qemu-e2k/tcg/sparc/tcg-target.c.inc
Richard Henderson 321dbde33a tcg/sparc: Support unaligned access for user-only
This is kinda sorta the opposite of the other tcg hosts, where
we get (normal) alignment checks for free with host SIGBUS and
need to add code to support unaligned accesses.

This inline code expansion is somewhat large, but it takes quite
a few instructions to make a function call to a helper anyway.

Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2022-02-09 09:00:00 +11:00

2070 lines
65 KiB
C++

/*
* Tiny Code Generator for QEMU
*
* Copyright (c) 2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "../tcg-pool.c.inc"
#ifdef CONFIG_DEBUG_TCG
static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
"%g0",
"%g1",
"%g2",
"%g3",
"%g4",
"%g5",
"%g6",
"%g7",
"%o0",
"%o1",
"%o2",
"%o3",
"%o4",
"%o5",
"%o6",
"%o7",
"%l0",
"%l1",
"%l2",
"%l3",
"%l4",
"%l5",
"%l6",
"%l7",
"%i0",
"%i1",
"%i2",
"%i3",
"%i4",
"%i5",
"%i6",
"%i7",
};
#endif
#ifdef __arch64__
# define SPARC64 1
#else
# define SPARC64 0
#endif
#define TCG_CT_CONST_S11 0x100
#define TCG_CT_CONST_S13 0x200
#define TCG_CT_CONST_ZERO 0x400
/*
* For softmmu, we need to avoid conflicts with the first 3
* argument registers to perform the tlb lookup, and to call
* the helper function.
*/
#ifdef CONFIG_SOFTMMU
#define SOFTMMU_RESERVE_REGS MAKE_64BIT_MASK(TCG_REG_O0, 3)
#else
#define SOFTMMU_RESERVE_REGS 0
#endif
/*
* Note that sparcv8plus can only hold 64 bit quantities in %g and %o
* registers. These are saved manually by the kernel in full 64-bit
* slots. The %i and %l registers are saved by the register window
* mechanism, which only allocates space for 32 bits. Given that this
* window spill/fill can happen on any signal, we must consider the
* high bits of the %i and %l registers garbage at all times.
*/
#define ALL_GENERAL_REGS MAKE_64BIT_MASK(0, 32)
#if SPARC64
# define ALL_GENERAL_REGS64 ALL_GENERAL_REGS
#else
# define ALL_GENERAL_REGS64 MAKE_64BIT_MASK(0, 16)
#endif
#define ALL_QLDST_REGS (ALL_GENERAL_REGS & ~SOFTMMU_RESERVE_REGS)
#define ALL_QLDST_REGS64 (ALL_GENERAL_REGS64 & ~SOFTMMU_RESERVE_REGS)
/* Define some temporary registers. T2 is used for constant generation. */
#define TCG_REG_T1 TCG_REG_G1
#define TCG_REG_T2 TCG_REG_O7
#ifndef CONFIG_SOFTMMU
# define TCG_GUEST_BASE_REG TCG_REG_I5
#endif
#define TCG_REG_TB TCG_REG_I1
#define USE_REG_TB (sizeof(void *) > 4)
static const int tcg_target_reg_alloc_order[] = {
TCG_REG_L0,
TCG_REG_L1,
TCG_REG_L2,
TCG_REG_L3,
TCG_REG_L4,
TCG_REG_L5,
TCG_REG_L6,
TCG_REG_L7,
TCG_REG_I0,
TCG_REG_I1,
TCG_REG_I2,
TCG_REG_I3,
TCG_REG_I4,
TCG_REG_I5,
TCG_REG_G2,
TCG_REG_G3,
TCG_REG_G4,
TCG_REG_G5,
TCG_REG_O0,
TCG_REG_O1,
TCG_REG_O2,
TCG_REG_O3,
TCG_REG_O4,
TCG_REG_O5,
};
static const int tcg_target_call_iarg_regs[6] = {
TCG_REG_O0,
TCG_REG_O1,
TCG_REG_O2,
TCG_REG_O3,
TCG_REG_O4,
TCG_REG_O5,
};
static const int tcg_target_call_oarg_regs[] = {
TCG_REG_O0,
TCG_REG_O1,
TCG_REG_O2,
TCG_REG_O3,
};
#define INSN_OP(x) ((x) << 30)
#define INSN_OP2(x) ((x) << 22)
#define INSN_OP3(x) ((x) << 19)
#define INSN_OPF(x) ((x) << 5)
#define INSN_RD(x) ((x) << 25)
#define INSN_RS1(x) ((x) << 14)
#define INSN_RS2(x) (x)
#define INSN_ASI(x) ((x) << 5)
#define INSN_IMM10(x) ((1 << 13) | ((x) & 0x3ff))
#define INSN_IMM11(x) ((1 << 13) | ((x) & 0x7ff))
#define INSN_IMM13(x) ((1 << 13) | ((x) & 0x1fff))
#define INSN_OFF16(x) ((((x) >> 2) & 0x3fff) | ((((x) >> 16) & 3) << 20))
#define INSN_OFF19(x) (((x) >> 2) & 0x07ffff)
#define INSN_COND(x) ((x) << 25)
#define COND_N 0x0
#define COND_E 0x1
#define COND_LE 0x2
#define COND_L 0x3
#define COND_LEU 0x4
#define COND_CS 0x5
#define COND_NEG 0x6
#define COND_VS 0x7
#define COND_A 0x8
#define COND_NE 0x9
#define COND_G 0xa
#define COND_GE 0xb
#define COND_GU 0xc
#define COND_CC 0xd
#define COND_POS 0xe
#define COND_VC 0xf
#define BA (INSN_OP(0) | INSN_COND(COND_A) | INSN_OP2(0x2))
#define RCOND_Z 1
#define RCOND_LEZ 2
#define RCOND_LZ 3
#define RCOND_NZ 5
#define RCOND_GZ 6
#define RCOND_GEZ 7
#define MOVCC_ICC (1 << 18)
#define MOVCC_XCC (1 << 18 | 1 << 12)
#define BPCC_ICC 0
#define BPCC_XCC (2 << 20)
#define BPCC_PT (1 << 19)
#define BPCC_PN 0
#define BPCC_A (1 << 29)
#define BPR_PT BPCC_PT
#define ARITH_ADD (INSN_OP(2) | INSN_OP3(0x00))
#define ARITH_ADDCC (INSN_OP(2) | INSN_OP3(0x10))
#define ARITH_AND (INSN_OP(2) | INSN_OP3(0x01))
#define ARITH_ANDCC (INSN_OP(2) | INSN_OP3(0x11))
#define ARITH_ANDN (INSN_OP(2) | INSN_OP3(0x05))
#define ARITH_OR (INSN_OP(2) | INSN_OP3(0x02))
#define ARITH_ORCC (INSN_OP(2) | INSN_OP3(0x12))
#define ARITH_ORN (INSN_OP(2) | INSN_OP3(0x06))
#define ARITH_XOR (INSN_OP(2) | INSN_OP3(0x03))
#define ARITH_SUB (INSN_OP(2) | INSN_OP3(0x04))
#define ARITH_SUBCC (INSN_OP(2) | INSN_OP3(0x14))
#define ARITH_ADDC (INSN_OP(2) | INSN_OP3(0x08))
#define ARITH_SUBC (INSN_OP(2) | INSN_OP3(0x0c))
#define ARITH_UMUL (INSN_OP(2) | INSN_OP3(0x0a))
#define ARITH_SMUL (INSN_OP(2) | INSN_OP3(0x0b))
#define ARITH_UDIV (INSN_OP(2) | INSN_OP3(0x0e))
#define ARITH_SDIV (INSN_OP(2) | INSN_OP3(0x0f))
#define ARITH_MULX (INSN_OP(2) | INSN_OP3(0x09))
#define ARITH_UDIVX (INSN_OP(2) | INSN_OP3(0x0d))
#define ARITH_SDIVX (INSN_OP(2) | INSN_OP3(0x2d))
#define ARITH_MOVCC (INSN_OP(2) | INSN_OP3(0x2c))
#define ARITH_MOVR (INSN_OP(2) | INSN_OP3(0x2f))
#define ARITH_ADDXC (INSN_OP(2) | INSN_OP3(0x36) | INSN_OPF(0x11))
#define ARITH_UMULXHI (INSN_OP(2) | INSN_OP3(0x36) | INSN_OPF(0x16))
#define SHIFT_SLL (INSN_OP(2) | INSN_OP3(0x25))
#define SHIFT_SRL (INSN_OP(2) | INSN_OP3(0x26))
#define SHIFT_SRA (INSN_OP(2) | INSN_OP3(0x27))
#define SHIFT_SLLX (INSN_OP(2) | INSN_OP3(0x25) | (1 << 12))
#define SHIFT_SRLX (INSN_OP(2) | INSN_OP3(0x26) | (1 << 12))
#define SHIFT_SRAX (INSN_OP(2) | INSN_OP3(0x27) | (1 << 12))
#define RDY (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(0))
#define WRY (INSN_OP(2) | INSN_OP3(0x30) | INSN_RD(0))
#define JMPL (INSN_OP(2) | INSN_OP3(0x38))
#define RETURN (INSN_OP(2) | INSN_OP3(0x39))
#define SAVE (INSN_OP(2) | INSN_OP3(0x3c))
#define RESTORE (INSN_OP(2) | INSN_OP3(0x3d))
#define SETHI (INSN_OP(0) | INSN_OP2(0x4))
#define CALL INSN_OP(1)
#define LDUB (INSN_OP(3) | INSN_OP3(0x01))
#define LDSB (INSN_OP(3) | INSN_OP3(0x09))
#define LDUH (INSN_OP(3) | INSN_OP3(0x02))
#define LDSH (INSN_OP(3) | INSN_OP3(0x0a))
#define LDUW (INSN_OP(3) | INSN_OP3(0x00))
#define LDSW (INSN_OP(3) | INSN_OP3(0x08))
#define LDX (INSN_OP(3) | INSN_OP3(0x0b))
#define STB (INSN_OP(3) | INSN_OP3(0x05))
#define STH (INSN_OP(3) | INSN_OP3(0x06))
#define STW (INSN_OP(3) | INSN_OP3(0x04))
#define STX (INSN_OP(3) | INSN_OP3(0x0e))
#define LDUBA (INSN_OP(3) | INSN_OP3(0x11))
#define LDSBA (INSN_OP(3) | INSN_OP3(0x19))
#define LDUHA (INSN_OP(3) | INSN_OP3(0x12))
#define LDSHA (INSN_OP(3) | INSN_OP3(0x1a))
#define LDUWA (INSN_OP(3) | INSN_OP3(0x10))
#define LDSWA (INSN_OP(3) | INSN_OP3(0x18))
#define LDXA (INSN_OP(3) | INSN_OP3(0x1b))
#define STBA (INSN_OP(3) | INSN_OP3(0x15))
#define STHA (INSN_OP(3) | INSN_OP3(0x16))
#define STWA (INSN_OP(3) | INSN_OP3(0x14))
#define STXA (INSN_OP(3) | INSN_OP3(0x1e))
#define MEMBAR (INSN_OP(2) | INSN_OP3(0x28) | INSN_RS1(15) | (1 << 13))
#define NOP (SETHI | INSN_RD(TCG_REG_G0) | 0)
#ifndef ASI_PRIMARY_LITTLE
