qemu-e2k/hw/spapr_hcall.c
David Gibson a3d0abaeca pseries: Implement hcall-bulk hypervisor interface
This patch adds support for the H_REMOVE_BULK hypercall on the pseries
machine.  Strictly speaking this isn't necessarym since the kernel will
only attempt to use this if hcall-bulk is advertised in the device tree,
which previously it was not.

Adding this support may give a marginal performance increase, but more
importantly it reduces the differences between the emulated machine and
an existing PowerVM or kvm system, both of which already implement
hcall-bulk.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-10-06 09:48:04 +02:00

708 lines
20 KiB
C

#include "sysemu.h"
#include "cpu.h"
#include "dyngen-exec.h"
#include "qemu-char.h"
#include "sysemu.h"
#include "qemu-char.h"
#include "helper_regs.h"
#include "hw/spapr.h"
#define HPTES_PER_GROUP 8
#define HPTE_V_SSIZE_SHIFT 62
#define HPTE_V_AVPN_SHIFT 7
#define HPTE_V_AVPN 0x3fffffffffffff80ULL
#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
#define HPTE_V_COMPARE(x, y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
#define HPTE_V_BOLTED 0x0000000000000010ULL
#define HPTE_V_LOCK 0x0000000000000008ULL
#define HPTE_V_LARGE 0x0000000000000004ULL
#define HPTE_V_SECONDARY 0x0000000000000002ULL
#define HPTE_V_VALID 0x0000000000000001ULL
#define HPTE_R_PP0 0x8000000000000000ULL
#define HPTE_R_TS 0x4000000000000000ULL
#define HPTE_R_KEY_HI 0x3000000000000000ULL
#define HPTE_R_RPN_SHIFT 12
#define HPTE_R_RPN 0x3ffffffffffff000ULL
#define HPTE_R_FLAGS 0x00000000000003ffULL
#define HPTE_R_PP 0x0000000000000003ULL
#define HPTE_R_N 0x0000000000000004ULL
#define HPTE_R_G 0x0000000000000008ULL
#define HPTE_R_M 0x0000000000000010ULL
#define HPTE_R_I 0x0000000000000020ULL
#define HPTE_R_W 0x0000000000000040ULL
#define HPTE_R_WIMG 0x0000000000000078ULL
#define HPTE_R_C 0x0000000000000080ULL
#define HPTE_R_R 0x0000000000000100ULL
#define HPTE_R_KEY_LO 0x0000000000000e00ULL
#define HPTE_V_1TB_SEG 0x4000000000000000ULL
#define HPTE_V_VRMA_MASK 0x4001ffffff000000ULL
#define HPTE_V_HVLOCK 0x40ULL
static inline int lock_hpte(void *hpte, target_ulong bits)
{
uint64_t pteh;
pteh = ldq_p(hpte);
/* We're protected by qemu's global lock here */
if (pteh & bits) {
return 0;
}
stq_p(hpte, pteh | HPTE_V_HVLOCK);
return 1;
}
static target_ulong compute_tlbie_rb(target_ulong v, target_ulong r,
target_ulong pte_index)
{
target_ulong rb, va_low;
rb = (v & ~0x7fULL) << 16; /* AVA field */
va_low = pte_index >> 3;
if (v & HPTE_V_SECONDARY) {
va_low = ~va_low;
}
/* xor vsid from AVA */
if (!(v & HPTE_V_1TB_SEG)) {
va_low ^= v >> 12;
} else {
va_low ^= v >> 24;
}
va_low &= 0x7ff;
if (v & HPTE_V_LARGE) {
rb |= 1; /* L field */
#if 0 /* Disable that P7 specific bit for now */
if (r & 0xff000) {
/* non-16MB large page, must be 64k */
/* (masks depend on page size) */
rb |= 0x1000; /* page encoding in LP field */
rb |= (va_low & 0x7f) << 16; /* 7b of VA in AVA/LP field */
rb |= (va_low & 0xfe); /* AVAL field */
}
#endif
} else {
/* 4kB page */
rb |= (va_low & 0x7ff) << 12; /* remaining 11b of AVA */
}
rb |= (v >> 54) & 0x300; /* B field */
return rb;
}
static target_ulong h_enter(CPUState *env, sPAPREnvironment *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong flags = args[0];
target_ulong pte_index = args[1];
target_ulong pteh = args[2];
