qemu-e2k/target/arm/sve_helper.c
Richard Henderson d3fe4a29d7 target/arm: Implement SVE Select Vectors Group
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20180613015641.5667-11-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2018-06-15 15:23:34 +01:00

2204 lines
76 KiB
C

/*
* ARM SVE Operations
*
* Copyright (c) 2018 Linaro, Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/helper-proto.h"
#include "tcg/tcg-gvec-desc.h"
#include "fpu/softfloat.h"
/* Note that vector data is stored in host-endian 64-bit chunks,
so addressing units smaller than that needs a host-endian fixup. */
#ifdef HOST_WORDS_BIGENDIAN
#define H1(x) ((x) ^ 7)
#define H1_2(x) ((x) ^ 6)
#define H1_4(x) ((x) ^ 4)
#define H2(x) ((x) ^ 3)
#define H4(x) ((x) ^ 1)
#else
#define H1(x) (x)
#define H1_2(x) (x)
#define H1_4(x) (x)
#define H2(x) (x)
#define H4(x) (x)
#endif
/* Return a value for NZCV as per the ARM PredTest pseudofunction.
*
* The return value has bit 31 set if N is set, bit 1 set if Z is clear,
* and bit 0 set if C is set. Compare the definitions of these variables
* within CPUARMState.
*/
/* For no G bits set, NZCV = C. */
#define PREDTEST_INIT 1
/* This is an iterative function, called for each Pd and Pg word
* moving forward.
*/
static uint32_t iter_predtest_fwd(uint64_t d, uint64_t g, uint32_t flags)
{
if (likely(g)) {
/* Compute N from first D & G.
Use bit 2 to signal first G bit seen. */
if (!(flags & 4)) {
flags |= ((d & (g & -g)) != 0) << 31;
flags |= 4;
}
/* Accumulate Z from each D & G. */
flags |= ((d & g) != 0) << 1;
/* Compute C from last !(D & G). Replace previous. */
flags = deposit32(flags, 0, 1, (d & pow2floor(g)) == 0);
}
return flags;
}
/* The same for a single word predicate. */
uint32_t HELPER(sve_predtest1)(uint64_t d, uint64_t g)
{
return iter_predtest_fwd(d, g, PREDTEST_INIT);
}
/* The same for a multi-word predicate. */
uint32_t HELPER(sve_predtest)(void *vd, void *vg, uint32_t words)
{
uint32_t flags = PREDTEST_INIT;
uint64_t *d = vd, *g = vg;
uintptr_t i = 0;
do {
flags = iter_predtest_fwd(d[i], g[i], flags);
} while (++i < words);
return flags;
}
/* Expand active predicate bits to bytes, for byte elements.
* for (i = 0; i < 256; ++i) {
* unsigned long m = 0;
* for (j = 0; j < 8; j++) {
* if ((i >> j) & 1) {
* m |= 0xfful << (j << 3);
* }
* }
* printf("0x%016lx,\n", m);
* }
*/
static inline uint64_t expand_pred_b(uint8_t byte)
{
static const uint64_t word[256] = {
0x0000000000000000, 0x00000000000000ff, 0x000000000000ff00,
0x000000000000ffff, 0x0000000000ff0000, 0x0000000000ff00ff,
0x0000000000ffff00, 0x0000000000ffffff, 0x00000000ff000000,
0x00000000ff0000ff, 0x00000000ff00ff00, 0x00000000ff00ffff,
0x00000000ffff0000, 0x00000000ffff00ff, 0x00000000ffffff00,
0x00000000ffffffff, 0x000000ff00000000, 0x000000ff000000ff,
0x000000ff0000ff00, 0x000000ff0000ffff, 0x000000ff00ff0000,
0x000000ff00ff00ff, 0x000000ff00ffff00, 0x000000ff00ffffff,
0x000000ffff000000, 0x000000ffff0000ff, 0x000000ffff00ff00,
0x000000ffff00ffff, 0x000000ffffff0000, 0x000000ffffff00ff,
0x000000ffffffff00, 0x000000ffffffffff, 0x0000ff0000000000,
0x0000ff00000000ff, 0x0000ff000000ff00, 0x0000ff000000ffff,
0x0000ff0000ff0000, 0x0000ff0000ff00ff, 0x0000ff0000ffff00,
0x0000ff0000ffffff, 0x0000ff00ff000000, 0x0000ff00ff0000ff,
0x0000ff00ff00ff00, 0x0000ff00ff00ffff, 0x0000ff00ffff0000,
0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0x0000ff00ffffffff,
0x0000ffff00000000, 0x0000ffff000000ff, 0x0000ffff0000ff00,
0x0000ffff0000ffff, 0x0000ffff00ff0000, 0x0000ffff00ff00ff,
0x0000ffff00ffff00, 0x0000ffff00ffffff, 0x0000ffffff000000,
0x0000ffffff0000ff, 0x0000ffffff00ff00, 0x0000ffffff00ffff,
0x0000ffffffff0000, 0x0000ffffffff00ff, 0x0000ffffffffff00,
0x0000ffffffffffff, 0x00ff000000000000, 0x00ff0000000000ff,
0x00ff00000000ff00, 0x00ff00000000ffff, 0x00ff000000ff0000,
0x00ff000000ff00ff, 0x00ff000000ffff00, 0x00ff000000ffffff,
0x00ff0000ff000000, 0x00ff0000ff0000ff, 0x00ff0000ff00ff00,
0x00ff0000ff00ffff, 0x00ff0000ffff0000, 0x00ff0000ffff00ff,
0x00ff0000ffffff00, 0x00ff0000ffffffff, 0x00ff00ff00000000,
0x00ff00ff000000ff, 0x00ff00ff0000ff00, 0x00ff00ff0000ffff,
0x00ff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00,
0x00ff00ff00ffffff, 0x00ff00ffff000000, 0x00ff00ffff0000ff,
0x00ff00ffff00ff00, 0x00ff00ffff00ffff, 0x00ff00ffffff0000,
0x00ff00ffffff00ff, 0x00ff00ffffffff00, 0x00ff00ffffffffff,
0x00ffff0000000000, 0x00ffff00000000ff, 0x00ffff000000ff00,
0x00ffff000000ffff, 0x00ffff0000ff0000, 0x00ffff0000ff00ff,
0x00ffff0000ffff00, 0x00ffff0000ffffff, 0x00ffff00ff000000,
0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0x00ffff00ff00ffff,
0x00ffff00ffff0000, 0x00ffff00ffff00ff, 0x00ffff00ffffff00,
0x00ffff00ffffffff, 0x00ffffff00000000, 0x00ffffff000000ff,
0x00ffffff0000ff00, 0x00ffffff0000ffff, 0x00ffffff00ff0000,
0x00ffffff00ff00ff, 0x00ffffff00ffff00, 0x00ffffff00ffffff,
0x00ffffffff000000, 0x00ffffffff0000ff, 0x00ffffffff00ff00,
0x00ffffffff00ffff, 0x00ffffffffff0000, 0x00ffffffffff00ff,
0x00ffffffffffff00, 0x00ffffffffffffff, 0xff00000000000000,
0xff000000000000ff, 0xff0000000000ff00, 0xff0000000000ffff,
0xff00000000ff0000, 0xff00000000ff00ff, 0xff00000000ffff00,
0xff00000000ffffff, 0xff000000ff000000, 0xff000000ff0000ff,
0xff000000ff00ff00, 0xff000000ff00ffff, 0xff000000ffff0000,
0xff000000ffff00ff, 0xff000000ffffff00, 0xff000000ffffffff,
0xff0000ff00000000, 0xff0000ff000000ff, 0xff0000ff0000ff00,
0xff0000ff0000ffff, 0xff0000ff00ff0000, 0xff0000ff00ff00ff,
0xff0000ff00ffff00, 0xff0000ff00ffffff, 0xff0000ffff000000,
0xff0000ffff0000ff, 0xff0000ffff00ff00, 0xff0000ffff00ffff,
0xff0000ffffff0000, 0xff0000ffffff00ff, 0xff0000ffffffff00,
0xff0000ffffffffff, 0xff00ff0000000000, 0xff00ff00000000ff,
0xff00ff000000ff00, 0xff00ff000000ffff, 0xff00ff0000ff0000,
0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0xff00ff0000ffffff,
0xff00ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00,
0xff00ff00ff00ffff, 0xff00ff00ffff0000, 0xff00ff00ffff00ff,
0xff00ff00ffffff00, 0xff00ff00ffffffff, 0xff00ffff00000000,
0xff00ffff000000ff, 0xff00ffff0000ff00, 0xff00ffff0000ffff,
0xff00ffff00ff0000, 0xff00ffff00ff00ff, 0xff00ffff00ffff00,
0xff00ffff00ffffff, 0xff00ffffff000000, 0xff00ffffff0000ff,
0xff00ffffff00ff00, 0xff00ffffff00ffff, 0xff00ffffffff0000,
0xff00ffffffff00ff, 0xff00ffffffffff00, 0xff00ffffffffffff,
0xffff000000000000, 0xffff0000000000ff, 0xffff00000000ff00,
0xffff00000000ffff, 0xffff000000ff0000, 0xffff000000ff00ff,
0xffff000000ffff00, 0xffff000000ffffff, 0xffff0000ff000000,
0xffff0000ff0000ff, 0xffff0000ff00ff00, 0xffff0000ff00ffff,
0xffff0000ffff0000, 0xffff0000ffff00ff, 0xffff0000ffffff00,
0xffff0000ffffffff, 0xffff00ff00000000, 0xffff00ff000000ff,
0xffff00ff0000ff00, 0xffff00ff0000ffff, 0xffff00ff00ff0000,
0xffff00ff00ff00ff, 0xffff00ff00ffff00, 0xffff00ff00ffffff,
0xffff00ffff000000, 0xffff00ffff0000ff, 0xffff00ffff00ff00,
0xffff00ffff00ffff, 0xffff00ffffff0000, 0xffff00ffffff00ff,
0xffff00ffffffff00, 0xffff00ffffffffff, 0xffffff0000000000,
0xffffff00000000ff, 0xffffff000000ff00, 0xffffff000000ffff,
0xffffff0000ff0000, 0xffffff0000ff00ff, 0xffffff0000ffff00,
0xffffff0000ffffff, 0xffffff00ff000000, 0xffffff00ff0000ff,
0xffffff00ff00ff00, 0xffffff00ff00ffff, 0xffffff00ffff0000,
0xffffff00ffff00ff, 0xffffff00ffffff00, 0xffffff00ffffffff,
0xffffffff00000000, 0xffffffff000000ff, 0xffffffff0000ff00,
0xffffffff0000ffff, 0xffffffff00ff0000, 0xffffffff00ff00ff,
0xffffffff00ffff00, 0xffffffff00ffffff, 0xffffffffff000000,
0xffffffffff0000ff, 0xffffffffff00ff00, 0xffffffffff00ffff,
0xffffffffffff0000, 0xffffffffffff00ff, 0xffffffffffffff00,
0xffffffffffffffff,
};
return word[byte];
}
/* Similarly for half-word elements.