#define ASI_PRIMARY_LITTLE 0x88
#endif
#define LDUH_LE (LDUHA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define LDSH_LE (LDSHA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define LDUW_LE (LDUWA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define LDSW_LE (LDSWA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define LDX_LE (LDXA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define STH_LE (STHA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define STW_LE (STWA | INSN_ASI(ASI_PRIMARY_LITTLE))
#define STX_LE (STXA | INSN_ASI(ASI_PRIMARY_LITTLE))
#ifndef use_vis3_instructions
bool use_vis3_instructions;
#endif
static bool check_fit_i64(int64_t val, unsigned int bits)
{
return val == sextract64(val, 0, bits);
}
static bool check_fit_i32(int32_t val, unsigned int bits)
{
return val == sextract32(val, 0, bits);
}
#define check_fit_tl check_fit_i64
#if SPARC64
# define check_fit_ptr check_fit_i64
#else
# define check_fit_ptr check_fit_i32
#endif
static bool patch_reloc(tcg_insn_unit *src_rw, int type,
intptr_t value, intptr_t addend)
{
const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
uint32_t insn = *src_rw;
intptr_t pcrel;
value += addend;
pcrel = tcg_ptr_byte_diff((tcg_insn_unit *)value, src_rx);
switch (type) {
case R_SPARC_WDISP16:
if (!check_fit_ptr(pcrel >> 2, 16)) {
return false;
}
insn &= ~INSN_OFF16(-1);
insn |= INSN_OFF16(pcrel);
break;
case R_SPARC_WDISP19:
if (!check_fit_ptr(pcrel >> 2, 19)) {
return false;
}
insn &= ~INSN_OFF19(-1);
insn |= INSN_OFF19(pcrel);
break;
case R_SPARC_13:
if (!check_fit_ptr(value, 13)) {
return false;
}
insn &= ~INSN_IMM13(-1);
insn |= INSN_IMM13(value);
break;
default:
g_assert_not_reached();
}
*src_rw = insn;
return true;
}
/* test if a constant matches the constraint */
static bool tcg_target_const_match(int64_t val, TCGType type, int ct)
{
if (ct & TCG_CT_CONST) {
return 1;
}
if (type == TCG_TYPE_I32) {
val = (int32_t)val;
}
if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
return 1;
} else if ((ct & TCG_CT_CONST_S11) && check_fit_tl(val, 11)) {
return 1;
} else if ((ct & TCG_CT_CONST_S13) && check_fit_tl(val, 13)) {
return 1;
} else {
return 0;
}
}
static void tcg_out_nop(TCGContext *s)
{
tcg_out32(s, NOP);
}
static void tcg_out_arith(TCGContext *s, TCGReg rd, TCGReg rs1,
TCGReg rs2, int op)
{
tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_RS2(rs2));
}
static void tcg_out_arithi(TCGContext *s, TCGReg rd, TCGReg rs1,
int32_t offset, int op)
{
tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1) | INSN_IMM13(offset));
}
static void tcg_out_arithc(TCGContext *s, TCGReg rd, TCGReg rs1,
int32_t val2, int val2const, int op)
{
tcg_out32(s, op | INSN_RD(rd) | INSN_RS1(rs1)
| (val2const ? INSN_IMM13(val2) : INSN_RS2(val2)));
}
static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
{
if (ret != arg) {
tcg_out_arith(s, ret, arg, TCG_REG_G0, ARITH_OR);
}
return true;
}
static void tcg_out_mov_delay(TCGContext *s, TCGReg ret, TCGReg arg)
{
if (ret != arg) {
tcg_out_arith(s, ret, arg, TCG_REG_G0, ARITH_OR);
} else {
tcg_out_nop(s);
}
}
static void tcg_out_sethi(TCGContext *s, TCGReg ret, uint32_t arg)
{
tcg_out32(s, SETHI | INSN_RD(ret) | ((arg & 0xfffffc00) >> 10));
}
static void tcg_out_movi_imm13(TCGContext *s, TCGReg ret, int32_t arg)
{
tcg_out_arithi(s, ret, TCG_REG_G0, arg, ARITH_OR);
}
static void tcg_out_movi_imm32(TCGContext *s, TCGReg ret, int32_t arg)
{
if (check_fit_i32(arg, 13)) {
/* A 13-bit constant sign-extended to 64-bits. */
tcg_out_movi_imm13(s, ret, arg);
} else {
/* A 32-bit constant zero-extended to 64 bits. */
tcg_out_sethi(s, ret, arg);
if (arg & 0x3ff) {
tcg_out_arithi(s, ret, ret, arg & 0x3ff, ARITH_OR);
}
}
}
static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret,
tcg_target_long arg, bool in_prologue,
TCGReg scratch)
{
tcg_target_long hi, lo = (int32_t)arg;
tcg_target_long test, lsb;
/* A 32-bit constant, or 32-bit zero-extended to 64-bits. */
if (type == TCG_TYPE_I32 || arg == (uint32_t)arg) {
tcg_out_movi_imm32(s, ret, arg);
return;
}
/* A 13-bit constant sign-extended to 64-bits. */
if (check_fit_tl(arg, 13)) {
tcg_out_movi_imm13(s, ret, arg);
return;
}
/* A 13-bit constant relative to the TB. */
if (!in_prologue && USE_REG_TB) {
test = tcg_tbrel_diff(s, (void *)arg);
if (check_fit_ptr(test, 13)) {
tcg_out_arithi(s, ret, TCG_REG_TB, test, ARITH_ADD);
return;
}
}
/* A 32-bit constant sign-extended to 64-bits. */
if (arg == lo) {
tcg_out_sethi(s, ret, ~arg);
tcg_out_arithi(s, ret, ret, (arg & 0x3ff) | -0x400, ARITH_XOR);
return;
}
/* A 32-bit constant, shifted. */
lsb = ctz64(arg);
test = (tcg_target_long)arg >> lsb;
if (lsb > 10 && test == extract64(test, 0, 21)) {
tcg_out_sethi(s, ret, test << 10);
tcg_out_arithi(s, ret, ret, lsb - 10, SHIFT_SLLX);
return;
} else if (test == (uint32_t)test || test == (int32_t)test) {
tcg_out_movi_int(s, TCG_TYPE_I64, ret, test, in_prologue, scratch);
tcg_out_arithi(s, ret, ret, lsb, SHIFT_SLLX);
return;
}
/* Use the constant pool, if possible. */
if (!in_prologue && USE_REG_TB) {
new_pool_label(s, arg, R_SPARC_13, s->code_ptr,
tcg_tbrel_diff(s, NULL));
tcg_out32(s, LDX | INSN_RD(ret) | INSN_RS1(TCG_REG_TB));
return;
}
/* A 64-bit constant decomposed into 2 32-bit pieces. */
if (check_fit_i32(lo, 13)) {
hi = (arg - lo) >> 32;
tcg_out_movi_imm32(s, ret, hi);
tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX);
tcg_out_arithi(s, ret, ret, lo, ARITH_ADD);
} else {
hi = arg >> 32;
tcg_out_movi_imm32(s, ret, hi);
tcg_out_movi_imm32(s, scratch, lo);
tcg_out_arithi(s, ret, ret, 32, SHIFT_SLLX);
tcg_out_arith(s, ret, ret, scratch, ARITH_OR);
}
}
static void tcg_out_movi(TCGContext *s, TCGType type,
TCGReg ret, tcg_target_long arg)
{
tcg_debug_assert(ret != TCG_REG_T2);
tcg_out_movi_int(s, type, ret, arg, false, TCG_REG_T2);
}
static void tcg_out_ldst_rr(TCGContext *s, TCGReg data, TCGReg a1,
TCGReg a2, int op)
{
tcg_out32(s, op | INSN_RD(data) | INSN_RS1(a1) | INSN_RS2(a2));
}
static void tcg_out_ldst(TCGContext *s, TCGReg ret, TCGReg addr,
intptr_t offset, int op)
{
if (check_fit_ptr(offset, 13)) {
tcg_out32(s, op | INSN_RD(ret) | INSN_RS1(addr) |
INSN_IMM13(offset));
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, offset);
tcg_out_ldst_rr(s, ret, addr, TCG_REG_T1, op);
}
}
static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
TCGReg arg1, intptr_t arg2)
{
tcg_out_ldst(s, ret, arg1, arg2, (type == TCG_TYPE_I32 ? LDUW : LDX));
}
static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
TCGReg arg1, intptr_t arg2)
{
tcg_out_ldst(s, arg, arg1, arg2, (type == TCG_TYPE_I32 ? STW : STX));
}
static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
TCGReg base, intptr_t ofs)
{
if (val == 0) {
tcg_out_st(s, type, TCG_REG_G0, base, ofs);
return true;
}
return false;
}
static void tcg_out_ld_ptr(TCGContext *s, TCGReg ret, const void *arg)
{
intptr_t diff = tcg_tbrel_diff(s, arg);
if (USE_REG_TB && check_fit_ptr(diff, 13)) {
tcg_out_ld(s, TCG_TYPE_PTR, ret, TCG_REG_TB, diff);
return;
}
tcg_out_movi(s, TCG_TYPE_PTR, ret, (uintptr_t)arg & ~0x3ff);
tcg_out_ld(s, TCG_TYPE_PTR, ret, ret, (uintptr_t)arg & 0x3ff);
}
static void tcg_out_sety(TCGContext *s, TCGReg rs)
{
tcg_out32(s, WRY | INSN_RS1(TCG_REG_G0) | INSN_RS2(rs));
