s->cycle)
qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on);
else
qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on);
s->cycle = !s->cycle;
printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
}
static void omap_lpg_update(struct omap_lpg_s *s)
{
int64_t on, period = 1, ticks = 1000;
static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
if (~s->control & (1 << 6)) /* LPGRES */
on = 0;
else if (s->control & (1 << 7)) /* PERM_ON */
on = period;
else {
period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
256 / 32);
on = (s->clk && s->power) ? muldiv64(ticks,
per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
}
qemu_del_timer(s->tm);
if (on == period && s->on < s->period)
printf("%s: LED is on\n", __FUNCTION__);
else if (on == 0 && s->on)
printf("%s: LED is off\n", __FUNCTION__);
else if (on && (on != s->on || period != s->period)) {
s->cycle = 0;
s->on = on;
s->period = period;
omap_lpg_tick(s);
return;
}
s->on = on;
s->period = period;
}
static void omap_lpg_reset(struct omap_lpg_s *s)
{
s->control = 0x00;
s->power = 0x00;
s->clk = 1;
omap_lpg_update(s);
}
static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
{
struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
switch (offset) {
case 0x00: /* LCR */
return s->control;
case 0x04: /* PMR */
return s->power;
}
OMAP_BAD_REG(addr);
return 0;
}
static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
int offset = addr & OMAP_MPUI_REG_MASK;
switch (offset) {
case 0x00: /* LCR */
if (~value & (1 << 6)) /* LPGRES */
omap_lpg_reset(s);
s->control = value & 0xff;
omap_lpg_update(s);
return;
case 0x04: /* PMR */
s->power = value & 0x01;
omap_lpg_update(s);
return;
default:
OMAP_BAD_REG(addr);
return;
}
}
static CPUReadMemoryFunc *omap_lpg_readfn[] = {
omap_lpg_read,
omap_badwidth_read8,
omap_badwidth_read8,
};
static CPUWriteMemoryFunc *omap_lpg_writefn[] = {
omap_lpg_write,
omap_badwidth_write8,
omap_badwidth_write8,
};
static void omap_lpg_clk_update(void *opaque, int line, int on)
{
struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
s->clk = on;
omap_lpg_update(s);
}
struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
{
int iomemtype;
struct omap_lpg_s *s = (struct omap_lpg_s *)
qemu_mallocz(sizeof(struct omap_lpg_s));
s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s);
omap_lpg_reset(s);
iomemtype = cpu_register_io_memory(0, omap_lpg_readfn,
omap_lpg_writefn, s);
cpu_register_physical_memory(base, 0x800, iomemtype);
omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
return s;
}
/* MPUI Peripheral Bridge configuration */
static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
{
if (addr == OMAP_MPUI_BASE) /* CMR */
return 0xfe4d;
OMAP_BAD_REG(addr);
return 0;
}
static CPUReadMemoryFunc *omap_mpui_io_readfn[] = {
omap_badwidth_read16,
omap_mpui_io_read,
omap_badwidth_read16,
};
static CPUWriteMemoryFunc *omap_mpui_io_writefn[] = {
omap_badwidth_write16,
omap_badwidth_write16,
omap_badwidth_write16,
};
static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
{
int iomemtype = cpu_register_io_memory(0, omap_mpui_io_readfn,
omap_mpui_io_writefn, mpu);
cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
}
/* General chip reset */
static void omap1_mpu_reset(void *opaque)
{
struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
omap_inth_reset(mpu->ih[0]);
omap_inth_reset(mpu->ih[1]);
omap_dma_reset(mpu->dma);
omap_mpu_timer_reset(mpu->timer[0]);
omap_mpu_timer_reset(mpu->timer[1]);
omap_mpu_timer_reset(mpu->timer[2]);
omap_wd_timer_reset(mpu->wdt);
omap_os_timer_reset(mpu->os_timer);
omap_lcdc_reset(mpu->lcd);
omap_ulpd_pm_reset(mpu);
omap_pin_cfg_reset(mpu);
omap_mpui_reset(mpu);
omap_tipb_bridge_reset(mpu->private_tipb);
omap_tipb_bridge_reset(mpu->public_tipb);
omap_dpll_reset(&mpu->dpll[0]);
omap_dpll_reset(&mpu->dpll[1]);
omap_dpll_reset(&mpu->dpll[2]);
omap_uart_reset(mpu->uart[0]);
omap_uart_reset(mpu->uart[1]);
omap_uart_reset(mpu->uart[2]);
omap_mmc_reset(mpu->mmc);
omap_mpuio_reset(mpu->mpuio);
omap_gpio_reset(mpu->gpio);
omap_uwire_reset(mpu->microwire);