* for (i = 0; i < 256; ++i) {
* unsigned long m = 0;
* if (i & 0xaa) {
* continue;
* }
* for (j = 0; j < 8; j += 2) {
* if ((i >> j) & 1) {
* m |= 0xfffful << (j << 3);
* }
* }
* printf("[0x%x] = 0x%016lx,\n", i, m);
* }
*/
static inline uint64_t expand_pred_h(uint8_t byte)
{
static const uint64_t word[] = {
[0x01] = 0x000000000000ffff, [0x04] = 0x00000000ffff0000,
[0x05] = 0x00000000ffffffff, [0x10] = 0x0000ffff00000000,
[0x11] = 0x0000ffff0000ffff, [0x14] = 0x0000ffffffff0000,
[0x15] = 0x0000ffffffffffff, [0x40] = 0xffff000000000000,
[0x41] = 0xffff00000000ffff, [0x44] = 0xffff0000ffff0000,
[0x45] = 0xffff0000ffffffff, [0x50] = 0xffffffff00000000,
[0x51] = 0xffffffff0000ffff, [0x54] = 0xffffffffffff0000,
[0x55] = 0xffffffffffffffff,
};
return word[byte & 0x55];
}
/* Similarly for single word elements. */
static inline uint64_t expand_pred_s(uint8_t byte)
{
static const uint64_t word[] = {
[0x01] = 0x00000000ffffffffull,
[0x10] = 0xffffffff00000000ull,
[0x11] = 0xffffffffffffffffull,
};
return word[byte & 0x11];
}
/* Swap 16-bit words within a 32-bit word. */
static inline uint32_t hswap32(uint32_t h)
{
return rol32(h, 16);
}
/* Swap 16-bit words within a 64-bit word. */
static inline uint64_t hswap64(uint64_t h)
{
uint64_t m = 0x0000ffff0000ffffull;
h = rol64(h, 32);
return ((h & m) << 16) | ((h >> 16) & m);
}
/* Swap 32-bit words within a 64-bit word. */
static inline uint64_t wswap64(uint64_t h)
{
return rol64(h, 32);
}
#define LOGICAL_PPPP(NAME, FUNC) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{ \
uintptr_t opr_sz = simd_oprsz(desc); \
uint64_t *d = vd, *n = vn, *m = vm, *g = vg; \
uintptr_t i; \
for (i = 0; i < opr_sz / 8; ++i) { \
d[i] = FUNC(n[i], m[i], g[i]); \
} \
}
#define DO_AND(N, M, G) (((N) & (M)) & (G))
#define DO_BIC(N, M, G) (((N) & ~(M)) & (G))
#define DO_EOR(N, M, G) (((N) ^ (M)) & (G))
#define DO_ORR(N, M, G) (((N) | (M)) & (G))
#define DO_ORN(N, M, G) (((N) | ~(M)) & (G))
#define DO_NOR(N, M, G) (~((N) | (M)) & (G))
#define DO_NAND(N, M, G) (~((N) & (M)) & (G))
#define DO_SEL(N, M, G) (((N) & (G)) | ((M) & ~(G)))
LOGICAL_PPPP(sve_and_pppp, DO_AND)
LOGICAL_PPPP(sve_bic_pppp, DO_BIC)
LOGICAL_PPPP(sve_eor_pppp, DO_EOR)
LOGICAL_PPPP(sve_sel_pppp, DO_SEL)
LOGICAL_PPPP(sve_orr_pppp, DO_ORR)
LOGICAL_PPPP(sve_orn_pppp, DO_ORN)
LOGICAL_PPPP(sve_nor_pppp, DO_NOR)
LOGICAL_PPPP(sve_nand_pppp, DO_NAND)
#undef DO_AND
#undef DO_BIC
#undef DO_EOR
#undef DO_ORR
#undef DO_ORN
#undef DO_NOR
#undef DO_NAND
#undef DO_SEL
#undef LOGICAL_PPPP
/* Fully general three-operand expander, controlled by a predicate.
* This is complicated by the host-endian storage of the register file.
*/
/* ??? I don't expect the compiler could ever vectorize this itself.
* With some tables we can convert bit masks to byte masks, and with
* extra care wrt byte/word ordering we could use gcc generic vectors
* and do 16 bytes at a time.
*/
#define DO_ZPZZ(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; ) { \
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
do { \
if (pg & 1) { \
TYPE nn = *(TYPE *)(vn + H(i)); \
TYPE mm = *(TYPE *)(vm + H(i)); \
*(TYPE *)(vd + H(i)) = OP(nn, mm); \
} \
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
} while (i & 15); \
} \
}
/* Similarly, specialized for 64-bit operands. */
#define DO_ZPZZ_D(NAME, TYPE, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
TYPE *d = vd, *n = vn, *m = vm; \
uint8_t *pg = vg; \
for (i = 0; i < opr_sz; i += 1) { \
if (pg[H1(i)] & 1) { \
TYPE nn = n[i], mm = m[i]; \
d[i] = OP(nn, mm); \
} \
} \
}
#define DO_AND(N, M) (N & M)
#define DO_EOR(N, M) (N ^ M)
#define DO_ORR(N, M) (N | M)
#define DO_BIC(N, M) (N & ~M)
#define DO_ADD(N, M) (N + M)
#define DO_SUB(N, M) (N - M)
#define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
#define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
#define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N))
#define DO_MUL(N, M) (N * M)
#define DO_DIV(N, M) (M ? N / M : 0)
DO_ZPZZ(sve_and_zpzz_b, uint8_t, H1, DO_AND)
DO_ZPZZ(sve_and_zpzz_h, uint16_t, H1_2, DO_AND)
DO_ZPZZ(sve_and_zpzz_s, uint32_t, H1_4, DO_AND)
DO_ZPZZ_D(sve_and_zpzz_d, uint64_t, DO_AND)
DO_ZPZZ(sve_orr_zpzz_b, uint8_t, H1, DO_ORR)
DO_ZPZZ(sve_orr_zpzz_h, uint16_t, H1_2, DO_ORR)
DO_ZPZZ(sve_orr_zpzz_s, uint32_t, H1_4, DO_ORR)
DO_ZPZZ_D(sve_orr_zpzz_d, uint64_t, DO_ORR)
DO_ZPZZ(sve_eor_zpzz_b, uint8_t, H1, DO_EOR)
DO_ZPZZ(sve_eor_zpzz_h, uint16_t, H1_2, DO_EOR)
DO_ZPZZ(sve_eor_zpzz_s, uint32_t, H1_4, DO_EOR)
DO_ZPZZ_D(sve_eor_zpzz_d, uint64_t, DO_EOR)
DO_ZPZZ(sve_bic_zpzz_b, uint8_t, H1, DO_BIC)
DO_ZPZZ(sve_bic_zpzz_h, uint16_t, H1_2, DO_BIC)
DO_ZPZZ(sve_bic_zpzz_s, uint32_t, H1_4, DO_BIC)
DO_ZPZZ_D(sve_bic_zpzz_d, uint64_t, DO_BIC)
DO_ZPZZ(sve_add_zpzz_b, uint8_t, H1, DO_ADD)
DO_ZPZZ(sve_add_zpzz_h, uint16_t, H1_2, DO_ADD)
DO_ZPZZ(sve_add_zpzz_s, uint32_t, H1_4, DO_ADD)
DO_ZPZZ_D(sve_add_zpzz_d, uint64_t, DO_ADD)
DO_ZPZZ(sve_sub_zpzz_b, uint8_t, H1, DO_SUB)
DO_ZPZZ(sve_sub_zpzz_h, uint16_t, H1_2, DO_SUB)
DO_ZPZZ(sve_sub_zpzz_s, uint32_t, H1_4, DO_SUB)
DO_ZPZZ_D(sve_sub_zpzz_d, uint64_t, DO_SUB)
DO_ZPZZ(sve_smax_zpzz_b, int8_t, H1, DO_MAX)
DO_ZPZZ(sve_smax_zpzz_h, int16_t, H1_2, DO_MAX)
DO_ZPZZ(sve_smax_zpzz_s, int32_t, H1_4, DO_MAX)
DO_ZPZZ_D(sve_smax_zpzz_d, int64_t, DO_MAX)
DO_ZPZZ(sve_umax_zpzz_b, uint8_t, H1, DO_MAX)
DO_ZPZZ(sve_umax_zpzz_h, uint16_t, H1_2, DO_MAX)
DO_ZPZZ(sve_umax_zpzz_s, uint32_t, H1_4, DO_MAX)
DO_ZPZZ_D(sve_umax_zpzz_d, uint64_t, DO_MAX)
DO_ZPZZ(sve_smin_zpzz_b, int8_t, H1, DO_MIN)
DO_ZPZZ(sve_smin_zpzz_h, int16_t, H1_2, DO_MIN)
DO_ZPZZ(sve_smin_zpzz_s, int32_t, H1_4, DO_MIN)
DO_ZPZZ_D(sve_smin_zpzz_d, int64_t, DO_MIN)
DO_ZPZZ(sve_umin_zpzz_b, uint8_t, H1, DO_MIN)
DO_ZPZZ(sve_umin_zpzz_h, uint16_t, H1_2, DO_MIN)
DO_ZPZZ(sve_umin_zpzz_s, uint32_t, H1_4, DO_MIN)
DO_ZPZZ_D(sve_umin_zpzz_d, uint64_t, DO_MIN)
DO_ZPZZ(sve_sabd_zpzz_b, int8_t, H1, DO_ABD)
DO_ZPZZ(sve_sabd_zpzz_h, int16_t, H1_2, DO_ABD)
DO_ZPZZ(sve_sabd_zpzz_s, int32_t, H1_4, DO_ABD)
DO_ZPZZ_D(sve_sabd_zpzz_d, int64_t, DO_ABD)
DO_ZPZZ(sve_uabd_zpzz_b, uint8_t, H1, DO_ABD)
DO_ZPZZ(sve_uabd_zpzz_h, uint16_t, H1_2, DO_ABD)
DO_ZPZZ(sve_uabd_zpzz_s, uint32_t, H1_4, DO_ABD)
DO_ZPZZ_D(sve_uabd_zpzz_d, uint64_t, DO_ABD)
/* Because the computation type is at least twice as large as required,
these work for both signed and unsigned source types. */
static inline uint8_t do_mulh_b(int32_t n, int32_t m)
{
return (n * m) >> 8;
}
static inline uint16_t do_mulh_h(int32_t n, int32_t m)
{
return (n * m) >> 16;
}
static inline uint32_t do_mulh_s(int64_t n, int64_t m)
{
return (n * m) >> 32;
}
static inline uint64_t do_smulh_d(uint64_t n, uint64_t m)
{
uint64_t lo, hi;
muls64(&lo, &hi, n, m);
return hi;
}