}
static void tcg_out_rdy(TCGContext *s, TCGReg rd)
{
tcg_out32(s, RDY | INSN_RD(rd));
}
static void tcg_out_div32(TCGContext *s, TCGReg rd, TCGReg rs1,
int32_t val2, int val2const, int uns)
{
/* Load Y with the sign/zero extension of RS1 to 64-bits. */
if (uns) {
tcg_out_sety(s, TCG_REG_G0);
} else {
tcg_out_arithi(s, TCG_REG_T1, rs1, 31, SHIFT_SRA);
tcg_out_sety(s, TCG_REG_T1);
}
tcg_out_arithc(s, rd, rs1, val2, val2const,
uns ? ARITH_UDIV : ARITH_SDIV);
}
static const uint8_t tcg_cond_to_bcond[] = {
[TCG_COND_EQ] = COND_E,
[TCG_COND_NE] = COND_NE,
[TCG_COND_LT] = COND_L,
[TCG_COND_GE] = COND_GE,
[TCG_COND_LE] = COND_LE,
[TCG_COND_GT] = COND_G,
[TCG_COND_LTU] = COND_CS,
[TCG_COND_GEU] = COND_CC,
[TCG_COND_LEU] = COND_LEU,
[TCG_COND_GTU] = COND_GU,
};
static const uint8_t tcg_cond_to_rcond[] = {
[TCG_COND_EQ] = RCOND_Z,
[TCG_COND_NE] = RCOND_NZ,
[TCG_COND_LT] = RCOND_LZ,
[TCG_COND_GT] = RCOND_GZ,
[TCG_COND_LE] = RCOND_LEZ,
[TCG_COND_GE] = RCOND_GEZ
};
static void tcg_out_bpcc0(TCGContext *s, int scond, int flags, int off19)
{
tcg_out32(s, INSN_OP(0) | INSN_OP2(1) | INSN_COND(scond) | flags | off19);
}
static void tcg_out_bpcc(TCGContext *s, int scond, int flags, TCGLabel *l)
{
int off19 = 0;
if (l->has_value) {
off19 = INSN_OFF19(tcg_pcrel_diff(s, l->u.value_ptr));
} else {
tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP19, l, 0);
}
tcg_out_bpcc0(s, scond, flags, off19);
}
static void tcg_out_cmp(TCGContext *s, TCGReg c1, int32_t c2, int c2const)
{
tcg_out_arithc(s, TCG_REG_G0, c1, c2, c2const, ARITH_SUBCC);
}
static void tcg_out_brcond_i32(TCGContext *s, TCGCond cond, TCGReg arg1,
int32_t arg2, int const_arg2, TCGLabel *l)
{
tcg_out_cmp(s, arg1, arg2, const_arg2);
tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_ICC | BPCC_PT, l);
tcg_out_nop(s);
}
static void tcg_out_movcc(TCGContext *s, TCGCond cond, int cc, TCGReg ret,
int32_t v1, int v1const)
{
tcg_out32(s, ARITH_MOVCC | cc | INSN_RD(ret)
| INSN_RS1(tcg_cond_to_bcond[cond])
| (v1const ? INSN_IMM11(v1) : INSN_RS2(v1)));
}
static void tcg_out_movcond_i32(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg c1, int32_t c2, int c2const,
int32_t v1, int v1const)
{
tcg_out_cmp(s, c1, c2, c2const);
tcg_out_movcc(s, cond, MOVCC_ICC, ret, v1, v1const);
}
static void tcg_out_brcond_i64(TCGContext *s, TCGCond cond, TCGReg arg1,
int32_t arg2, int const_arg2, TCGLabel *l)
{
/* For 64-bit signed comparisons vs zero, we can avoid the compare. */
if (arg2 == 0 && !is_unsigned_cond(cond)) {
int off16 = 0;
if (l->has_value) {
off16 = INSN_OFF16(tcg_pcrel_diff(s, l->u.value_ptr));
} else {
tcg_out_reloc(s, s->code_ptr, R_SPARC_WDISP16, l, 0);
}
tcg_out32(s, INSN_OP(0) | INSN_OP2(3) | BPR_PT | INSN_RS1(arg1)
| INSN_COND(tcg_cond_to_rcond[cond]) | off16);
} else {
tcg_out_cmp(s, arg1, arg2, const_arg2);
tcg_out_bpcc(s, tcg_cond_to_bcond[cond], BPCC_XCC | BPCC_PT, l);
}
tcg_out_nop(s);
}
static void tcg_out_movr(TCGContext *s, TCGCond cond, TCGReg ret, TCGReg c1,
int32_t v1, int v1const)
{
tcg_out32(s, ARITH_MOVR | INSN_RD(ret) | INSN_RS1(c1)
| (tcg_cond_to_rcond[cond] << 10)
| (v1const ? INSN_IMM10(v1) : INSN_RS2(v1)));
}
static void tcg_out_movcond_i64(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg c1, int32_t c2, int c2const,
int32_t v1, int v1const)
{
/* For 64-bit signed comparisons vs zero, we can avoid the compare.
Note that the immediate range is one bit smaller, so we must check
for that as well. */
if (c2 == 0 && !is_unsigned_cond(cond)
&& (!v1const || check_fit_i32(v1, 10))) {
tcg_out_movr(s, cond, ret, c1, v1, v1const);
} else {
tcg_out_cmp(s, c1, c2, c2const);
tcg_out_movcc(s, cond, MOVCC_XCC, ret, v1, v1const);
}
}
static void tcg_out_setcond_i32(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg c1, int32_t c2, int c2const)
{
/* For 32-bit comparisons, we can play games with ADDC/SUBC. */
switch (cond) {
case TCG_COND_LTU:
case TCG_COND_GEU:
/* The result of the comparison is in the carry bit. */
break;
case TCG_COND_EQ:
case TCG_COND_NE:
/* For equality, we can transform to inequality vs zero. */
if (c2 != 0) {
tcg_out_arithc(s, TCG_REG_T1, c1, c2, c2const, ARITH_XOR);
c2 = TCG_REG_T1;
} else {
c2 = c1;
}
c1 = TCG_REG_G0, c2const = 0;
cond = (cond == TCG_COND_EQ ? TCG_COND_GEU : TCG_COND_LTU);
break;
case TCG_COND_GTU:
case TCG_COND_LEU:
/* If we don't need to load a constant into a register, we can
swap the operands on GTU/LEU. There's no benefit to loading
the constant into a temporary register. */
if (!c2const || c2 == 0) {
TCGReg t = c1;
c1 = c2;
c2 = t;
c2const = 0;
cond = tcg_swap_cond(cond);
break;
}
/* FALLTHRU */
default:
tcg_out_cmp(s, c1, c2, c2const);
tcg_out_movi_imm13(s, ret, 0);
tcg_out_movcc(s, cond, MOVCC_ICC, ret, 1, 1);
return;
}
tcg_out_cmp(s, c1, c2, c2const);
if (cond == TCG_COND_LTU) {
tcg_out_arithi(s, ret, TCG_REG_G0, 0, ARITH_ADDC);
} else {
tcg_out_arithi(s, ret, TCG_REG_G0, -1, ARITH_SUBC);
}
}
static void tcg_out_setcond_i64(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg c1, int32_t c2, int c2const)
{
if (use_vis3_instructions) {
switch (cond) {
case TCG_COND_NE:
if (c2 != 0) {
break;
}
c2 = c1, c2const = 0, c1 = TCG_REG_G0;
/* FALLTHRU */
case TCG_COND_LTU:
tcg_out_cmp(s, c1, c2, c2const);
tcg_out_arith(s, ret, TCG_REG_G0, TCG_REG_G0, ARITH_ADDXC);
return;
default:
break;
}
}
/* For 64-bit signed comparisons vs zero, we can avoid the compare
if the input does not overlap the output. */
if (c2 == 0 && !is_unsigned_cond(cond) && c1 != ret) {
tcg_out_movi_imm13(s, ret, 0);
tcg_out_movr(s, cond, ret, c1, 1, 1);
} else {
tcg_out_cmp(s, c1, c2, c2const);
tcg_out_movi_imm13(s, ret, 0);
tcg_out_movcc(s, cond, MOVCC_XCC, ret, 1, 1);
}
}
static void tcg_out_addsub2_i32(TCGContext *s, TCGReg rl, TCGReg rh,
TCGReg al, TCGReg ah, int32_t bl, int blconst,
int32_t bh, int bhconst, int opl, int oph)
{
TCGReg tmp = TCG_REG_T1;
/* Note that the low parts are fully consumed before tmp is set. */
if (rl != ah && (bhconst || rl != bh)) {
tmp = rl;
}
tcg_out_arithc(s, tmp, al, bl, blconst, opl);
tcg_out_arithc(s, rh, ah, bh, bhconst, oph);
tcg_out_mov(s, TCG_TYPE_I32, rl, tmp);
}
static void tcg_out_addsub2_i64(TCGContext *s, TCGReg rl, TCGReg rh,
TCGReg al, TCGReg ah, int32_t bl, int blconst,
int32_t bh, int bhconst, bool is_sub)
{
TCGReg tmp = TCG_REG_T1;
/* Note that the low parts are fully consumed before tmp is set. */
if (rl != ah && (bhconst || rl != bh)) {
tmp = rl;
}
tcg_out_arithc(s, tmp, al, bl, blconst, is_sub ? ARITH_SUBCC : ARITH_ADDCC);
if (use_vis3_instructions && !is_sub) {
/* Note that ADDXC doesn't accept immediates. */
if (bhconst && bh != 0) {
tcg_out_movi_imm13(s, TCG_REG_T2, bh);
bh = TCG_REG_T2;
}
tcg_out_arith(s, rh, ah, bh, ARITH_ADDXC);
} else if (bh == TCG_REG_G0) {
/* If we have a zero, we can perform the operation in two insns,
with the arithmetic first, and a conditional move into place. */
if (rh == ah) {
tcg_out_arithi(s, TCG_REG_T2, ah, 1,
is_sub ? ARITH_SUB : ARITH_ADD);
tcg_out_movcc(s, TCG_COND_LTU, MOVCC_XCC, rh, TCG_REG_T2, 0);
} else {
tcg_out_arithi(s, rh, ah, 1, is_sub ? ARITH_SUB : ARITH_ADD);
tcg_out_movcc(s, TCG_COND_GEU, MOVCC_XCC, rh, ah, 0);
}
} else {
/*
* Otherwise adjust BH as if there is carry into T2.