target_ulong ptel = args[3];
target_ulong page_shift = 12;
target_ulong raddr;
target_ulong i;
uint8_t *hpte;
/* only handle 4k and 16M pages for now */
if (pteh & HPTE_V_LARGE) {
#if 0 /* We don't support 64k pages yet */
if ((ptel & 0xf000) == 0x1000) {
/* 64k page */
} else
#endif
if ((ptel & 0xff000) == 0) {
/* 16M page */
page_shift = 24;
/* lowest AVA bit must be 0 for 16M pages */
if (pteh & 0x80) {
return H_PARAMETER;
}
} else {
return H_PARAMETER;
}
}
raddr = (ptel & HPTE_R_RPN) & ~((1ULL << page_shift) - 1);
if (raddr < spapr->ram_limit) {
/* Regular RAM - should have WIMG=0010 */
if ((ptel & HPTE_R_WIMG) != HPTE_R_M) {
return H_PARAMETER;
}
} else {
/* Looks like an IO address */
/* FIXME: What WIMG combinations could be sensible for IO?
* For now we allow WIMG=010x, but are there others? */
/* FIXME: Should we check against registered IO addresses? */
if ((ptel & (HPTE_R_W | HPTE_R_I | HPTE_R_M)) != HPTE_R_I) {
return H_PARAMETER;
}
}
pteh &= ~0x60ULL;
if ((pte_index * HASH_PTE_SIZE_64) & ~env->htab_mask) {
return H_PARAMETER;
}
if (likely((flags & H_EXACT) == 0)) {
pte_index &= ~7ULL;
hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64);
for (i = 0; ; ++i) {
if (i == 8) {
return H_PTEG_FULL;
}
if (((ldq_p(hpte) & HPTE_V_VALID) == 0) &&
lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID)) {
break;
}
hpte += HASH_PTE_SIZE_64;
}
} else {
i = 0;
hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64);
if (!lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID)) {
return H_PTEG_FULL;
}
}
stq_p(hpte + (HASH_PTE_SIZE_64/2), ptel);
/* eieio(); FIXME: need some sort of barrier for smp? */
stq_p(hpte, pteh);
assert(!(ldq_p(hpte) & HPTE_V_HVLOCK));
args[0] = pte_index + i;
return H_SUCCESS;
}
enum {
REMOVE_SUCCESS = 0,
REMOVE_NOT_FOUND = 1,
REMOVE_PARM = 2,
REMOVE_HW = 3,
};
static target_ulong remove_hpte(CPUState *env, target_ulong ptex,
target_ulong avpn,
target_ulong flags,
target_ulong *vp, target_ulong *rp)
{
uint8_t *hpte;
target_ulong v, r, rb;
if ((ptex * HASH_PTE_SIZE_64) & ~env->htab_mask) {
return REMOVE_PARM;
}
hpte = env->external_htab + (ptex * HASH_PTE_SIZE_64);
while (!lock_hpte(hpte, HPTE_V_HVLOCK)) {
/* We have no real concurrency in qemu soft-emulation, so we
* will never actually have a contested lock */
assert(0);
}
v = ldq_p(hpte);
r = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
if ((v & HPTE_V_VALID) == 0 ||
((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
((flags & H_ANDCOND) && (v & avpn) != 0)) {
stq_p(hpte, v & ~HPTE_V_HVLOCK);
assert(!(ldq_p(hpte) & HPTE_V_HVLOCK));
return REMOVE_NOT_FOUND;
}
*vp = v & ~HPTE_V_HVLOCK;
*rp = r;
stq_p(hpte, 0);
rb = compute_tlbie_rb(v, r, ptex);
ppc_tlb_invalidate_one(env, rb);
assert(!(ldq_p(hpte) & HPTE_V_HVLOCK));
return REMOVE_SUCCESS;
}
static target_ulong h_remove(CPUState *env, sPAPREnvironment *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong flags = args[0];
target_ulong pte_index = args[1];
target_ulong avpn = args[2];
int ret;
ret = remove_hpte(env, pte_index, avpn, flags,
&args[0], &args[1]);
switch (ret) {
case REMOVE_SUCCESS:
return H_SUCCESS;
case REMOVE_NOT_FOUND:
return H_NOT_FOUND;
case REMOVE_PARM:
return H_PARAMETER;
case REMOVE_HW:
return H_HARDWARE;
}
assert(0);
}
#define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