static inline uint64_t do_umulh_d(uint64_t n, uint64_t m)
{
uint64_t lo, hi;
mulu64(&lo, &hi, n, m);
return hi;
}
DO_ZPZZ(sve_mul_zpzz_b, uint8_t, H1, DO_MUL)
DO_ZPZZ(sve_mul_zpzz_h, uint16_t, H1_2, DO_MUL)
DO_ZPZZ(sve_mul_zpzz_s, uint32_t, H1_4, DO_MUL)
DO_ZPZZ_D(sve_mul_zpzz_d, uint64_t, DO_MUL)
DO_ZPZZ(sve_smulh_zpzz_b, int8_t, H1, do_mulh_b)
DO_ZPZZ(sve_smulh_zpzz_h, int16_t, H1_2, do_mulh_h)
DO_ZPZZ(sve_smulh_zpzz_s, int32_t, H1_4, do_mulh_s)
DO_ZPZZ_D(sve_smulh_zpzz_d, uint64_t, do_smulh_d)
DO_ZPZZ(sve_umulh_zpzz_b, uint8_t, H1, do_mulh_b)
DO_ZPZZ(sve_umulh_zpzz_h, uint16_t, H1_2, do_mulh_h)
DO_ZPZZ(sve_umulh_zpzz_s, uint32_t, H1_4, do_mulh_s)
DO_ZPZZ_D(sve_umulh_zpzz_d, uint64_t, do_umulh_d)
DO_ZPZZ(sve_sdiv_zpzz_s, int32_t, H1_4, DO_DIV)
DO_ZPZZ_D(sve_sdiv_zpzz_d, int64_t, DO_DIV)
DO_ZPZZ(sve_udiv_zpzz_s, uint32_t, H1_4, DO_DIV)
DO_ZPZZ_D(sve_udiv_zpzz_d, uint64_t, DO_DIV)
/* Note that all bits of the shift are significant
and not modulo the element size. */
#define DO_ASR(N, M) (N >> MIN(M, sizeof(N) * 8 - 1))
#define DO_LSR(N, M) (M < sizeof(N) * 8 ? N >> M : 0)
#define DO_LSL(N, M) (M < sizeof(N) * 8 ? N << M : 0)
DO_ZPZZ(sve_asr_zpzz_b, int8_t, H1, DO_ASR)
DO_ZPZZ(sve_lsr_zpzz_b, uint8_t, H1_2, DO_LSR)
DO_ZPZZ(sve_lsl_zpzz_b, uint8_t, H1_4, DO_LSL)
DO_ZPZZ(sve_asr_zpzz_h, int16_t, H1, DO_ASR)
DO_ZPZZ(sve_lsr_zpzz_h, uint16_t, H1_2, DO_LSR)
DO_ZPZZ(sve_lsl_zpzz_h, uint16_t, H1_4, DO_LSL)
DO_ZPZZ(sve_asr_zpzz_s, int32_t, H1, DO_ASR)
DO_ZPZZ(sve_lsr_zpzz_s, uint32_t, H1_2, DO_LSR)
DO_ZPZZ(sve_lsl_zpzz_s, uint32_t, H1_4, DO_LSL)
DO_ZPZZ_D(sve_asr_zpzz_d, int64_t, DO_ASR)
DO_ZPZZ_D(sve_lsr_zpzz_d, uint64_t, DO_LSR)
DO_ZPZZ_D(sve_lsl_zpzz_d, uint64_t, DO_LSL)
#undef DO_ZPZZ
#undef DO_ZPZZ_D
/* Three-operand expander, controlled by a predicate, in which the
* third operand is "wide". That is, for D = N op M, the same 64-bit
* value of M is used with all of the narrower values of N.
*/
#define DO_ZPZW(NAME, TYPE, TYPEW, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; ) { \
uint8_t pg = *(uint8_t *)(vg + H1(i >> 3)); \
TYPEW mm = *(TYPEW *)(vm + i); \
do { \
if (pg & 1) { \
TYPE nn = *(TYPE *)(vn + H(i)); \
*(TYPE *)(vd + H(i)) = OP(nn, mm); \
} \
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
} while (i & 7); \
} \
}
DO_ZPZW(sve_asr_zpzw_b, int8_t, uint64_t, H1, DO_ASR)
DO_ZPZW(sve_lsr_zpzw_b, uint8_t, uint64_t, H1, DO_LSR)
DO_ZPZW(sve_lsl_zpzw_b, uint8_t, uint64_t, H1, DO_LSL)
DO_ZPZW(sve_asr_zpzw_h, int16_t, uint64_t, H1_2, DO_ASR)
DO_ZPZW(sve_lsr_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
DO_ZPZW(sve_lsl_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
DO_ZPZW(sve_asr_zpzw_s, int32_t, uint64_t, H1_4, DO_ASR)
DO_ZPZW(sve_lsr_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
DO_ZPZW(sve_lsl_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
#undef DO_ZPZW
/* Fully general two-operand expander, controlled by a predicate.
*/
#define DO_ZPZ(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; ) { \
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
do { \
if (pg & 1) { \
TYPE nn = *(TYPE *)(vn + H(i)); \
*(TYPE *)(vd + H(i)) = OP(nn); \
} \
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
} while (i & 15); \
} \
}
/* Similarly, specialized for 64-bit operands. */
#define DO_ZPZ_D(NAME, TYPE, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
TYPE *d = vd, *n = vn; \
uint8_t *pg = vg; \
for (i = 0; i < opr_sz; i += 1) { \
if (pg[H1(i)] & 1) { \
TYPE nn = n[i]; \
d[i] = OP(nn); \
} \
} \
}
#define DO_CLS_B(N) (clrsb32(N) - 24)
#define DO_CLS_H(N) (clrsb32(N) - 16)
DO_ZPZ(sve_cls_b, int8_t, H1, DO_CLS_B)
DO_ZPZ(sve_cls_h, int16_t, H1_2, DO_CLS_H)
DO_ZPZ(sve_cls_s, int32_t, H1_4, clrsb32)
DO_ZPZ_D(sve_cls_d, int64_t, clrsb64)
#define DO_CLZ_B(N) (clz32(N) - 24)
#define DO_CLZ_H(N) (clz32(N) - 16)
DO_ZPZ(sve_clz_b, uint8_t, H1, DO_CLZ_B)
DO_ZPZ(sve_clz_h, uint16_t, H1_2, DO_CLZ_H)
DO_ZPZ(sve_clz_s, uint32_t, H1_4, clz32)
DO_ZPZ_D(sve_clz_d, uint64_t, clz64)
DO_ZPZ(sve_cnt_zpz_b, uint8_t, H1, ctpop8)
DO_ZPZ(sve_cnt_zpz_h, uint16_t, H1_2, ctpop16)
DO_ZPZ(sve_cnt_zpz_s, uint32_t, H1_4, ctpop32)
DO_ZPZ_D(sve_cnt_zpz_d, uint64_t, ctpop64)
#define DO_CNOT(N) (N == 0)
DO_ZPZ(sve_cnot_b, uint8_t, H1, DO_CNOT)
DO_ZPZ(sve_cnot_h, uint16_t, H1_2, DO_CNOT)
DO_ZPZ(sve_cnot_s, uint32_t, H1_4, DO_CNOT)
DO_ZPZ_D(sve_cnot_d, uint64_t, DO_CNOT)
#define DO_FABS(N) (N & ((__typeof(N))-1 >> 1))
DO_ZPZ(sve_fabs_h, uint16_t, H1_2, DO_FABS)
DO_ZPZ(sve_fabs_s, uint32_t, H1_4, DO_FABS)
DO_ZPZ_D(sve_fabs_d, uint64_t, DO_FABS)
#define DO_FNEG(N) (N ^ ~((__typeof(N))-1 >> 1))
DO_ZPZ(sve_fneg_h, uint16_t, H1_2, DO_FNEG)
DO_ZPZ(sve_fneg_s, uint32_t, H1_4, DO_FNEG)
DO_ZPZ_D(sve_fneg_d, uint64_t, DO_FNEG)
#define DO_NOT(N) (~N)
DO_ZPZ(sve_not_zpz_b, uint8_t, H1, DO_NOT)
DO_ZPZ(sve_not_zpz_h, uint16_t, H1_2, DO_NOT)
DO_ZPZ(sve_not_zpz_s, uint32_t, H1_4, DO_NOT)
DO_ZPZ_D(sve_not_zpz_d, uint64_t, DO_NOT)
#define DO_SXTB(N) ((int8_t)N)
#define DO_SXTH(N) ((int16_t)N)
#define DO_SXTS(N) ((int32_t)N)
#define DO_UXTB(N) ((uint8_t)N)
#define DO_UXTH(N) ((uint16_t)N)
#define DO_UXTS(N) ((uint32_t)N)
DO_ZPZ(sve_sxtb_h, uint16_t, H1_2, DO_SXTB)
DO_ZPZ(sve_sxtb_s, uint32_t, H1_4, DO_SXTB)
DO_ZPZ(sve_sxth_s, uint32_t, H1_4, DO_SXTH)
DO_ZPZ_D(sve_sxtb_d, uint64_t, DO_SXTB)
DO_ZPZ_D(sve_sxth_d, uint64_t, DO_SXTH)
DO_ZPZ_D(sve_sxtw_d, uint64_t, DO_SXTS)
DO_ZPZ(sve_uxtb_h, uint16_t, H1_2, DO_UXTB)
DO_ZPZ(sve_uxtb_s, uint32_t, H1_4, DO_UXTB)
DO_ZPZ(sve_uxth_s, uint32_t, H1_4, DO_UXTH)
DO_ZPZ_D(sve_uxtb_d, uint64_t, DO_UXTB)
DO_ZPZ_D(sve_uxth_d, uint64_t, DO_UXTH)
DO_ZPZ_D(sve_uxtw_d, uint64_t, DO_UXTS)
#define DO_ABS(N) (N < 0 ? -N : N)
DO_ZPZ(sve_abs_b, int8_t, H1, DO_ABS)
DO_ZPZ(sve_abs_h, int16_t, H1_2, DO_ABS)
DO_ZPZ(sve_abs_s, int32_t, H1_4, DO_ABS)
DO_ZPZ_D(sve_abs_d, int64_t, DO_ABS)
#define DO_NEG(N) (-N)
DO_ZPZ(sve_neg_b, uint8_t, H1, DO_NEG)
DO_ZPZ(sve_neg_h, uint16_t, H1_2, DO_NEG)
DO_ZPZ(sve_neg_s, uint32_t, H1_4, DO_NEG)
DO_ZPZ_D(sve_neg_d, uint64_t, DO_NEG)
DO_ZPZ(sve_revb_h, uint16_t, H1_2, bswap16)
DO_ZPZ(sve_revb_s, uint32_t, H1_4, bswap32)
DO_ZPZ_D(sve_revb_d, uint64_t, bswap64)
DO_ZPZ(sve_revh_s, uint32_t, H1_4, hswap32)
DO_ZPZ_D(sve_revh_d, uint64_t, hswap64)
DO_ZPZ_D(sve_revw_d, uint64_t, wswap64)
DO_ZPZ(sve_rbit_b, uint8_t, H1, revbit8)
DO_ZPZ(sve_rbit_h, uint16_t, H1_2, revbit16)
DO_ZPZ(sve_rbit_s, uint32_t, H1_4, revbit32)
DO_ZPZ_D(sve_rbit_d, uint64_t, revbit64)
/* Three-operand expander, unpredicated, in which the third operand is "wide".
*/
#define DO_ZZW(NAME, TYPE, TYPEW, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; ) { \
TYPEW mm = *(TYPEW *)(vm + i); \
do { \
TYPE nn = *(TYPE *)(vn + H(i)); \
*(TYPE *)(vd + H(i)) = OP(nn, mm); \