* Note that constant BH is constrained to 11 bits for the MOVCC,
* so the adjustment fits 12 bits.
*/
if (bhconst) {
tcg_out_movi_imm13(s, TCG_REG_T2, bh + (is_sub ? -1 : 1));
} else {
tcg_out_arithi(s, TCG_REG_T2, bh, 1,
is_sub ? ARITH_SUB : ARITH_ADD);
}
/* ... smoosh T2 back to original BH if carry is clear ... */
tcg_out_movcc(s, TCG_COND_GEU, MOVCC_XCC, TCG_REG_T2, bh, bhconst);
/* ... and finally perform the arithmetic with the new operand. */
tcg_out_arith(s, rh, ah, TCG_REG_T2, is_sub ? ARITH_SUB : ARITH_ADD);
}
tcg_out_mov(s, TCG_TYPE_I64, rl, tmp);
}
static void tcg_out_jmpl_const(TCGContext *s, const tcg_insn_unit *dest,
bool in_prologue, bool tail_call)
{
uintptr_t desti = (uintptr_t)dest;
/* Be careful not to clobber %o7 for a tail call. */
tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_REG_T1,
desti & ~0xfff, in_prologue,
tail_call ? TCG_REG_G2 : TCG_REG_O7);
tcg_out_arithi(s, tail_call ? TCG_REG_G0 : TCG_REG_O7,
TCG_REG_T1, desti & 0xfff, JMPL);
}
static void tcg_out_call_nodelay(TCGContext *s, const tcg_insn_unit *dest,
bool in_prologue)
{
ptrdiff_t disp = tcg_pcrel_diff(s, dest);
if (disp == (int32_t)disp) {
tcg_out32(s, CALL | (uint32_t)disp >> 2);
} else {
tcg_out_jmpl_const(s, dest, in_prologue, false);
}
}
static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest)
{
tcg_out_call_nodelay(s, dest, false);
tcg_out_nop(s);
}
static void tcg_out_mb(TCGContext *s, TCGArg a0)
{
/* Note that the TCG memory order constants mirror the Sparc MEMBAR. */
tcg_out32(s, MEMBAR | (a0 & TCG_MO_ALL));
}
#ifdef CONFIG_SOFTMMU
static const tcg_insn_unit *qemu_ld_trampoline[(MO_SSIZE | MO_BSWAP) + 1];
static const tcg_insn_unit *qemu_st_trampoline[(MO_SIZE | MO_BSWAP) + 1];
static void emit_extend(TCGContext *s, TCGReg r, int op)
{
/* Emit zero extend of 8, 16 or 32 bit data as
* required by the MO_* value op; do nothing for 64 bit.
*/
switch (op & MO_SIZE) {
case MO_8:
tcg_out_arithi(s, r, r, 0xff, ARITH_AND);
break;
case MO_16:
tcg_out_arithi(s, r, r, 16, SHIFT_SLL);
tcg_out_arithi(s, r, r, 16, SHIFT_SRL);
break;
case MO_32:
if (SPARC64) {
tcg_out_arith(s, r, r, 0, SHIFT_SRL);
}
break;
case MO_64:
break;
}
}
static void build_trampolines(TCGContext *s)
{
static void * const qemu_ld_helpers[] = {
[MO_UB] = helper_ret_ldub_mmu,
[MO_SB] = helper_ret_ldsb_mmu,
[MO_LEUW] = helper_le_lduw_mmu,
[MO_LESW] = helper_le_ldsw_mmu,
[MO_LEUL] = helper_le_ldul_mmu,
[MO_LEUQ] = helper_le_ldq_mmu,
[MO_BEUW] = helper_be_lduw_mmu,
[MO_BESW] = helper_be_ldsw_mmu,
[MO_BEUL] = helper_be_ldul_mmu,
[MO_BEUQ] = helper_be_ldq_mmu,
};
static void * const qemu_st_helpers[] = {
[MO_UB] = helper_ret_stb_mmu,
[MO_LEUW] = helper_le_stw_mmu,
[MO_LEUL] = helper_le_stl_mmu,
[MO_LEUQ] = helper_le_stq_mmu,
[MO_BEUW] = helper_be_stw_mmu,
[MO_BEUL] = helper_be_stl_mmu,
[MO_BEUQ] = helper_be_stq_mmu,
};
int i;
TCGReg ra;
for (i = 0; i < ARRAY_SIZE(qemu_ld_helpers); ++i) {
if (qemu_ld_helpers[i] == NULL) {
continue;
}
/* May as well align the trampoline. */
while ((uintptr_t)s->code_ptr & 15) {
tcg_out_nop(s);
}
qemu_ld_trampoline[i] = tcg_splitwx_to_rx(s->code_ptr);
if (SPARC64 || TARGET_LONG_BITS == 32) {
ra = TCG_REG_O3;
} else {
/* Install the high part of the address. */
tcg_out_arithi(s, TCG_REG_O1, TCG_REG_O2, 32, SHIFT_SRLX);
ra = TCG_REG_O4;
}
/* Set the retaddr operand. */
tcg_out_mov(s, TCG_TYPE_PTR, ra, TCG_REG_O7);
/* Tail call. */
tcg_out_jmpl_const(s, qemu_ld_helpers[i], true, true);
/* delay slot -- set the env argument */
tcg_out_mov_delay(s, TCG_REG_O0, TCG_AREG0);
}
for (i = 0; i < ARRAY_SIZE(qemu_st_helpers); ++i) {
if (qemu_st_helpers[i] == NULL) {
continue;
}
/* May as well align the trampoline. */
while ((uintptr_t)s->code_ptr & 15) {
tcg_out_nop(s);
}
qemu_st_trampoline[i] = tcg_splitwx_to_rx(s->code_ptr);
if (SPARC64) {
emit_extend(s, TCG_REG_O2, i);
ra = TCG_REG_O4;
} else {
ra = TCG_REG_O1;
if (TARGET_LONG_BITS == 64) {
/* Install the high part of the address. */
tcg_out_arithi(s, ra, ra + 1, 32, SHIFT_SRLX);
ra += 2;
} else {
ra += 1;
}
if ((i & MO_SIZE) == MO_64) {
/* Install the high part of the data. */
tcg_out_arithi(s, ra, ra + 1, 32, SHIFT_SRLX);
ra += 2;
} else {
emit_extend(s, ra, i);
ra += 1;
}
/* Skip the oi argument. */
ra += 1;
}
/* Set the retaddr operand. */
if (ra >= TCG_REG_O6) {
tcg_out_st(s, TCG_TYPE_PTR, TCG_REG_O7, TCG_REG_CALL_STACK,
TCG_TARGET_CALL_STACK_OFFSET);
} else {
tcg_out_mov(s, TCG_TYPE_PTR, ra, TCG_REG_O7);
}
/* Tail call. */
tcg_out_jmpl_const(s, qemu_st_helpers[i], true, true);
/* delay slot -- set the env argument */
tcg_out_mov_delay(s, TCG_REG_O0, TCG_AREG0);
}
}
#else
static const tcg_insn_unit *qemu_unalign_ld_trampoline;
static const tcg_insn_unit *qemu_unalign_st_trampoline;
static void build_trampolines(TCGContext *s)
{
for (int ld = 0; ld < 2; ++ld) {
void *helper;
while ((uintptr_t)s->code_ptr & 15) {
tcg_out_nop(s);
}
if (ld) {
helper = helper_unaligned_ld;
qemu_unalign_ld_trampoline = tcg_splitwx_to_rx(s->code_ptr);
} else {
helper = helper_unaligned_st;
qemu_unalign_st_trampoline = tcg_splitwx_to_rx(s->code_ptr);
}
if (!SPARC64 && TARGET_LONG_BITS == 64) {
/* Install the high part of the address. */
tcg_out_arithi(s, TCG_REG_O1, TCG_REG_O2, 32, SHIFT_SRLX);
}
/* Tail call. */
tcg_out_jmpl_const(s, helper, true, true);
/* delay slot -- set the env argument */
tcg_out_mov_delay(s, TCG_REG_O0, TCG_AREG0);
}
}
#endif
/* Generate global QEMU prologue and epilogue code */
static void tcg_target_qemu_prologue(TCGContext *s)
{
int tmp_buf_size, frame_size;
/*
* The TCG temp buffer is at the top of the frame, immediately
* below the frame pointer. Use the logical (aligned) offset here;
* the stack bias is applied in temp_allocate_frame().