omap_pwl_reset(mpu);
omap_pwt_reset(mpu);
omap_i2c_reset(mpu->i2c[0]);
omap_rtc_reset(mpu->rtc);
omap_mcbsp_reset(mpu->mcbsp1);
omap_mcbsp_reset(mpu->mcbsp2);
omap_mcbsp_reset(mpu->mcbsp3);
omap_lpg_reset(mpu->led[0]);
omap_lpg_reset(mpu->led[1]);
omap_clkm_reset(mpu);
cpu_reset(mpu->env);
}
static const struct omap_map_s {
target_phys_addr_t phys_dsp;
target_phys_addr_t phys_mpu;
uint32_t size;
const char *name;
} omap15xx_dsp_mm[] = {
/* Strobe 0 */
{ 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
{ 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
{ 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
{ 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
{ 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
{ 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
{ 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
{ 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
{ 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
{ 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
{ 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
{ 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
{ 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
{ 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
{ 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
{ 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
{ 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
/* Strobe 1 */
{ 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
{ 0 }
};
static void omap_setup_dsp_mapping(const struct omap_map_s *map)
{
int io;
for (; map->phys_dsp; map ++) {
io = cpu_get_physical_page_desc(map->phys_mpu);
cpu_register_physical_memory(map->phys_dsp, map->size, io);
}
}
void omap_mpu_wakeup(void *opaque, int irq, int req)
{
struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
if (mpu->env->halted)
cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
}
static const struct dma_irq_map omap1_dma_irq_map[] = {
{ 0, OMAP_INT_DMA_CH0_6 },
{ 0, OMAP_INT_DMA_CH1_7 },
{ 0, OMAP_INT_DMA_CH2_8 },
{ 0, OMAP_INT_DMA_CH3 },
{ 0, OMAP_INT_DMA_CH4 },
{ 0, OMAP_INT_DMA_CH5 },
{ 1, OMAP_INT_1610_DMA_CH6 },
{ 1, OMAP_INT_1610_DMA_CH7 },
{ 1, OMAP_INT_1610_DMA_CH8 },
{ 1, OMAP_INT_1610_DMA_CH9 },
{ 1, OMAP_INT_1610_DMA_CH10 },
{ 1, OMAP_INT_1610_DMA_CH11 },
{ 1, OMAP_INT_1610_DMA_CH12 },
{ 1, OMAP_INT_1610_DMA_CH13 },
{ 1, OMAP_INT_1610_DMA_CH14 },
{ 1, OMAP_INT_1610_DMA_CH15 }
};
/* DMA ports for OMAP1 */
static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
target_phys_addr_t addr)
{
return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
}
static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
target_phys_addr_t addr)
{
return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
}
static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
target_phys_addr_t addr)
{
return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
}
static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
target_phys_addr_t addr)
{
return addr >= 0xfffb0000 && addr < 0xffff0000;
}
static int omap_validate_local_addr(struct omap_mpu_state_s *s,
target_phys_addr_t addr)
{
return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
}
static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
target_phys_addr_t addr)
{
return addr >= 0xe1010000 && addr < 0xe1020004;
}
struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
DisplayState *ds, const char *core)
{
int i;
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
qemu_mallocz(sizeof(struct omap_mpu_state_s));
ram_addr_t imif_base, emiff_base;
qemu_irq *cpu_irq;
qemu_irq dma_irqs[6];
int sdindex;
if (!core)
core = "ti925t";
/* Core */
s->mpu_model = omap310;
s->env = cpu_init(core);
if (!s->env) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
s->sdram_size = sdram_size;
s->sram_size = OMAP15XX_SRAM_SIZE;
s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
/* Clocks */
omap_clk_init(s);
/* Memory-mapped stuff */
cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
(emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
(imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
omap_clkm_init(0xfffece00, 0xe1008000, s);
cpu_irq = arm_pic_init_cpu(s->env);
s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
omap_findclk(s, "arminth_ck"));
s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ], NULL,
omap_findclk(s, "arminth_ck"));
for (i = 0; i < 6; i ++)
dma_irqs[i] =
s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
s->port[emiff ].addr_valid = omap_validate_emiff_addr;
s->port[emifs ].addr_valid = omap_validate_emifs_addr;
s->port[imif ].addr_valid = omap_validate_imif_addr;
s->port[tipb ].addr_valid = omap_validate_tipb_addr;
s->port[local ].addr_valid = omap_validate_local_addr;
s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
/* Register SDRAM and SRAM DMA ports for fast transfers. */
soc_dma_port_add_mem_ram(s->dma,
emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
soc_dma_port_add_mem_ram(s->dma,
imif_base, OMAP_IMIF_BASE, s->sram_size);
s->timer[0] = omap_mpu_timer_init(0xfffec500,
s->irq[0][OMAP_INT_TIMER1],
omap_findclk(s, "mputim_ck"));
s->timer[1] = omap_mpu_timer_init(0xfffec600,
s->irq[0][OMAP_INT_TIMER2],
omap_findclk(s, "mputim_ck"));
s->timer[2] = omap_mpu_timer_init(0xfffec700,
s->irq[0][OMAP_INT_TIMER3],
omap_findclk(s, "mputim_ck"));
s->wdt = omap_wd_timer_init(0xfffec800,
s->irq[0][OMAP_INT_WD_TIMER],
omap_findclk(s, "armwdt_ck"));
s->os_timer = omap_os_timer_init(0xfffb9000,
s->irq[1][OMAP_INT_OS_TIMER],
omap_findclk(s, "clk32-kHz"));
s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
omap_dma_get_lcdch(s->dma), ds, imif_base, emiff_base,
omap_findclk(s, "lcd_ck"));
omap_ulpd_pm_init(0xfffe0800, s);
omap_pin_cfg_init(0xfffe1000, s);
omap_id_init(s);
omap_mpui_init(0xfffec900, s);
s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
s->irq[0][OMAP_INT_BRIDGE_PRIV],
omap_findclk(s, "tipb_ck"));
s->public_tipb = omap_tipb_bridge_init(0xfffed300,
s->irq[0][OMAP_INT_BRIDGE_PUB],
omap_findclk(s, "tipb_ck"));
omap_tcmi_init(0xfffecc00, s);
s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
omap_findclk(s, "uart1_ck"),
omap_findclk(s, "uart1_ck"),
s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
serial_hds[0]);
s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
omap_findclk(s, "uart2_ck"),
omap_findclk(s, "uart2_ck"),
s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
serial_hds[0] ? serial_hds[1] : 0);
s->uart[2] = omap_uart_init(0xe1019800, s->irq[0][OMAP_INT_UART3],
omap_findclk(s, "uart3_ck"),
omap_findclk(s, "uart3_ck"),
s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0);
omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
sdindex = drive_get_index(IF_SD, 0, 0);
if (sdindex == -1) {
fprintf(stderr, "qemu: missing SecureDigital device\n");
exit(1);
}
s->mmc = omap_mmc_init(0xfffb7800, drives_table[sdindex].bdrv,
s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
omap_findclk(s, "mmc_ck"));
s->mpuio = omap_mpuio_init(0xfffb5000,
s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
s->wakeup, omap_findclk(s, "clk32-kHz"));
s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
omap_findclk(s, "arm_gpio_ck"));
s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
&s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
omap_findclk(s, "clk32-kHz"));
s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
&s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
&s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
&s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
/* Register mappings not currenlty implemented:
* MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
* MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
* USB W2FC fffb4000 - fffb47ff
* Camera Interface fffb6800 - fffb6fff
* USB Host fffba000 - fffba7ff
* FAC fffba800 - fffbafff
* HDQ/1-Wire fffbc000 - fffbc7ff
* TIPB switches fffbc800 - fffbcfff
* Mailbox fffcf000 - fffcf7ff
* Local bus IF fffec100 - fffec1ff
* Local bus MMU fffec200 - fffec2ff
* DSP MMU fffed200 - fffed2ff
*/
omap_setup_dsp_mapping(omap15xx_dsp_mm);
omap_setup_mpui_io(s);
qemu_register_reset(omap1_mpu_reset, s);
return s;
}