#define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
#define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
#define H_BULK_REMOVE_END 0xc000000000000000ULL
#define H_BULK_REMOVE_CODE 0x3000000000000000ULL
#define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
#define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
#define H_BULK_REMOVE_PARM 0x2000000000000000ULL
#define H_BULK_REMOVE_HW 0x3000000000000000ULL
#define H_BULK_REMOVE_RC 0x0c00000000000000ULL
#define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
#define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
#define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
#define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
#define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
#define H_BULK_REMOVE_MAX_BATCH 4
static target_ulong h_bulk_remove(CPUState *env, sPAPREnvironment *spapr,
target_ulong opcode, target_ulong *args)
{
int i;
for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
target_ulong *tsh = &args[i*2];
target_ulong tsl = args[i*2 + 1];
target_ulong v, r, ret;
if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
break;
} else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
return H_PARAMETER;
}
*tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
*tsh |= H_BULK_REMOVE_RESPONSE;
if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
*tsh |= H_BULK_REMOVE_PARM;
return H_PARAMETER;
}
ret = remove_hpte(env, *tsh & H_BULK_REMOVE_PTEX, tsl,
(*tsh & H_BULK_REMOVE_FLAGS) >> 26,
&v, &r);
*tsh |= ret << 60;
switch (ret) {
case REMOVE_SUCCESS:
*tsh |= (r & (HPTE_R_C | HPTE_R_R)) << 43;
break;
case REMOVE_PARM:
return H_PARAMETER;
case REMOVE_HW:
return H_HARDWARE;
}
}
return H_SUCCESS;
}
static target_ulong h_protect(CPUState *env, sPAPREnvironment *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong flags = args[0];
target_ulong pte_index = args[1];
target_ulong avpn = args[2];
uint8_t *hpte;
target_ulong v, r, rb;
if ((pte_index * HASH_PTE_SIZE_64) & ~env->htab_mask) {
return H_PARAMETER;
}
hpte = env->external_htab + (pte_index * HASH_PTE_SIZE_64);
while (!lock_hpte(hpte, HPTE_V_HVLOCK)) {
/* We have no real concurrency in qemu soft-emulation, so we
* will never actually have a contested lock */
assert(0);
}
v = ldq_p(hpte);
r = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
if ((v & HPTE_V_VALID) == 0 ||
((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
stq_p(hpte, v & ~HPTE_V_HVLOCK);
assert(!(ldq_p(hpte) & HPTE_V_HVLOCK));
return H_NOT_FOUND;
}
r &= ~(HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
HPTE_R_KEY_HI | HPTE_R_KEY_LO);
r |= (flags << 55) & HPTE_R_PP0;
r |= (flags << 48) & HPTE_R_KEY_HI;
r |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
rb = compute_tlbie_rb(v, r, pte_index);
stq_p(hpte, v & ~HPTE_V_VALID);
ppc_tlb_invalidate_one(env, rb);
stq_p(hpte + (HASH_PTE_SIZE_64/2), r);
/* Don't need a memory barrier, due to qemu's global lock */
stq_p(hpte, v & ~HPTE_V_HVLOCK);
assert(!(ldq_p(hpte) & HPTE_V_HVLOCK));
return H_SUCCESS;
}
static target_ulong h_set_dabr(CPUState *env, sPAPREnvironment *spapr,
target_ulong opcode, target_ulong *args)
{
/* FIXME: actually implement this */
return H_HARDWARE;
}
#define FLAGS_REGISTER_VPA 0x0000200000000000ULL
#define FLAGS_REGISTER_DTL 0x0000400000000000ULL