*/
tmp_buf_size = CPU_TEMP_BUF_NLONGS * (int)sizeof(long);
tcg_set_frame(s, TCG_REG_I6, -tmp_buf_size, tmp_buf_size);
/*
* TCG_TARGET_CALL_STACK_OFFSET includes the stack bias, but is
* otherwise the minimal frame usable by callees.
*/
frame_size = TCG_TARGET_CALL_STACK_OFFSET - TCG_TARGET_STACK_BIAS;
frame_size += TCG_STATIC_CALL_ARGS_SIZE + tmp_buf_size;
frame_size += TCG_TARGET_STACK_ALIGN - 1;
frame_size &= -TCG_TARGET_STACK_ALIGN;
tcg_out32(s, SAVE | INSN_RD(TCG_REG_O6) | INSN_RS1(TCG_REG_O6) |
INSN_IMM13(-frame_size));
#ifndef CONFIG_SOFTMMU
if (guest_base != 0) {
tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG,
guest_base, true, TCG_REG_T1);
tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
}
#endif
/* We choose TCG_REG_TB such that no move is required. */
if (USE_REG_TB) {
QEMU_BUILD_BUG_ON(TCG_REG_TB != TCG_REG_I1);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB);
}
tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I1, 0, JMPL);
/* delay slot */
tcg_out_nop(s);
/* Epilogue for goto_ptr. */
tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
/* delay slot */
tcg_out_movi_imm13(s, TCG_REG_O0, 0);
build_trampolines(s);
}
static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
{
int i;
for (i = 0; i < count; ++i) {
p[i] = NOP;
}
}
#if defined(CONFIG_SOFTMMU)
/* We expect to use a 13-bit negative offset from ENV. */
QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0);
QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -(1 << 12));
/* Perform the TLB load and compare.
Inputs:
ADDRLO and ADDRHI contain the possible two parts of the address.
MEM_INDEX and S_BITS are the memory context and log2 size of the load.
WHICH is the offset into the CPUTLBEntry structure of the slot to read.
This should be offsetof addr_read or addr_write.
The result of the TLB comparison is in %[ix]cc. The sanitized address
is in the returned register, maybe %o0. The TLB addend is in %o1. */
static TCGReg tcg_out_tlb_load(TCGContext *s, TCGReg addr, int mem_index,
MemOp opc, int which)
{
int fast_off = TLB_MASK_TABLE_OFS(mem_index);
int mask_off = fast_off + offsetof(CPUTLBDescFast, mask);
int table_off = fast_off + offsetof(CPUTLBDescFast, table);
const TCGReg r0 = TCG_REG_O0;
const TCGReg r1 = TCG_REG_O1;
const TCGReg r2 = TCG_REG_O2;
unsigned s_bits = opc & MO_SIZE;
unsigned a_bits = get_alignment_bits(opc);
tcg_target_long compare_mask;
/* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx]. */
tcg_out_ld(s, TCG_TYPE_PTR, r0, TCG_AREG0, mask_off);
tcg_out_ld(s, TCG_TYPE_PTR, r1, TCG_AREG0, table_off);
/* Extract the page index, shifted into place for tlb index. */
tcg_out_arithi(s, r2, addr, TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS,
SHIFT_SRL);
tcg_out_arith(s, r2, r2, r0, ARITH_AND);
/* Add the tlb_table pointer, creating the CPUTLBEntry address into R2. */
tcg_out_arith(s, r2, r2, r1, ARITH_ADD);
/* Load the tlb comparator and the addend. */
tcg_out_ld(s, TCG_TYPE_TL, r0, r2, which);
tcg_out_ld(s, TCG_TYPE_PTR, r1, r2, offsetof(CPUTLBEntry, addend));
/* Mask out the page offset, except for the required alignment.
We don't support unaligned accesses. */
if (a_bits < s_bits) {
a_bits = s_bits;
}
compare_mask = (tcg_target_ulong)TARGET_PAGE_MASK | ((1 << a_bits) - 1);
if (check_fit_tl(compare_mask, 13)) {
tcg_out_arithi(s, r2, addr, compare_mask, ARITH_AND);
} else {
tcg_out_movi(s, TCG_TYPE_TL, r2, compare_mask);
tcg_out_arith(s, r2, addr, r2, ARITH_AND);
}
tcg_out_cmp(s, r0, r2, 0);
/* If the guest address must be zero-extended, do so now. */
if (SPARC64 && TARGET_LONG_BITS == 32) {
tcg_out_arithi(s, r0, addr, 0, SHIFT_SRL);
return r0;
}
return addr;
}
#endif /* CONFIG_SOFTMMU */
static const int qemu_ld_opc[(MO_SSIZE | MO_BSWAP) + 1] = {
[MO_UB] = LDUB,
[MO_SB] = LDSB,
[MO_UB | MO_LE] = LDUB,
[MO_SB | MO_LE] = LDSB,
[MO_BEUW] = LDUH,
[MO_BESW] = LDSH,
[MO_BEUL] = LDUW,
[MO_BESL] = LDSW,
[MO_BEUQ] = LDX,
[MO_BESQ] = LDX,
[MO_LEUW] = LDUH_LE,
[MO_LESW] = LDSH_LE,
[MO_LEUL] = LDUW_LE,
[MO_LESL] = LDSW_LE,
[MO_LEUQ] = LDX_LE,
[MO_LESQ] = LDX_LE,
};
static const int qemu_st_opc[(MO_SIZE | MO_BSWAP) + 1] = {
[MO_UB] = STB,
[MO_BEUW] = STH,
[MO_BEUL] = STW,
[MO_BEUQ] = STX,
[MO_LEUW] = STH_LE,
[MO_LEUL] = STW_LE,
[MO_LEUQ] = STX_LE,
};
static void tcg_out_qemu_ld(TCGContext *s, TCGReg data, TCGReg addr,
MemOpIdx oi, bool is_64)
{
MemOp memop = get_memop(oi);
tcg_insn_unit *label_ptr;
#ifdef CONFIG_SOFTMMU
unsigned memi = get_mmuidx(oi);
TCGReg addrz, param;
const tcg_insn_unit *func;
addrz = tcg_out_tlb_load(s, addr, memi, memop,
offsetof(CPUTLBEntry, addr_read));
/* The fast path is exactly one insn. Thus we can perform the
entire TLB Hit in the (annulled) delay slot of the branch
over the TLB Miss case. */
/* beq,a,pt %[xi]cc, label0 */
label_ptr = s->code_ptr;
tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT
| (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0);
/* delay slot */
tcg_out_ldst_rr(s, data, addrz, TCG_REG_O1,
qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]);
/* TLB Miss. */
param = TCG_REG_O1;
if (!SPARC64 && TARGET_LONG_BITS == 64) {
/* Skip the high-part; we'll perform the extract in the trampoline. */
param++;
}
tcg_out_mov(s, TCG_TYPE_REG, param++, addrz);
/* We use the helpers to extend SB and SW data, leaving the case
of SL needing explicit extending below. */
if ((memop & MO_SSIZE) == MO_SL) {
func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SIZE)];
} else {
func = qemu_ld_trampoline[memop & (MO_BSWAP | MO_SSIZE)];
}
tcg_debug_assert(func != NULL);
tcg_out_call_nodelay(s, func, false);
/* delay slot */
tcg_out_movi(s, TCG_TYPE_I32, param, oi);
/* Recall that all of the helpers return 64-bit results.
Which complicates things for sparcv8plus. */
if (SPARC64) {
/* We let the helper sign-extend SB and SW, but leave SL for here. */
if (is_64 && (memop & MO_SSIZE) == MO_SL) {
tcg_out_arithi(s, data, TCG_REG_O0, 0, SHIFT_SRA);
} else {
tcg_out_mov(s, TCG_TYPE_REG, data, TCG_REG_O0);
}
} else {
if ((memop & MO_SIZE) == MO_64) {
tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O0, 32, SHIFT_SLLX);
tcg_out_arithi(s, TCG_REG_O1, TCG_REG_O1, 0, SHIFT_SRL);
tcg_out_arith(s, data, TCG_REG_O0, TCG_REG_O1, ARITH_OR);
} else if (is_64) {
/* Re-extend from 32-bit rather than reassembling when we
know the high register must be an extension. */
tcg_out_arithi(s, data, TCG_REG_O1, 0,
memop & MO_SIGN ? SHIFT_SRA : SHIFT_SRL);
} else {
tcg_out_mov(s, TCG_TYPE_I32, data, TCG_REG_O1);
}
}
*label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
#else
TCGReg index = (guest_base ? TCG_GUEST_BASE_REG : TCG_REG_G0);
unsigned a_bits = get_alignment_bits(memop);
unsigned s_bits = memop & MO_SIZE;
unsigned t_bits;
if (SPARC64 && TARGET_LONG_BITS == 32) {
tcg_out_arithi(s, TCG_REG_T1, addr, 0, SHIFT_SRL);
addr = TCG_REG_T1;
}
/*
* Normal case: alignment equal to access size.