i += sizeof(TYPE); \
} while (i & 7); \
} \
}
DO_ZZW(sve_asr_zzw_b, int8_t, uint64_t, H1, DO_ASR)
DO_ZZW(sve_lsr_zzw_b, uint8_t, uint64_t, H1, DO_LSR)
DO_ZZW(sve_lsl_zzw_b, uint8_t, uint64_t, H1, DO_LSL)
DO_ZZW(sve_asr_zzw_h, int16_t, uint64_t, H1_2, DO_ASR)
DO_ZZW(sve_lsr_zzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
DO_ZZW(sve_lsl_zzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
DO_ZZW(sve_asr_zzw_s, int32_t, uint64_t, H1_4, DO_ASR)
DO_ZZW(sve_lsr_zzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
DO_ZZW(sve_lsl_zzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
#undef DO_ZZW
#undef DO_CLS_B
#undef DO_CLS_H
#undef DO_CLZ_B
#undef DO_CLZ_H
#undef DO_CNOT
#undef DO_FABS
#undef DO_FNEG
#undef DO_ABS
#undef DO_NEG
#undef DO_ZPZ
#undef DO_ZPZ_D
/* Two-operand reduction expander, controlled by a predicate.
* The difference between TYPERED and TYPERET has to do with
* sign-extension. E.g. for SMAX, TYPERED must be signed,
* but TYPERET must be unsigned so that e.g. a 32-bit value
* is not sign-extended to the ABI uint64_t return type.
*/
/* ??? If we were to vectorize this by hand the reduction ordering
* would change. For integer operands, this is perfectly fine.
*/
#define DO_VPZ(NAME, TYPEELT, TYPERED, TYPERET, H, INIT, OP) \
uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
TYPERED ret = INIT; \
for (i = 0; i < opr_sz; ) { \
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
do { \
if (pg & 1) { \
TYPEELT nn = *(TYPEELT *)(vn + H(i)); \
ret = OP(ret, nn); \
} \
i += sizeof(TYPEELT), pg >>= sizeof(TYPEELT); \
} while (i & 15); \
} \
return (TYPERET)ret; \
}
#define DO_VPZ_D(NAME, TYPEE, TYPER, INIT, OP) \
uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
TYPEE *n = vn; \
uint8_t *pg = vg; \
TYPER ret = INIT; \
for (i = 0; i < opr_sz; i += 1) { \
if (pg[H1(i)] & 1) { \
TYPEE nn = n[i]; \
ret = OP(ret, nn); \
} \
} \
return ret; \
}
DO_VPZ(sve_orv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_ORR)
DO_VPZ(sve_orv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_ORR)
DO_VPZ(sve_orv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_ORR)
DO_VPZ_D(sve_orv_d, uint64_t, uint64_t, 0, DO_ORR)
DO_VPZ(sve_eorv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_EOR)
DO_VPZ(sve_eorv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_EOR)
DO_VPZ(sve_eorv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_EOR)
DO_VPZ_D(sve_eorv_d, uint64_t, uint64_t, 0, DO_EOR)
DO_VPZ(sve_andv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_AND)
DO_VPZ(sve_andv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_AND)
DO_VPZ(sve_andv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_AND)
DO_VPZ_D(sve_andv_d, uint64_t, uint64_t, -1, DO_AND)
DO_VPZ(sve_saddv_b, int8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
DO_VPZ(sve_saddv_h, int16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
DO_VPZ(sve_saddv_s, int32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
DO_VPZ(sve_uaddv_b, uint8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
DO_VPZ(sve_uaddv_h, uint16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
DO_VPZ(sve_uaddv_s, uint32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
DO_VPZ_D(sve_uaddv_d, uint64_t, uint64_t, 0, DO_ADD)
DO_VPZ(sve_smaxv_b, int8_t, int8_t, uint8_t, H1, INT8_MIN, DO_MAX)
DO_VPZ(sve_smaxv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MIN, DO_MAX)
DO_VPZ(sve_smaxv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MIN, DO_MAX)
DO_VPZ_D(sve_smaxv_d, int64_t, int64_t, INT64_MIN, DO_MAX)
DO_VPZ(sve_umaxv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_MAX)
DO_VPZ(sve_umaxv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_MAX)
DO_VPZ(sve_umaxv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_MAX)
DO_VPZ_D(sve_umaxv_d, uint64_t, uint64_t, 0, DO_MAX)
DO_VPZ(sve_sminv_b, int8_t, int8_t, uint8_t, H1, INT8_MAX, DO_MIN)
DO_VPZ(sve_sminv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MAX, DO_MIN)
DO_VPZ(sve_sminv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MAX, DO_MIN)
DO_VPZ_D(sve_sminv_d, int64_t, int64_t, INT64_MAX, DO_MIN)
DO_VPZ(sve_uminv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_MIN)
DO_VPZ(sve_uminv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_MIN)
DO_VPZ(sve_uminv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_MIN)
DO_VPZ_D(sve_uminv_d, uint64_t, uint64_t, -1, DO_MIN)
#undef DO_VPZ
#undef DO_VPZ_D
#undef DO_AND
#undef DO_ORR
#undef DO_EOR
#undef DO_BIC
#undef DO_ADD
#undef DO_SUB
#undef DO_MAX
#undef DO_MIN
#undef DO_ABD
#undef DO_MUL
#undef DO_DIV
#undef DO_ASR
#undef DO_LSR
#undef DO_LSL
/* Similar to the ARM LastActiveElement pseudocode function, except the
result is multiplied by the element size. This includes the not found
indication; e.g. not found for esz=3 is -8. */
static intptr_t last_active_element(uint64_t *g, intptr_t words, intptr_t esz)
{
uint64_t mask = pred_esz_masks[esz];
intptr_t i = words;
do {
uint64_t this_g = g[--i] & mask;
if (this_g) {
return i * 64 + (63 - clz64(this_g));
}
} while (i > 0);
return (intptr_t)-1 << esz;
}
uint32_t HELPER(sve_pfirst)(void *vd, void *vg, uint32_t words)
{
uint32_t flags = PREDTEST_INIT;
uint64_t *d = vd, *g = vg;
intptr_t i = 0;
do {
uint64_t this_d = d[i];
uint64_t this_g = g[i];
if (this_g) {
if (!(flags & 4)) {
/* Set in D the first bit of G. */
this_d |= this_g & -this_g;
d[i] = this_d;
}
flags = iter_predtest_fwd(this_d, this_g, flags);
}
} while (++i < words);
return flags;
}
uint32_t HELPER(sve_pnext)(void *vd, void *vg, uint32_t pred_desc)
{
intptr_t words = extract32(pred_desc, 0, SIMD_OPRSZ_BITS);
intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
uint32_t flags = PREDTEST_INIT;
uint64_t *d = vd, *g = vg, esz_mask;
intptr_t i, next;
next = last_active_element(vd, words, esz) + (1 << esz);
esz_mask = pred_esz_masks[esz];
/* Similar to the pseudocode for pnext, but scaled by ESZ
so that we find the correct bit. */
if (next < words * 64) {
uint64_t mask = -1;
if (next & 63) {
mask = ~((1ull << (next & 63)) - 1);
next &= -64;
}
do {
uint64_t this_g = g[next / 64] & esz_mask & mask;
if (this_g != 0) {
next = (next & -64) + ctz64(this_g);
break;
}
next += 64;
mask = -1;
} while (next < words * 64);
}
i = 0;
do {
uint64_t this_d = 0;
if (i == next / 64) {
this_d = 1ull << (next & 63);
}
d[i] = this_d;
flags = iter_predtest_fwd(this_d, g[i] & esz_mask, flags);
} while (++i < words);
return flags;
}
/* Store zero into every active element of Zd. We will use this for two
* and three-operand predicated instructions for which logic dictates a
* zero result. In particular, logical shift by element size, which is
* otherwise undefined on the host.