#define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
#define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
#define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
#define VPA_MIN_SIZE 640
#define VPA_SIZE_OFFSET 0x4
#define VPA_SHARED_PROC_OFFSET 0x9
#define VPA_SHARED_PROC_VAL 0x2
static target_ulong register_vpa(CPUState *env, target_ulong vpa)
{
uint16_t size;
uint8_t tmp;
if (vpa == 0) {
hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
return H_HARDWARE;
}
if (vpa % env->dcache_line_size) {
return H_PARAMETER;
}
/* FIXME: bounds check the address */
size = lduw_be_phys(vpa + 0x4);
if (size < VPA_MIN_SIZE) {
return H_PARAMETER;
}
/* VPA is not allowed to cross a page boundary */
if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
return H_PARAMETER;
}
env->vpa = vpa;
tmp = ldub_phys(env->vpa + VPA_SHARED_PROC_OFFSET);
tmp |= VPA_SHARED_PROC_VAL;
stb_phys(env->vpa + VPA_SHARED_PROC_OFFSET, tmp);
return H_SUCCESS;
}
static target_ulong deregister_vpa(CPUState *env, target_ulong vpa)
{
if (env->slb_shadow) {
return H_RESOURCE;
}
if (env->dispatch_trace_log) {
return H_RESOURCE;
}
env->vpa = 0;
return H_SUCCESS;
}
static target_ulong register_slb_shadow(CPUState *env, target_ulong addr)
{
uint32_t size;
if (addr == 0) {
hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
return H_HARDWARE;
}
size = ldl_be_phys(addr + 0x4);
if (size < 0x8) {
return H_PARAMETER;
}
if ((addr / 4096) != ((addr + size - 1) / 4096)) {
return H_PARAMETER;
}
if (!env->vpa) {
return H_RESOURCE;
}
env->slb_shadow = addr;
return H_SUCCESS;
}
static target_ulong deregister_slb_shadow(CPUState *env, target_ulong addr)
{
env->slb_shadow = 0;
return H_SUCCESS;
}
static target_ulong register_dtl(CPUState *env, target_ulong addr)
{
uint32_t size;
if (addr == 0) {
hcall_dprintf("Can't cope with DTL at logical 0\n");
return H_HARDWARE;
}
size = ldl_be_phys(addr + 0x4);
if (size < 48) {
return H_PARAMETER;
}
if (!env->vpa) {
return H_RESOURCE;
}
env->dispatch_trace_log = addr;
env->dtl_size = size;
return H_SUCCESS;
}
static target_ulong deregister_dtl(CPUState *emv, target_ulong addr)
{
env->dispatch_trace_log = 0;
env->dtl_size = 0;
return H_SUCCESS;
}
static target_ulong h_register_vpa(CPUState *env, sPAPREnvironment *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong flags = args[0];
target_ulong procno = args[1];
target_ulong vpa = args[2];
target_ulong ret = H_PARAMETER;
CPUState *tenv;
for (tenv = first_cpu; tenv; tenv = tenv->next_cpu) {
if (tenv->cpu_index == procno) {
break;
}
}
if (!tenv) {
return H_PARAMETER;
}
switch (flags) {
case FLAGS_REGISTER_VPA:
ret = register_vpa(tenv, vpa);
break;
case FLAGS_DEREGISTER_VPA:
ret = deregister_vpa(tenv, vpa);
break;
case FLAGS_REGISTER_SLBSHADOW:
ret = register_slb_shadow(tenv, vpa);
break;
case FLAGS_DEREGISTER_SLBSHADOW:
ret = deregister_slb_shadow(tenv, vpa);
break;
case FLAGS_REGISTER_DTL:
ret = register_dtl(tenv, vpa);
break;
case FLAGS_DEREGISTER_DTL:
ret = deregister_dtl(tenv, vpa);
break;
}
return ret;
}
static target_ulong h_cede(CPUState *env, sPAPREnvironment *spapr,
target_ulong opcode, target_ulong *args)
{
env->msr |= (1ULL << MSR_EE);
hreg_compute_hflags(env);
if (!cpu_has_work(env)) {
env->halted = 1;
}
return H_SUCCESS;
}
static target_ulong h_rtas(CPUState *env, sPAPREnvironment *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong rtas_r3 = args[0];