*/
if (a_bits == s_bits) {
tcg_out_ldst_rr(s, data, addr, index,
qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]);
return;
}
/*
* Test for at least natural alignment, and assume most accesses
* will be aligned -- perform a straight load in the delay slot.
* This is required to preserve atomicity for aligned accesses.
*/
t_bits = MAX(a_bits, s_bits);
tcg_debug_assert(t_bits < 13);
tcg_out_arithi(s, TCG_REG_G0, addr, (1u << t_bits) - 1, ARITH_ANDCC);
/* beq,a,pt %icc, label */
label_ptr = s->code_ptr;
tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT | BPCC_ICC, 0);
/* delay slot */
tcg_out_ldst_rr(s, data, addr, index,
qemu_ld_opc[memop & (MO_BSWAP | MO_SSIZE)]);
if (a_bits >= s_bits) {
/*
* Overalignment: A successful alignment test will perform the memory
* operation in the delay slot, and failure need only invoke the
* handler for SIGBUS.
*/
TCGReg arg_low = TCG_REG_O1 + (!SPARC64 && TARGET_LONG_BITS == 64);
tcg_out_call_nodelay(s, qemu_unalign_ld_trampoline, false);
/* delay slot -- move to low part of argument reg */
tcg_out_mov_delay(s, arg_low, addr);
} else {
/* Underalignment: load by pieces of minimum alignment. */
int ld_opc, a_size, s_size, i;
/*
* Force full address into T1 early; avoids problems with
* overlap between @addr and @data.
*/
tcg_out_arith(s, TCG_REG_T1, addr, index, ARITH_ADD);
a_size = 1 << a_bits;
s_size = 1 << s_bits;
if ((memop & MO_BSWAP) == MO_BE) {
ld_opc = qemu_ld_opc[a_bits | MO_BE | (memop & MO_SIGN)];
tcg_out_ldst(s, data, TCG_REG_T1, 0, ld_opc);
ld_opc = qemu_ld_opc[a_bits | MO_BE];
for (i = a_size; i < s_size; i += a_size) {
tcg_out_ldst(s, TCG_REG_T2, TCG_REG_T1, i, ld_opc);
tcg_out_arithi(s, data, data, a_size, SHIFT_SLLX);
tcg_out_arith(s, data, data, TCG_REG_T2, ARITH_OR);
}
} else if (a_bits == 0) {
ld_opc = LDUB;
tcg_out_ldst(s, data, TCG_REG_T1, 0, ld_opc);
for (i = a_size; i < s_size; i += a_size) {
if ((memop & MO_SIGN) && i == s_size - a_size) {
ld_opc = LDSB;
}
tcg_out_ldst(s, TCG_REG_T2, TCG_REG_T1, i, ld_opc);
tcg_out_arithi(s, TCG_REG_T2, TCG_REG_T2, i * 8, SHIFT_SLLX);
tcg_out_arith(s, data, data, TCG_REG_T2, ARITH_OR);
}
} else {
ld_opc = qemu_ld_opc[a_bits | MO_LE];
tcg_out_ldst_rr(s, data, TCG_REG_T1, TCG_REG_G0, ld_opc);
for (i = a_size; i < s_size; i += a_size) {
tcg_out_arithi(s, TCG_REG_T1, TCG_REG_T1, a_size, ARITH_ADD);
if ((memop & MO_SIGN) && i == s_size - a_size) {
ld_opc = qemu_ld_opc[a_bits | MO_LE | MO_SIGN];
}
tcg_out_ldst_rr(s, TCG_REG_T2, TCG_REG_T1, TCG_REG_G0, ld_opc);
tcg_out_arithi(s, TCG_REG_T2, TCG_REG_T2, i * 8, SHIFT_SLLX);
tcg_out_arith(s, data, data, TCG_REG_T2, ARITH_OR);
}
}
}
*label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
#endif /* CONFIG_SOFTMMU */
}
static void tcg_out_qemu_st(TCGContext *s, TCGReg data, TCGReg addr,
MemOpIdx oi)
{
MemOp memop = get_memop(oi);
tcg_insn_unit *label_ptr;
#ifdef CONFIG_SOFTMMU
unsigned memi = get_mmuidx(oi);
TCGReg addrz, param;
const tcg_insn_unit *func;
addrz = tcg_out_tlb_load(s, addr, memi, memop,
offsetof(CPUTLBEntry, addr_write));
/* The fast path is exactly one insn. Thus we can perform the entire
TLB Hit in the (annulled) delay slot of the branch over TLB Miss. */
/* beq,a,pt %[xi]cc, label0 */
label_ptr = s->code_ptr;
tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT
| (TARGET_LONG_BITS == 64 ? BPCC_XCC : BPCC_ICC), 0);
/* delay slot */
tcg_out_ldst_rr(s, data, addrz, TCG_REG_O1,
qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]);
/* TLB Miss. */
param = TCG_REG_O1;
if (!SPARC64 && TARGET_LONG_BITS == 64) {
/* Skip the high-part; we'll perform the extract in the trampoline. */
param++;
}
tcg_out_mov(s, TCG_TYPE_REG, param++, addrz);
if (!SPARC64 && (memop & MO_SIZE) == MO_64) {
/* Skip the high-part; we'll perform the extract in the trampoline. */
param++;
}
tcg_out_mov(s, TCG_TYPE_REG, param++, data);
func = qemu_st_trampoline[memop & (MO_BSWAP | MO_SIZE)];
tcg_debug_assert(func != NULL);
tcg_out_call_nodelay(s, func, false);
/* delay slot */
tcg_out_movi(s, TCG_TYPE_I32, param, oi);
*label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
#else
TCGReg index = (guest_base ? TCG_GUEST_BASE_REG : TCG_REG_G0);
unsigned a_bits = get_alignment_bits(memop);
unsigned s_bits = memop & MO_SIZE;
unsigned t_bits;
if (SPARC64 && TARGET_LONG_BITS == 32) {
tcg_out_arithi(s, TCG_REG_T1, addr, 0, SHIFT_SRL);
addr = TCG_REG_T1;
}
/*
* Normal case: alignment equal to access size.
*/
if (a_bits == s_bits) {
tcg_out_ldst_rr(s, data, addr, index,
qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]);
return;
}
/*
* Test for at least natural alignment, and assume most accesses
* will be aligned -- perform a straight store in the delay slot.
* This is required to preserve atomicity for aligned accesses.
*/
t_bits = MAX(a_bits, s_bits);
tcg_debug_assert(t_bits < 13);
tcg_out_arithi(s, TCG_REG_G0, addr, (1u << t_bits) - 1, ARITH_ANDCC);
/* beq,a,pt %icc, label */
label_ptr = s->code_ptr;
tcg_out_bpcc0(s, COND_E, BPCC_A | BPCC_PT | BPCC_ICC, 0);
/* delay slot */
tcg_out_ldst_rr(s, data, addr, index,
qemu_st_opc[memop & (MO_BSWAP | MO_SIZE)]);
if (a_bits >= s_bits) {
/*
* Overalignment: A successful alignment test will perform the memory
* operation in the delay slot, and failure need only invoke the
* handler for SIGBUS.
*/
TCGReg arg_low = TCG_REG_O1 + (!SPARC64 && TARGET_LONG_BITS == 64);
tcg_out_call_nodelay(s, qemu_unalign_st_trampoline, false);
/* delay slot -- move to low part of argument reg */
tcg_out_mov_delay(s, arg_low, addr);
} else {
/* Underalignment: store by pieces of minimum alignment. */
int st_opc, a_size, s_size, i;
/*
* Force full address into T1 early; avoids problems with
* overlap between @addr and @data.