*
* For element sizes smaller than uint64_t, we use tables to expand
* the N bits of the controlling predicate to a byte mask, and clear
* those bytes.
*/
void HELPER(sve_clr_b)(void *vd, void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
d[i] &= ~expand_pred_b(pg[H1(i)]);
}
}
void HELPER(sve_clr_h)(void *vd, void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
d[i] &= ~expand_pred_h(pg[H1(i)]);
}
}
void HELPER(sve_clr_s)(void *vd, void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
d[i] &= ~expand_pred_s(pg[H1(i)]);
}
}
void HELPER(sve_clr_d)(void *vd, void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
if (pg[H1(i)] & 1) {
d[i] = 0;
}
}
}
/* Three-operand expander, immediate operand, controlled by a predicate.
*/
#define DO_ZPZI(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
TYPE imm = simd_data(desc); \
for (i = 0; i < opr_sz; ) { \
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
do { \
if (pg & 1) { \
TYPE nn = *(TYPE *)(vn + H(i)); \
*(TYPE *)(vd + H(i)) = OP(nn, imm); \
} \
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
} while (i & 15); \
} \
}
/* Similarly, specialized for 64-bit operands. */
#define DO_ZPZI_D(NAME, TYPE, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
TYPE *d = vd, *n = vn; \
TYPE imm = simd_data(desc); \
uint8_t *pg = vg; \
for (i = 0; i < opr_sz; i += 1) { \
if (pg[H1(i)] & 1) { \
TYPE nn = n[i]; \
d[i] = OP(nn, imm); \
} \
} \
}
#define DO_SHR(N, M) (N >> M)
#define DO_SHL(N, M) (N << M)
/* Arithmetic shift right for division. This rounds negative numbers
toward zero as per signed division. Therefore before shifting,
when N is negative, add 2**M-1. */
#define DO_ASRD(N, M) ((N + (N < 0 ? ((__typeof(N))1 << M) - 1 : 0)) >> M)
DO_ZPZI(sve_asr_zpzi_b, int8_t, H1, DO_SHR)
DO_ZPZI(sve_asr_zpzi_h, int16_t, H1_2, DO_SHR)
DO_ZPZI(sve_asr_zpzi_s, int32_t, H1_4, DO_SHR)
DO_ZPZI_D(sve_asr_zpzi_d, int64_t, DO_SHR)
DO_ZPZI(sve_lsr_zpzi_b, uint8_t, H1, DO_SHR)
DO_ZPZI(sve_lsr_zpzi_h, uint16_t, H1_2, DO_SHR)
DO_ZPZI(sve_lsr_zpzi_s, uint32_t, H1_4, DO_SHR)
DO_ZPZI_D(sve_lsr_zpzi_d, uint64_t, DO_SHR)
DO_ZPZI(sve_lsl_zpzi_b, uint8_t, H1, DO_SHL)
DO_ZPZI(sve_lsl_zpzi_h, uint16_t, H1_2, DO_SHL)
DO_ZPZI(sve_lsl_zpzi_s, uint32_t, H1_4, DO_SHL)
DO_ZPZI_D(sve_lsl_zpzi_d, uint64_t, DO_SHL)
DO_ZPZI(sve_asrd_b, int8_t, H1, DO_ASRD)
DO_ZPZI(sve_asrd_h, int16_t, H1_2, DO_ASRD)
DO_ZPZI(sve_asrd_s, int32_t, H1_4, DO_ASRD)
DO_ZPZI_D(sve_asrd_d, int64_t, DO_ASRD)
#undef DO_SHR
#undef DO_SHL
#undef DO_ASRD
#undef DO_ZPZI
#undef DO_ZPZI_D
/* Fully general four-operand expander, controlled by a predicate.
*/
#define DO_ZPZZZ(NAME, TYPE, H, OP) \
void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \
void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; ) { \
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
do { \
if (pg & 1) { \
TYPE nn = *(TYPE *)(vn + H(i)); \
TYPE mm = *(TYPE *)(vm + H(i)); \
TYPE aa = *(TYPE *)(va + H(i)); \
*(TYPE *)(vd + H(i)) = OP(aa, nn, mm); \
} \
i += sizeof(TYPE), pg >>= sizeof(TYPE); \
} while (i & 15); \
} \
}
/* Similarly, specialized for 64-bit operands. */
#define DO_ZPZZZ_D(NAME, TYPE, OP) \
void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \
void *vg, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
TYPE *d = vd, *a = va, *n = vn, *m = vm; \
uint8_t *pg = vg; \
for (i = 0; i < opr_sz; i += 1) { \
if (pg[H1(i)] & 1) { \
TYPE aa = a[i], nn = n[i], mm = m[i]; \
d[i] = OP(aa, nn, mm); \
} \
} \
}
#define DO_MLA(A, N, M) (A + N * M)
#define DO_MLS(A, N, M) (A - N * M)
DO_ZPZZZ(sve_mla_b, uint8_t, H1, DO_MLA)
DO_ZPZZZ(sve_mls_b, uint8_t, H1, DO_MLS)
DO_ZPZZZ(sve_mla_h, uint16_t, H1_2, DO_MLA)
DO_ZPZZZ(sve_mls_h, uint16_t, H1_2, DO_MLS)
DO_ZPZZZ(sve_mla_s, uint32_t, H1_4, DO_MLA)
DO_ZPZZZ(sve_mls_s, uint32_t, H1_4, DO_MLS)
DO_ZPZZZ_D(sve_mla_d, uint64_t, DO_MLA)
DO_ZPZZZ_D(sve_mls_d, uint64_t, DO_MLS)
#undef DO_MLA
#undef DO_MLS
#undef DO_ZPZZZ
#undef DO_ZPZZZ_D
void HELPER(sve_index_b)(void *vd, uint32_t start,
uint32_t incr, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint8_t *d = vd;
for (i = 0; i < opr_sz; i += 1) {
d[H1(i)] = start + i * incr;
}
}
void HELPER(sve_index_h)(void *vd, uint32_t start,
uint32_t incr, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 2;
uint16_t *d = vd;
for (i = 0; i < opr_sz; i += 1) {
d[H2(i)] = start + i * incr;
}
}
void HELPER(sve_index_s)(void *vd, uint32_t start,
uint32_t incr, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 4;
uint32_t *d = vd;
for (i = 0; i < opr_sz; i += 1) {
d[H4(i)] = start + i * incr;
}
}
void HELPER(sve_index_d)(void *vd, uint64_t start,
uint64_t incr, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd;
for (i = 0; i < opr_sz; i += 1) {
d[i] = start + i * incr;
}
}
void HELPER(sve_adr_p32)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 4;
uint32_t sh = simd_data(desc);
uint32_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i += 1) {
d[i] = n[i] + (m[i] << sh);
}
}
void HELPER(sve_adr_p64)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t sh = simd_data(desc);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i += 1) {
d[i] = n[i] + (m[i] << sh);
}
}
void HELPER(sve_adr_s32)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t sh = simd_data(desc);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i += 1) {
d[i] = n[i] + ((uint64_t)(int32_t)m[i] << sh);
}
}
void HELPER(sve_adr_u32)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t sh = simd_data(desc);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i += 1) {
d[i] = n[i] + ((uint64_t)(uint32_t)m[i] << sh);
}
}
void HELPER(sve_fexpa_h)(void *vd, void *vn, uint32_t desc)
{
/* These constants are cut-and-paste directly from the ARM pseudocode. */
static const uint16_t coeff[] = {
0x0000, 0x0016, 0x002d, 0x0045, 0x005d, 0x0075, 0x008e, 0x00a8,
0x00c2, 0x00dc, 0x00f8, 0x0114, 0x0130, 0x014d, 0x016b, 0x0189,
0x01a8, 0x01c8, 0x01e8, 0x0209, 0x022b, 0x024e, 0x0271, 0x0295,
0x02ba, 0x02e0, 0x0306, 0x032e, 0x0356, 0x037f, 0x03a9, 0x03d4,
};
intptr_t i, opr_sz = simd_oprsz(desc) / 2;
uint16_t *d = vd, *n = vn;
for (i = 0; i < opr_sz; i++) {
uint16_t nn = n[i];
intptr_t idx = extract32(nn, 0, 5);
uint16_t exp = extract32(nn, 5, 5);
d[i] = coeff[idx] | (exp << 10);
}
}
void HELPER(sve_fexpa_s)(void *vd, void *vn, uint32_t desc)
{
/* These constants are cut-and-paste directly from the ARM pseudocode. */
static const uint32_t coeff[] = {
0x000000, 0x0164d2, 0x02cd87, 0x043a29,
0x05aac3, 0x071f62, 0x08980f, 0x0a14d5,
0x0b95c2, 0x0d1adf, 0x0ea43a, 0x1031dc,
0x11c3d3, 0x135a2b, 0x14f4f0, 0x16942d,
0x1837f0, 0x19e046, 0x1b8d3a, 0x1d3eda,
0x1ef532, 0x20b051, 0x227043, 0x243516,
0x25fed7, 0x27cd94, 0x29a15b, 0x2b7a3a,
0x2d583f, 0x2f3b79, 0x3123f6, 0x3311c4,
0x3504f3, 0x36fd92, 0x38fbaf, 0x3aff5b,
0x3d08a4, 0x3f179a, 0x412c4d, 0x4346cd,
0x45672a, 0x478d75, 0x49b9be, 0x4bec15,
0x4e248c, 0x506334, 0x52a81e, 0x54f35b,
0x5744fd, 0x599d16, 0x5bfbb8, 0x5e60f5,
0x60ccdf, 0x633f89, 0x65b907, 0x68396a,
0x6ac0c7, 0x6d4f30, 0x6fe4ba, 0x728177,