uint32_t token = ldl_be_phys(rtas_r3);
uint32_t nargs = ldl_be_phys(rtas_r3 + 4);
uint32_t nret = ldl_be_phys(rtas_r3 + 8);
return spapr_rtas_call(spapr, token, nargs, rtas_r3 + 12,
nret, rtas_r3 + 12 + 4*nargs);
}
static target_ulong h_logical_load(CPUState *env, sPAPREnvironment *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong size = args[0];
target_ulong addr = args[1];
switch (size) {
case 1:
args[0] = ldub_phys(addr);
return H_SUCCESS;
case 2:
args[0] = lduw_phys(addr);
return H_SUCCESS;
case 4:
args[0] = ldl_phys(addr);
return H_SUCCESS;
case 8:
args[0] = ldq_phys(addr);
return H_SUCCESS;
}
return H_PARAMETER;
}
static target_ulong h_logical_store(CPUState *env, sPAPREnvironment *spapr,
target_ulong opcode, target_ulong *args)
{
target_ulong size = args[0];
target_ulong addr = args[1];
target_ulong val = args[2];
switch (size) {
case 1:
stb_phys(addr, val);
return H_SUCCESS;
case 2:
stw_phys(addr, val);
return H_SUCCESS;
case 4:
stl_phys(addr, val);
return H_SUCCESS;
case 8:
stq_phys(addr, val);
return H_SUCCESS;
}
return H_PARAMETER;
}
static target_ulong h_logical_icbi(CPUState *env, sPAPREnvironment *spapr,
target_ulong opcode, target_ulong *args)
{
/* Nothing to do on emulation, KVM will trap this in the kernel */
return H_SUCCESS;
}
static target_ulong h_logical_dcbf(CPUState *env, sPAPREnvironment *spapr,
target_ulong opcode, target_ulong *args)
{
/* Nothing to do on emulation, KVM will trap this in the kernel */
return H_SUCCESS;
}
static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
{
spapr_hcall_fn *slot;
if (opcode <= MAX_HCALL_OPCODE) {
assert((opcode & 0x3) == 0);
slot = &papr_hypercall_table[opcode / 4];
} else {
assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
}
assert(!(*slot) || (fn == *slot));
*slot = fn;
}
target_ulong spapr_hypercall(CPUState *env, target_ulong opcode,
target_ulong *args)
{
if (msr_pr) {
hcall_dprintf("Hypercall made with MSR[PR]=1\n");
return H_PRIVILEGE;
}
if ((opcode <= MAX_HCALL_OPCODE)
&& ((opcode & 0x3) == 0)) {
spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
if (fn) {
return fn(env, spapr, opcode, args);
}
} else if ((opcode >= KVMPPC_HCALL_BASE) &&
(opcode <= KVMPPC_HCALL_MAX)) {
spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
if (fn) {
return fn(env, spapr, opcode, args);
}
}
hcall_dprintf("Unimplemented hcall 0x" TARGET_FMT_lx "\n", opcode);
return H_FUNCTION;
}
static void hypercall_init(void)
{
/* hcall-pft */
spapr_register_hypercall(H_ENTER, h_enter);
spapr_register_hypercall(H_REMOVE, h_remove);
spapr_register_hypercall(H_PROTECT, h_protect);
/* hcall-bulk */
spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
/* hcall-dabr */
spapr_register_hypercall(H_SET_DABR, h_set_dabr);
/* hcall-splpar */
spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
spapr_register_hypercall(H_CEDE, h_cede);
/* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
* here between the "CI" and the "CACHE" variants, they will use whatever
* mapping attributes qemu is using. When using KVM, the kernel will
* enforce the attributes more strongly
*/
spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
/* qemu/KVM-PPC specific hcalls */
spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
}
device_init(hypercall_init);