*/
tcg_out_arith(s, TCG_REG_T1, addr, index, ARITH_ADD);
a_size = 1 << a_bits;
s_size = 1 << s_bits;
if ((memop & MO_BSWAP) == MO_BE) {
st_opc = qemu_st_opc[a_bits | MO_BE];
for (i = 0; i < s_size; i += a_size) {
TCGReg d = data;
int shift = (s_size - a_size - i) * 8;
if (shift) {
d = TCG_REG_T2;
tcg_out_arithi(s, d, data, shift, SHIFT_SRLX);
}
tcg_out_ldst(s, d, TCG_REG_T1, i, st_opc);
}
} else if (a_bits == 0) {
tcg_out_ldst(s, data, TCG_REG_T1, 0, STB);
for (i = 1; i < s_size; i++) {
tcg_out_arithi(s, TCG_REG_T2, data, i * 8, SHIFT_SRLX);
tcg_out_ldst(s, TCG_REG_T2, TCG_REG_T1, i, STB);
}
} else {
/* Note that ST*A with immediate asi must use indexed address. */
st_opc = qemu_st_opc[a_bits + MO_LE];
tcg_out_ldst_rr(s, data, TCG_REG_T1, TCG_REG_G0, st_opc);
for (i = a_size; i < s_size; i += a_size) {
tcg_out_arithi(s, TCG_REG_T2, data, i * 8, SHIFT_SRLX);
tcg_out_arithi(s, TCG_REG_T1, TCG_REG_T1, a_size, ARITH_ADD);
tcg_out_ldst_rr(s, TCG_REG_T2, TCG_REG_T1, TCG_REG_G0, st_opc);
}
}
}
*label_ptr |= INSN_OFF19(tcg_ptr_byte_diff(s->code_ptr, label_ptr));
#endif /* CONFIG_SOFTMMU */
}
static void tcg_out_op(TCGContext *s, TCGOpcode opc,
const TCGArg args[TCG_MAX_OP_ARGS],
const int const_args[TCG_MAX_OP_ARGS])
{
TCGArg a0, a1, a2;
int c, c2;
/* Hoist the loads of the most common arguments. */
a0 = args[0];
a1 = args[1];
a2 = args[2];
c2 = const_args[2];
switch (opc) {
case INDEX_op_exit_tb:
if (check_fit_ptr(a0, 13)) {
tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
tcg_out_movi_imm13(s, TCG_REG_O0, a0);
break;
} else if (USE_REG_TB) {
intptr_t tb_diff = tcg_tbrel_diff(s, (void *)a0);
if (check_fit_ptr(tb_diff, 13)) {
tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
/* Note that TCG_REG_TB has been unwound to O1. */
tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O1, tb_diff, ARITH_ADD);
break;
}
}
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_I0, a0 & ~0x3ff);
tcg_out_arithi(s, TCG_REG_G0, TCG_REG_I7, 8, RETURN);
tcg_out_arithi(s, TCG_REG_O0, TCG_REG_O0, a0 & 0x3ff, ARITH_OR);
break;
case INDEX_op_goto_tb:
if (s->tb_jmp_insn_offset) {
/* direct jump method */
if (USE_REG_TB) {
/* make sure the patch is 8-byte aligned. */
if ((intptr_t)s->code_ptr & 4) {
tcg_out_nop(s);
}
s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
tcg_out_sethi(s, TCG_REG_T1, 0);
tcg_out_arithi(s, TCG_REG_T1, TCG_REG_T1, 0, ARITH_OR);
tcg_out_arith(s, TCG_REG_G0, TCG_REG_TB, TCG_REG_T1, JMPL);
tcg_out_arith(s, TCG_REG_TB, TCG_REG_TB, TCG_REG_T1, ARITH_ADD);
} else {
s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
tcg_out32(s, CALL);
tcg_out_nop(s);
}
} else {
/* indirect jump method */
tcg_out_ld_ptr(s, TCG_REG_TB, s->tb_jmp_target_addr + a0);
tcg_out_arithi(s, TCG_REG_G0, TCG_REG_TB, 0, JMPL);
tcg_out_nop(s);
}
set_jmp_reset_offset(s, a0);
/* For the unlinked path of goto_tb, we need to reset
TCG_REG_TB to the beginning of this TB. */
if (USE_REG_TB) {
c = -tcg_current_code_size(s);
if (check_fit_i32(c, 13)) {
tcg_out_arithi(s, TCG_REG_TB, TCG_REG_TB, c, ARITH_ADD);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T1, c);
tcg_out_arith(s, TCG_REG_TB, TCG_REG_TB,
TCG_REG_T1, ARITH_ADD);
}
}
break;
case INDEX_op_goto_ptr:
tcg_out_arithi(s, TCG_REG_G0, a0, 0, JMPL);
if (USE_REG_TB) {
tcg_out_mov_delay(s, TCG_REG_TB, a0);
} else {
tcg_out_nop(s);
}
break;
case INDEX_op_br:
tcg_out_bpcc(s, COND_A, BPCC_PT, arg_label(a0));
tcg_out_nop(s);
break;
#define OP_32_64(x) \
glue(glue(case INDEX_op_, x), _i32): \
glue(glue(case INDEX_op_, x), _i64)
OP_32_64(ld8u):
tcg_out_ldst(s, a0, a1, a2, LDUB);
break;
OP_32_64(ld8s):
tcg_out_ldst(s, a0, a1, a2, LDSB);
break;
OP_32_64(ld16u):
tcg_out_ldst(s, a0, a1, a2, LDUH);
break;
OP_32_64(ld16s):
tcg_out_ldst(s, a0, a1, a2, LDSH);
break;
case INDEX_op_ld_i32:
case INDEX_op_ld32u_i64:
tcg_out_ldst(s, a0, a1, a2, LDUW);
break;
OP_32_64(st8):
tcg_out_ldst(s, a0, a1, a2, STB);
break;
OP_32_64(st16):
tcg_out_ldst(s, a0, a1, a2, STH);
break;
case INDEX_op_st_i32:
case INDEX_op_st32_i64:
tcg_out_ldst(s, a0, a1, a2, STW);
break;
OP_32_64(add):
c = ARITH_ADD;
goto gen_arith;
OP_32_64(sub):
c = ARITH_SUB;
goto gen_arith;
OP_32_64(and):
c = ARITH_AND;
goto gen_arith;
OP_32_64(andc):
c = ARITH_ANDN;
goto gen_arith;
OP_32_64(or):
c = ARITH_OR;
goto gen_arith;
OP_32_64(orc):
c = ARITH_ORN;
goto gen_arith;
OP_32_64(xor):
c = ARITH_XOR;
goto gen_arith;
case INDEX_op_shl_i32:
c = SHIFT_SLL;
do_shift32:
/* Limit immediate shift count lest we create an illegal insn. */
tcg_out_arithc(s, a0, a1, a2 & 31, c2, c);
break;
case INDEX_op_shr_i32:
c = SHIFT_SRL;
goto do_shift32;
case INDEX_op_sar_i32:
c = SHIFT_SRA;
goto do_shift32;
case INDEX_op_mul_i32:
c = ARITH_UMUL;
goto gen_arith;
OP_32_64(neg):
c = ARITH_SUB;
goto gen_arith1;
OP_32_64(not):
c = ARITH_ORN;
goto gen_arith1;
case INDEX_op_div_i32:
tcg_out_div32(s, a0, a1, a2, c2, 0);
break;
case INDEX_op_divu_i32:
tcg_out_div32(s, a0, a1, a2, c2, 1);
break;
case INDEX_op_brcond_i32:
tcg_out_brcond_i32(s, a2, a0, a1, const_args[1], arg_label(args[3]));
break;
case INDEX_op_setcond_i32:
tcg_out_setcond_i32(s, args[3], a0, a1, a2, c2);
break;
case INDEX_op_movcond_i32:
tcg_out_movcond_i32(s, args[5], a0, a1, a2, c2, args[3], const_args[3]);
break;
case INDEX_op_add2_i32:
tcg_out_addsub2_i32(s, args[0], args[1], args[2], args[3],
args[4], const_args[4], args[5], const_args[5],
ARITH_ADDCC, ARITH_ADDC);
break;
case INDEX_op_sub2_i32:
tcg_out_addsub2_i32(s, args[0], args[1], args[2], args[3],
args[4], const_args[4], args[5], const_args[5],
ARITH_SUBCC, ARITH_SUBC);
break;
case INDEX_op_mulu2_i32:
c = ARITH_UMUL;
goto do_mul2;
case INDEX_op_muls2_i32:
c = ARITH_SMUL;
do_mul2:
/* The 32-bit multiply insns produce a full 64-bit result. If the
destination register can hold it, we can avoid the slower RDY. */
tcg_out_arithc(s, a0, a2, args[3], const_args[3], c);
if (SPARC64 || a0 <= TCG_REG_O7) {
tcg_out_arithi(s, a1, a0, 32, SHIFT_SRLX);
} else {
tcg_out_rdy(s, a1);
}
break;
case INDEX_op_qemu_ld_i32:
tcg_out_qemu_ld(s, a0, a1, a2, false);
break;
case INDEX_op_qemu_ld_i64:
tcg_out_qemu_ld(s, a0, a1, a2, true);
break;
case INDEX_op_qemu_st_i32:
case INDEX_op_qemu_st_i64:
tcg_out_qemu_st(s, a0, a1, a2);
break;
case INDEX_op_ld32s_i64:
tcg_out_ldst(s, a0, a1, a2, LDSW);
break;
case INDEX_op_ld_i64:
tcg_out_ldst(s, a0, a1, a2, LDX);
break;
case INDEX_op_st_i64:
tcg_out_ldst(s, a0, a1, a2, STX);
break;
case INDEX_op_shl_i64:
c = SHIFT_SLLX;
do_shift64:
/* Limit immediate shift count lest we create an illegal insn. */
tcg_out_arithc(s, a0, a1, a2 & 63, c2, c);
break;
case INDEX_op_shr_i64:
c = SHIFT_SRLX;
goto do_shift64;
case INDEX_op_sar_i64:
c = SHIFT_SRAX;
goto do_shift64;
case INDEX_op_mul_i64:
c = ARITH_MULX;
goto gen_arith;
case INDEX_op_div_i64:
c = ARITH_SDIVX;
goto gen_arith;
case INDEX_op_divu_i64:
c = ARITH_UDIVX;
goto gen_arith;
case INDEX_op_ext_i32_i64:
case INDEX_op_ext32s_i64:
tcg_out_arithi(s, a0, a1, 0, SHIFT_SRA);
break;
case INDEX_op_extu_i32_i64:
case INDEX_op_ext32u_i64:
tcg_out_arithi(s, a0, a1, 0, SHIFT_SRL);
break;
case INDEX_op_extrl_i64_i32:
tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
break;
case INDEX_op_extrh_i64_i32:
tcg_out_arithi(s, a0, a1, 32, SHIFT_SRLX);
break;
case INDEX_op_brcond_i64:
tcg_out_brcond_i64(s, a2, a0, a1, const_args[1], arg_label(args[3]));
break;
case INDEX_op_setcond_i64:
tcg_out_setcond_i64(s, args[3], a0, a1, a2, c2);
break;
case INDEX_op_movcond_i64:
tcg_out_movcond_i64(s, args[5], a0, a1, a2, c2, args[3], const_args[3]);