0x75257d, 0x77d0df, 0x7a83b3, 0x7d3e0c,
};
intptr_t i, opr_sz = simd_oprsz(desc) / 4;
uint32_t *d = vd, *n = vn;
for (i = 0; i < opr_sz; i++) {
uint32_t nn = n[i];
intptr_t idx = extract32(nn, 0, 6);
uint32_t exp = extract32(nn, 6, 8);
d[i] = coeff[idx] | (exp << 23);
}
}
void HELPER(sve_fexpa_d)(void *vd, void *vn, uint32_t desc)
{
/* These constants are cut-and-paste directly from the ARM pseudocode. */
static const uint64_t coeff[] = {
0x0000000000000ull, 0x02C9A3E778061ull, 0x059B0D3158574ull,
0x0874518759BC8ull, 0x0B5586CF9890Full, 0x0E3EC32D3D1A2ull,
0x11301D0125B51ull, 0x1429AAEA92DE0ull, 0x172B83C7D517Bull,
0x1A35BEB6FCB75ull, 0x1D4873168B9AAull, 0x2063B88628CD6ull,
0x2387A6E756238ull, 0x26B4565E27CDDull, 0x29E9DF51FDEE1ull,
0x2D285A6E4030Bull, 0x306FE0A31B715ull, 0x33C08B26416FFull,
0x371A7373AA9CBull, 0x3A7DB34E59FF7ull, 0x3DEA64C123422ull,
0x4160A21F72E2Aull, 0x44E086061892Dull, 0x486A2B5C13CD0ull,
0x4BFDAD5362A27ull, 0x4F9B2769D2CA7ull, 0x5342B569D4F82ull,
0x56F4736B527DAull, 0x5AB07DD485429ull, 0x5E76F15AD2148ull,
0x6247EB03A5585ull, 0x6623882552225ull, 0x6A09E667F3BCDull,
0x6DFB23C651A2Full, 0x71F75E8EC5F74ull, 0x75FEB564267C9ull,
0x7A11473EB0187ull, 0x7E2F336CF4E62ull, 0x82589994CCE13ull,
0x868D99B4492EDull, 0x8ACE5422AA0DBull, 0x8F1AE99157736ull,
0x93737B0CDC5E5ull, 0x97D829FDE4E50ull, 0x9C49182A3F090ull,
0xA0C667B5DE565ull, 0xA5503B23E255Dull, 0xA9E6B5579FDBFull,
0xAE89F995AD3ADull, 0xB33A2B84F15FBull, 0xB7F76F2FB5E47ull,
0xBCC1E904BC1D2ull, 0xC199BDD85529Cull, 0xC67F12E57D14Bull,
0xCB720DCEF9069ull, 0xD072D4A07897Cull, 0xD5818DCFBA487ull,
0xDA9E603DB3285ull, 0xDFC97337B9B5Full, 0xE502EE78B3FF6ull,
0xEA4AFA2A490DAull, 0xEFA1BEE615A27ull, 0xF50765B6E4540ull,
0xFA7C1819E90D8ull,
};
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn;
for (i = 0; i < opr_sz; i++) {
uint64_t nn = n[i];
intptr_t idx = extract32(nn, 0, 6);
uint64_t exp = extract32(nn, 6, 11);
d[i] = coeff[idx] | (exp << 52);
}
}
void HELPER(sve_ftssel_h)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 2;
uint16_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i += 1) {
uint16_t nn = n[i];
uint16_t mm = m[i];
if (mm & 1) {
nn = float16_one;
}
d[i] = nn ^ (mm & 2) << 14;
}
}
void HELPER(sve_ftssel_s)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 4;
uint32_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i += 1) {
uint32_t nn = n[i];
uint32_t mm = m[i];
if (mm & 1) {
nn = float32_one;
}
d[i] = nn ^ (mm & 2) << 30;
}
}
void HELPER(sve_ftssel_d)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i];
uint64_t mm = m[i];
if (mm & 1) {
nn = float64_one;
}
d[i] = nn ^ (mm & 2) << 62;
}
}
/*
* Signed saturating addition with scalar operand.
*/
void HELPER(sve_sqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(int8_t)) {
int r = *(int8_t *)(a + i) + b;
if (r > INT8_MAX) {
r = INT8_MAX;
} else if (r < INT8_MIN) {
r = INT8_MIN;
}
*(int8_t *)(d + i) = r;
}
}
void HELPER(sve_sqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(int16_t)) {
int r = *(int16_t *)(a + i) + b;
if (r > INT16_MAX) {
r = INT16_MAX;
} else if (r < INT16_MIN) {
r = INT16_MIN;
}
*(int16_t *)(d + i) = r;
}
}
void HELPER(sve_sqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(int32_t)) {
int64_t r = *(int32_t *)(a + i) + b;
if (r > INT32_MAX) {
r = INT32_MAX;
} else if (r < INT32_MIN) {
r = INT32_MIN;
}
*(int32_t *)(d + i) = r;
}
}
void HELPER(sve_sqaddi_d)(void *d, void *a, int64_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(int64_t)) {
int64_t ai = *(int64_t *)(a + i);
int64_t r = ai + b;
if (((r ^ ai) & ~(ai ^ b)) < 0) {
/* Signed overflow. */
r = (r < 0 ? INT64_MAX : INT64_MIN);
}
*(int64_t *)(d + i) = r;
}
}
/*
* Unsigned saturating addition with scalar operand.
*/
void HELPER(sve_uqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(uint8_t)) {
int r = *(uint8_t *)(a + i) + b;
if (r > UINT8_MAX) {
r = UINT8_MAX;
} else if (r < 0) {
r = 0;
}
*(uint8_t *)(d + i) = r;
}
}
void HELPER(sve_uqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(uint16_t)) {
int r = *(uint16_t *)(a + i) + b;
if (r > UINT16_MAX) {
r = UINT16_MAX;
} else if (r < 0) {
r = 0;
}
*(uint16_t *)(d + i) = r;
}
}
void HELPER(sve_uqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(uint32_t)) {
int64_t r = *(uint32_t *)(a + i) + b;
if (r > UINT32_MAX) {
r = UINT32_MAX;
} else if (r < 0) {
r = 0;
}
*(uint32_t *)(d + i) = r;
}
}
void HELPER(sve_uqaddi_d)(void *d, void *a, uint64_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
uint64_t r = *(uint64_t *)(a + i) + b;
if (r < b) {
r = UINT64_MAX;
}
*(uint64_t *)(d + i) = r;
}
}
void HELPER(sve_uqsubi_d)(void *d, void *a, uint64_t b, uint32_t desc)
{
intptr_t i, oprsz = simd_oprsz(desc);
for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
uint64_t ai = *(uint64_t *)(a + i);
*(uint64_t *)(d + i) = (ai < b ? 0 : ai - b);
}
}
/* Two operand predicated copy immediate with merge. All valid immediates
* can fit within 17 signed bits in the simd_data field.
*/
void HELPER(sve_cpy_m_b)(void *vd, void *vn, void *vg,
uint64_t mm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn;
uint8_t *pg = vg;
mm = dup_const(MO_8, mm);
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i];
uint64_t pp = expand_pred_b(pg[H1(i)]);
d[i] = (mm & pp) | (nn & ~pp);
}
}
void HELPER(sve_cpy_m_h)(void *vd, void *vn, void *vg,
uint64_t mm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn;
uint8_t *pg = vg;
mm = dup_const(MO_16, mm);
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i];
uint64_t pp = expand_pred_h(pg[H1(i)]);
d[i] = (mm & pp) | (nn & ~pp);
}
}
void HELPER(sve_cpy_m_s)(void *vd, void *vn, void *vg,
uint64_t mm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn;
uint8_t *pg = vg;
mm = dup_const(MO_32, mm);
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i];
uint64_t pp = expand_pred_s(pg[H1(i)]);
d[i] = (mm & pp) | (nn & ~pp);
}
}
void HELPER(sve_cpy_m_d)(void *vd, void *vn, void *vg,
uint64_t mm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i];
d[i] = (pg[H1(i)] & 1 ? mm : nn);
}
}
void HELPER(sve_cpy_z_b)(void *vd, void *vg, uint64_t val, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd;
uint8_t *pg = vg;
val = dup_const(MO_8, val);
for (i = 0; i < opr_sz; i += 1) {
d[i] = val & expand_pred_b(pg[H1(i)]);
}
}
void HELPER(sve_cpy_z_h)(void *vd, void *vg, uint64_t val, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd;
uint8_t *pg = vg;
val = dup_const(MO_16, val);
for (i = 0; i < opr_sz; i += 1) {
d[i] = val & expand_pred_h(pg[H1(i)]);
}
}
void HELPER(sve_cpy_z_s)(void *vd, void *vg, uint64_t val, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd;
uint8_t *pg = vg;
val = dup_const(MO_32, val);
for (i = 0; i < opr_sz; i += 1) {
d[i] = val & expand_pred_s(pg[H1(i)]);
}
}
void HELPER(sve_cpy_z_d)(void *vd, void *vg, uint64_t val, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
d[i] = (pg[H1(i)] & 1 ? val : 0);
}
}
/* Big-endian hosts need to frob the byte indicies. If the copy
* happens to be 8-byte aligned, then no frobbing necessary.