break;
case INDEX_op_add2_i64:
tcg_out_addsub2_i64(s, args[0], args[1], args[2], args[3], args[4],
const_args[4], args[5], const_args[5], false);
break;
case INDEX_op_sub2_i64:
tcg_out_addsub2_i64(s, args[0], args[1], args[2], args[3], args[4],
const_args[4], args[5], const_args[5], true);
break;
case INDEX_op_muluh_i64:
tcg_out_arith(s, args[0], args[1], args[2], ARITH_UMULXHI);
break;
gen_arith:
tcg_out_arithc(s, a0, a1, a2, c2, c);
break;
gen_arith1:
tcg_out_arithc(s, a0, TCG_REG_G0, a1, const_args[1], c);
break;
case INDEX_op_mb:
tcg_out_mb(s, a0);
break;
case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
case INDEX_op_mov_i64:
case INDEX_op_call: /* Always emitted via tcg_out_call. */
default:
tcg_abort();
}
}
static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op)
{
switch (op) {
case INDEX_op_goto_ptr:
return C_O0_I1(r);
case INDEX_op_ld8u_i32:
case INDEX_op_ld8s_i32:
case INDEX_op_ld16u_i32:
case INDEX_op_ld16s_i32:
case INDEX_op_ld_i32:
case INDEX_op_neg_i32:
case INDEX_op_not_i32:
return C_O1_I1(r, r);
case INDEX_op_st8_i32:
case INDEX_op_st16_i32:
case INDEX_op_st_i32:
return C_O0_I2(rZ, r);
case INDEX_op_add_i32:
case INDEX_op_mul_i32:
case INDEX_op_div_i32:
case INDEX_op_divu_i32:
case INDEX_op_sub_i32:
case INDEX_op_and_i32:
case INDEX_op_andc_i32:
case INDEX_op_or_i32:
case INDEX_op_orc_i32:
case INDEX_op_xor_i32:
case INDEX_op_shl_i32:
case INDEX_op_shr_i32:
case INDEX_op_sar_i32:
case INDEX_op_setcond_i32:
return C_O1_I2(r, rZ, rJ);
case INDEX_op_brcond_i32:
return C_O0_I2(rZ, rJ);
case INDEX_op_movcond_i32:
return C_O1_I4(r, rZ, rJ, rI, 0);
case INDEX_op_add2_i32:
case INDEX_op_sub2_i32:
return C_O2_I4(r, r, rZ, rZ, rJ, rJ);
case INDEX_op_mulu2_i32:
case INDEX_op_muls2_i32:
return C_O2_I2(r, r, rZ, rJ);
case INDEX_op_ld8u_i64:
case INDEX_op_ld8s_i64:
case INDEX_op_ld16u_i64:
case INDEX_op_ld16s_i64:
case INDEX_op_ld32u_i64:
case INDEX_op_ld32s_i64:
case INDEX_op_ld_i64:
case INDEX_op_ext_i32_i64:
case INDEX_op_extu_i32_i64:
return C_O1_I1(R, r);
case INDEX_op_st8_i64:
case INDEX_op_st16_i64:
case INDEX_op_st32_i64:
case INDEX_op_st_i64:
return C_O0_I2(RZ, r);
case INDEX_op_add_i64:
case INDEX_op_mul_i64:
case INDEX_op_div_i64:
case INDEX_op_divu_i64:
case INDEX_op_sub_i64:
case INDEX_op_and_i64:
case INDEX_op_andc_i64:
case INDEX_op_or_i64:
case INDEX_op_orc_i64:
case INDEX_op_xor_i64:
case INDEX_op_shl_i64:
case INDEX_op_shr_i64:
case INDEX_op_sar_i64:
case INDEX_op_setcond_i64:
return C_O1_I2(R, RZ, RJ);
case INDEX_op_neg_i64:
case INDEX_op_not_i64:
case INDEX_op_ext32s_i64:
case INDEX_op_ext32u_i64:
return C_O1_I1(R, R);
case INDEX_op_extrl_i64_i32:
case INDEX_op_extrh_i64_i32:
return C_O1_I1(r, R);
case INDEX_op_brcond_i64:
return C_O0_I2(RZ, RJ);
case INDEX_op_movcond_i64:
return C_O1_I4(R, RZ, RJ, RI, 0);
case INDEX_op_add2_i64:
case INDEX_op_sub2_i64:
return C_O2_I4(R, R, RZ, RZ, RJ, RI);
case INDEX_op_muluh_i64:
return C_O1_I2(R, R, R);
case INDEX_op_qemu_ld_i32:
return C_O1_I1(r, A);
case INDEX_op_qemu_ld_i64:
return C_O1_I1(R, A);
case INDEX_op_qemu_st_i32:
return C_O0_I2(sZ, A);
case INDEX_op_qemu_st_i64:
return C_O0_I2(SZ, A);
default:
g_assert_not_reached();
}
}
static void tcg_target_init(TCGContext *s)
{
/*
* Only probe for the platform and capabilities if we haven't already
* determined maximum values at compile time.
*/
#ifndef use_vis3_instructions
{
unsigned long hwcap = qemu_getauxval(AT_HWCAP);
use_vis3_instructions = (hwcap & HWCAP_SPARC_VIS3) != 0;
}
#endif
tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS64;
tcg_target_call_clobber_regs = 0;
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G1);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G2);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G3);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G4);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G5);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G6);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_G7);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O0);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O1);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O2);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O3);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O4);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O5);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O6);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_O7);
s->reserved_regs = 0;
tcg_regset_set_reg(s->reserved_regs, TCG_REG_G0); /* zero */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_G6); /* reserved for os */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_G7); /* thread pointer */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_I6); /* frame pointer */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_I7); /* return address */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_O6); /* stack pointer */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_T1); /* for internal use */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_T2); /* for internal use */
}
#if SPARC64
# define ELF_HOST_MACHINE EM_SPARCV9
#else
# define ELF_HOST_MACHINE EM_SPARC32PLUS
# define ELF_HOST_FLAGS EF_SPARC_32PLUS
#endif
typedef struct {
DebugFrameHeader h;
uint8_t fde_def_cfa[SPARC64 ? 4 : 2];
uint8_t fde_win_save;
uint8_t fde_ret_save[3];
} DebugFrame;
static const DebugFrame debug_frame = {
.h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
.h.cie.id = -1,
.h.cie.version = 1,
.h.cie.code_align = 1,
.h.cie.data_align = -sizeof(void *) & 0x7f,
.h.cie.return_column = 15, /* o7 */
/* Total FDE size does not include the "len" member. */
.h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
.fde_def_cfa = {
#if SPARC64
12, 30, /* DW_CFA_def_cfa i6, 2047 */
(2047 & 0x7f) | 0x80, (2047 >> 7)
#else
13, 30 /* DW_CFA_def_cfa_register i6 */
#endif
},
.fde_win_save = 0x2d, /* DW_CFA_GNU_window_save */
.fde_ret_save = { 9, 15, 31 }, /* DW_CFA_register o7, i7 */
};
void tcg_register_jit(const void *buf, size_t buf_size)
{
tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
}
void tb_target_set_jmp_target(uintptr_t tc_ptr, uintptr_t jmp_rx,
uintptr_t jmp_rw, uintptr_t addr)
{
intptr_t tb_disp = addr - tc_ptr;
intptr_t br_disp = addr - jmp_rx;
tcg_insn_unit i1, i2;
/* We can reach the entire address space for ILP32.
For LP64, the code_gen_buffer can't be larger than 2GB. */
tcg_debug_assert(tb_disp == (int32_t)tb_disp);
tcg_debug_assert(br_disp == (int32_t)br_disp);
if (!USE_REG_TB) {
qatomic_set((uint32_t *)jmp_rw,
deposit32(CALL, 0, 30, br_disp >> 2));
flush_idcache_range(jmp_rx, jmp_rw, 4);
return;
}
/* This does not exercise the range of the branch, but we do
still need to be able to load the new value of TCG_REG_TB.
But this does still happen quite often. */
if (check_fit_ptr(tb_disp, 13)) {
/* ba,pt %icc, addr */
i1 = (INSN_OP(0) | INSN_OP2(1) | INSN_COND(COND_A)
| BPCC_ICC | BPCC_PT | INSN_OFF19(br_disp));
i2 = (ARITH_ADD | INSN_RD(TCG_REG_TB) | INSN_RS1(TCG_REG_TB)
| INSN_IMM13(tb_disp));
} else if (tb_disp >= 0) {
i1 = SETHI | INSN_RD(TCG_REG_T1) | ((tb_disp & 0xfffffc00) >> 10);
i2 = (ARITH_OR | INSN_RD(TCG_REG_T1) | INSN_RS1(TCG_REG_T1)
| INSN_IMM13(tb_disp & 0x3ff));
} else {
i1 = SETHI | INSN_RD(TCG_REG_T1) | ((~tb_disp & 0xfffffc00) >> 10);
i2 = (ARITH_XOR | INSN_RD(TCG_REG_T1) | INSN_RS1(TCG_REG_T1)
| INSN_IMM13((tb_disp & 0x3ff) | -0x400));
}
qatomic_set((uint64_t *)jmp_rw, deposit64(i2, 32, 32, i1));
flush_idcache_range(jmp_rx, jmp_rw, 8);
}