*/
static void swap_memmove(void *vd, void *vs, size_t n)
{
uintptr_t d = (uintptr_t)vd;
uintptr_t s = (uintptr_t)vs;
uintptr_t o = (d | s | n) & 7;
size_t i;
#ifndef HOST_WORDS_BIGENDIAN
o = 0;
#endif
switch (o) {
case 0:
memmove(vd, vs, n);
break;
case 4:
if (d < s || d >= s + n) {
for (i = 0; i < n; i += 4) {
*(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
}
} else {
for (i = n; i > 0; ) {
i -= 4;
*(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
}
}
break;
case 2:
case 6:
if (d < s || d >= s + n) {
for (i = 0; i < n; i += 2) {
*(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
}
} else {
for (i = n; i > 0; ) {
i -= 2;
*(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
}
}
break;
default:
if (d < s || d >= s + n) {
for (i = 0; i < n; i++) {
*(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
}
} else {
for (i = n; i > 0; ) {
i -= 1;
*(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
}
}
break;
}
}
void HELPER(sve_ext)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t opr_sz = simd_oprsz(desc);
size_t n_ofs = simd_data(desc);
size_t n_siz = opr_sz - n_ofs;
if (vd != vm) {
swap_memmove(vd, vn + n_ofs, n_siz);
swap_memmove(vd + n_siz, vm, n_ofs);
} else if (vd != vn) {
swap_memmove(vd + n_siz, vd, n_ofs);
swap_memmove(vd, vn + n_ofs, n_siz);
} else {
/* vd == vn == vm. Need temp space. */
ARMVectorReg tmp;
swap_memmove(&tmp, vm, n_ofs);
swap_memmove(vd, vd + n_ofs, n_siz);
memcpy(vd + n_siz, &tmp, n_ofs);
}
}
#define DO_INSR(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, uint64_t val, uint32_t desc) \
{ \
intptr_t opr_sz = simd_oprsz(desc); \
swap_memmove(vd + sizeof(TYPE), vn, opr_sz - sizeof(TYPE)); \
*(TYPE *)(vd + H(0)) = val; \
}
DO_INSR(sve_insr_b, uint8_t, H1)
DO_INSR(sve_insr_h, uint16_t, H1_2)
DO_INSR(sve_insr_s, uint32_t, H1_4)
DO_INSR(sve_insr_d, uint64_t, )
#undef DO_INSR
void HELPER(sve_rev_b)(void *vd, void *vn, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
uint64_t f = *(uint64_t *)(vn + i);
uint64_t b = *(uint64_t *)(vn + j);
*(uint64_t *)(vd + i) = bswap64(b);
*(uint64_t *)(vd + j) = bswap64(f);
}
}
void HELPER(sve_rev_h)(void *vd, void *vn, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
uint64_t f = *(uint64_t *)(vn + i);
uint64_t b = *(uint64_t *)(vn + j);
*(uint64_t *)(vd + i) = hswap64(b);
*(uint64_t *)(vd + j) = hswap64(f);
}
}
void HELPER(sve_rev_s)(void *vd, void *vn, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
uint64_t f = *(uint64_t *)(vn + i);
uint64_t b = *(uint64_t *)(vn + j);
*(uint64_t *)(vd + i) = rol64(b, 32);
*(uint64_t *)(vd + j) = rol64(f, 32);
}
}
void HELPER(sve_rev_d)(void *vd, void *vn, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc);
for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
uint64_t f = *(uint64_t *)(vn + i);
uint64_t b = *(uint64_t *)(vn + j);
*(uint64_t *)(vd + i) = b;
*(uint64_t *)(vd + j) = f;
}
}
#define DO_TBL(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
uintptr_t elem = opr_sz / sizeof(TYPE); \
TYPE *d = vd, *n = vn, *m = vm; \
ARMVectorReg tmp; \
if (unlikely(vd == vn)) { \
n = memcpy(&tmp, vn, opr_sz); \
} \
for (i = 0; i < elem; i++) { \
TYPE j = m[H(i)]; \
d[H(i)] = j < elem ? n[H(j)] : 0; \
} \
}
DO_TBL(sve_tbl_b, uint8_t, H1)
DO_TBL(sve_tbl_h, uint16_t, H2)
DO_TBL(sve_tbl_s, uint32_t, H4)
DO_TBL(sve_tbl_d, uint64_t, )
#undef TBL
#define DO_UNPK(NAME, TYPED, TYPES, HD, HS) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
TYPED *d = vd; \
TYPES *n = vn; \
ARMVectorReg tmp; \
if (unlikely(vn - vd < opr_sz)) { \
n = memcpy(&tmp, n, opr_sz / 2); \
} \
for (i = 0; i < opr_sz / sizeof(TYPED); i++) { \
d[HD(i)] = n[HS(i)]; \
} \
}
DO_UNPK(sve_sunpk_h, int16_t, int8_t, H2, H1)
DO_UNPK(sve_sunpk_s, int32_t, int16_t, H4, H2)
DO_UNPK(sve_sunpk_d, int64_t, int32_t, , H4)
DO_UNPK(sve_uunpk_h, uint16_t, uint8_t, H2, H1)
DO_UNPK(sve_uunpk_s, uint32_t, uint16_t, H4, H2)
DO_UNPK(sve_uunpk_d, uint64_t, uint32_t, , H4)
#undef DO_UNPK
/* Mask of bits included in the even numbered predicates of width esz.
* We also use this for expand_bits/compress_bits, and so extend the
* same pattern out to 16-bit units.
*/
static const uint64_t even_bit_esz_masks[5] = {
0x5555555555555555ull,
0x3333333333333333ull,
0x0f0f0f0f0f0f0f0full,
0x00ff00ff00ff00ffull,
0x0000ffff0000ffffull,
};
/* Zero-extend units of 2**N bits to units of 2**(N+1) bits.
* For N==0, this corresponds to the operation that in qemu/bitops.h
* we call half_shuffle64; this algorithm is from Hacker's Delight,
* section 7-2 Shuffling Bits.
*/
static uint64_t expand_bits(uint64_t x, int n)
{
int i;
x &= 0xffffffffu;
for (i = 4; i >= n; i--) {
int sh = 1 << i;
x = ((x << sh) | x) & even_bit_esz_masks[i];
}
return x;
}
/* Compress units of 2**(N+1) bits to units of 2**N bits.
* For N==0, this corresponds to the operation that in qemu/bitops.h
* we call half_unshuffle64; this algorithm is from Hacker's Delight,
* section 7-2 Shuffling Bits, where it is called an inverse half shuffle.
*/
static uint64_t compress_bits(uint64_t x, int n)
{
int i;
for (i = n; i <= 4; i++) {
int sh = 1 << i;
x &= even_bit_esz_masks[i];
x = (x >> sh) | x;
}
return x & 0xffffffffu;
}
void HELPER(sve_zip_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
{
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
intptr_t high = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1);
uint64_t *d = vd;
intptr_t i;
if (oprsz <= 8) {
uint64_t nn = *(uint64_t *)vn;
uint64_t mm = *(uint64_t *)vm;
int half = 4 * oprsz;
nn = extract64(nn, high * half, half);
mm = extract64(mm, high * half, half);
nn = expand_bits(nn, esz);
mm = expand_bits(mm, esz);
d[0] = nn + (mm << (1 << esz));
} else {
ARMPredicateReg tmp_n, tmp_m;
/* We produce output faster than we consume input.
Therefore we must be mindful of possible overlap. */
if ((vn - vd) < (uintptr_t)oprsz) {
vn = memcpy(&tmp_n, vn, oprsz);
}
if ((vm - vd) < (uintptr_t)oprsz) {
vm = memcpy(&tmp_m, vm, oprsz);
}
if (high) {
high = oprsz >> 1;
}
if ((high & 3) == 0) {
uint32_t *n = vn, *m = vm;
high >>= 2;
for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
uint64_t nn = n[H4(high + i)];
uint64_t mm = m[H4(high + i)];
nn = expand_bits(nn, esz);
mm = expand_bits(mm, esz);
d[i] = nn + (mm << (1 << esz));
}
} else {
uint8_t *n = vn, *m = vm;
uint16_t *d16 = vd;
for (i = 0; i < oprsz / 2; i++) {
uint16_t nn = n[H1(high + i)];
uint16_t mm = m[H1(high + i)];
nn = expand_bits(nn, esz);
mm = expand_bits(mm, esz);
d16[H2(i)] = nn + (mm << (1 << esz));
}
}
}
}
void HELPER(sve_uzp_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
{
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
int odd = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1) << esz;
uint64_t *d = vd, *n = vn, *m = vm;
uint64_t l, h;
intptr_t i;
if (oprsz <= 8) {
l = compress_bits(n[0] >> odd, esz);
h = compress_bits(m[0] >> odd, esz);
d[0] = extract64(l + (h << (4 * oprsz)), 0, 8 * oprsz);
} else {
ARMPredicateReg tmp_m;
intptr_t oprsz_16 = oprsz / 16;
if ((vm - vd) < (uintptr_t)oprsz) {
m = memcpy(&tmp_m, vm, oprsz);
}
for (i = 0; i < oprsz_16; i++) {
l = n[2 * i + 0];
h = n[2 * i + 1];
l = compress_bits(l >> odd, esz);
h = compress_bits(h >> odd, esz);
d[i] = l + (h << 32);
}
/* For VL which is not a power of 2, the results from M do not
align nicely with the uint64_t for D. Put the aligned results
from M into TMP_M and then copy it into place afterward. */
if (oprsz & 15) {
d[i] = compress_bits(n[2 * i] >> odd, esz);
for (i = 0; i < oprsz_16; i++) {
l = m[2 * i + 0];
h = m[2 * i + 1];
l = compress_bits(l >> odd, esz);
h = compress_bits(h >> odd, esz);
tmp_m.p[i] = l + (h << 32);
}
tmp_m.p[i] = compress_bits(m[2 * i] >> odd, esz);
swap_memmove(vd + oprsz / 2, &tmp_m, oprsz / 2);
} else {
for (i = 0; i < oprsz_16; i++) {
l = m[2 * i + 0];
h = m[2 * i + 1];
l = compress_bits(l >> odd, esz);
h = compress_bits(h >> odd, esz);
d[oprsz_16 + i] = l + (h << 32);
}
}
}
}
void HELPER(sve_trn_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
{
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
uintptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
bool odd = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1);
uint64_t *d = vd, *n = vn, *m = vm;
uint64_t mask;
int shr, shl;
intptr_t i;
shl = 1 << esz;
shr = 0;
mask = even_bit_esz_masks[esz];
if (odd) {
mask <<= shl;
shr = shl;
shl = 0;
}
for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
uint64_t nn = (n[i] & mask) >> shr;
uint64_t mm = (m[i] & mask) << shl;
d[i] = nn + mm;
}
}
/* Reverse units of 2**N bits. */
static uint64_t reverse_bits_64(uint64_t x, int n)
{
int i, sh;
x = bswap64(x);
for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
uint64_t mask = even_bit_esz_masks[i];
x = ((x & mask) << sh) | ((x >> sh) & mask);
}
return x;
}
static uint8_t reverse_bits_8(uint8_t x, int n)
{
static const uint8_t mask[3] = { 0x55, 0x33, 0x0f };
int i, sh;
for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
x = ((x & mask[i]) << sh) | ((x >> sh) & mask[i]);
}
return x;
}
void HELPER(sve_rev_p)(void *vd, void *vn, uint32_t pred_desc)
{
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
intptr_t i, oprsz_2 = oprsz / 2;
if (oprsz <= 8) {
uint64_t l = *(uint64_t *)vn;
l = reverse_bits_64(l << (64 - 8 * oprsz), esz);
*(uint64_t *)vd = l;
} else if ((oprsz & 15) == 0) {
for (i = 0; i < oprsz_2; i += 8) {
intptr_t ih = oprsz - 8 - i;
uint64_t l = reverse_bits_64(*(uint64_t *)(vn + i), esz);
uint64_t h = reverse_bits_64(*(uint64_t *)(vn + ih), esz);
*(uint64_t *)(vd + i) = h;
*(uint64_t *)(vd + ih) = l;
}
} else {
for (i = 0; i < oprsz_2; i += 1) {
intptr_t il = H1(i);
intptr_t ih = H1(oprsz - 1 - i);
uint8_t l = reverse_bits_8(*(uint8_t *)(vn + il), esz);
uint8_t h = reverse_bits_8(*(uint8_t *)(vn + ih), esz);
*(uint8_t *)(vd + il) = h;
*(uint8_t *)(vd + ih) = l;
}
}
}
void HELPER(sve_punpk_p)(void *vd, void *vn, uint32_t pred_desc)
{
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
intptr_t high = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1);
uint64_t *d = vd;
intptr_t i;
if (oprsz <= 8) {
uint64_t nn = *(uint64_t *)vn;
int half = 4 * oprsz;
nn = extract64(nn, high * half, half);
nn = expand_bits(nn, 0);
d[0] = nn;
} else {
ARMPredicateReg tmp_n;
/* We produce output faster than we consume input.
Therefore we must be mindful of possible overlap. */
if ((vn - vd) < (uintptr_t)oprsz) {
vn = memcpy(&tmp_n, vn, oprsz);
}
if (high) {
high = oprsz >> 1;
}
if ((high & 3) == 0) {
uint32_t *n = vn;
high >>= 2;
for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
uint64_t nn = n[H4(high + i)];
d[i] = expand_bits(nn, 0);
}
} else {
uint16_t *d16 = vd;
uint8_t *n = vn;
for (i = 0; i < oprsz / 2; i++) {
uint16_t nn = n[H1(high + i)];
d16[H2(i)] = expand_bits(nn, 0);
}
}
}
}
#define DO_ZIP(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t oprsz = simd_oprsz(desc); \
intptr_t i, oprsz_2 = oprsz / 2; \
ARMVectorReg tmp_n, tmp_m; \
/* We produce output faster than we consume input. \
Therefore we must be mindful of possible overlap. */ \
if (unlikely((vn - vd) < (uintptr_t)oprsz)) { \
vn = memcpy(&tmp_n, vn, oprsz_2); \
} \
if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \
vm = memcpy(&tmp_m, vm, oprsz_2); \
} \
for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
*(TYPE *)(vd + H(2 * i + 0)) = *(TYPE *)(vn + H(i)); \
*(TYPE *)(vd + H(2 * i + sizeof(TYPE))) = *(TYPE *)(vm + H(i)); \
} \
}
DO_ZIP(sve_zip_b, uint8_t, H1)
DO_ZIP(sve_zip_h, uint16_t, H1_2)
DO_ZIP(sve_zip_s, uint32_t, H1_4)
DO_ZIP(sve_zip_d, uint64_t, )
#define DO_UZP(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t oprsz = simd_oprsz(desc); \
intptr_t oprsz_2 = oprsz / 2; \
intptr_t odd_ofs = simd_data(desc); \
intptr_t i; \
ARMVectorReg tmp_m; \
if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \
vm = memcpy(&tmp_m, vm, oprsz); \
} \
for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
*(TYPE *)(vd + H(i)) = *(TYPE *)(vn + H(2 * i + odd_ofs)); \
} \
for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
*(TYPE *)(vd + H(oprsz_2 + i)) = *(TYPE *)(vm + H(2 * i + odd_ofs)); \
} \
}
DO_UZP(sve_uzp_b, uint8_t, H1)
DO_UZP(sve_uzp_h, uint16_t, H1_2)
DO_UZP(sve_uzp_s, uint32_t, H1_4)
DO_UZP(sve_uzp_d, uint64_t, )
#define DO_TRN(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t oprsz = simd_oprsz(desc); \
intptr_t odd_ofs = simd_data(desc); \
intptr_t i; \
for (i = 0; i < oprsz; i += 2 * sizeof(TYPE)) { \
TYPE ae = *(TYPE *)(vn + H(i + odd_ofs)); \
TYPE be = *(TYPE *)(vm + H(i + odd_ofs)); \
*(TYPE *)(vd + H(i + 0)) = ae; \
*(TYPE *)(vd + H(i + sizeof(TYPE))) = be; \
} \
}
DO_TRN(sve_trn_b, uint8_t, H1)
DO_TRN(sve_trn_h, uint16_t, H1_2)
DO_TRN(sve_trn_s, uint32_t, H1_4)
DO_TRN(sve_trn_d, uint64_t, )
#undef DO_ZIP
#undef DO_UZP
#undef DO_TRN
void HELPER(sve_compact_s)(void *vd, void *vn, void *vg, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc) / 4;
uint32_t *d = vd, *n = vn;
uint8_t *pg = vg;
for (i = j = 0; i < opr_sz; i++) {
if (pg[H1(i / 2)] & (i & 1 ? 0x10 : 0x01)) {
d[H4(j)] = n[H4(i)];
j++;
}
}
for (; j < opr_sz; j++) {
d[H4(j)] = 0;
}
}
void HELPER(sve_compact_d)(void *vd, void *vn, void *vg, uint32_t desc)
{
intptr_t i, j, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn;
uint8_t *pg = vg;
for (i = j = 0; i < opr_sz; i++) {
if (pg[H1(i)] & 1) {
d[j] = n[i];
j++;
}
}
for (; j < opr_sz; j++) {
d[j] = 0;
}
}
/* Similar to the ARM LastActiveElement pseudocode function, except the
* result is multiplied by the element size. This includes the not found
* indication; e.g. not found for esz=3 is -8.
*/
int32_t HELPER(sve_last_active_element)(void *vg, uint32_t pred_desc)
{
intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
return last_active_element(vg, DIV_ROUND_UP(oprsz, 8), esz);
}
void HELPER(sve_splice)(void *vd, void *vn, void *vm, void *vg, uint32_t desc)
{
intptr_t opr_sz = simd_oprsz(desc) / 8;
int esz = simd_data(desc);
uint64_t pg, first_g, last_g, len, mask = pred_esz_masks[esz];
intptr_t i, first_i, last_i;
ARMVectorReg tmp;
first_i = last_i = 0;
first_g = last_g = 0;
/* Find the extent of the active elements within VG. */
for (i = QEMU_ALIGN_UP(opr_sz, 8) - 8; i >= 0; i -= 8) {
pg = *(uint64_t *)(vg + i) & mask;
if (pg) {
if (last_g == 0) {
last_g = pg;
last_i = i;
}
first_g = pg;
first_i = i;
}
}
len = 0;
if (first_g != 0) {
first_i = first_i * 8 + ctz64(first_g);
last_i = last_i * 8 + 63 - clz64(last_g);
len = last_i - first_i + (1 << esz);
if (vd == vm) {
vm = memcpy(&tmp, vm, opr_sz * 8);
}
swap_memmove(vd, vn + first_i, len);
}
swap_memmove(vd + len, vm, opr_sz * 8 - len);
}
void HELPER(sve_sel_zpzz_b)(void *vd, void *vn, void *vm,
void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn, *m = vm;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i], mm = m[i];
uint64_t pp = expand_pred_b(pg[H1(i)]);
d[i] = (nn & pp) | (mm & ~pp);
}
}
void HELPER(sve_sel_zpzz_h)(void *vd, void *vn, void *vm,
void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn, *m = vm;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i], mm = m[i];
uint64_t pp = expand_pred_h(pg[H1(i)]);
d[i] = (nn & pp) | (mm & ~pp);
}
}
void HELPER(sve_sel_zpzz_s)(void *vd, void *vn, void *vm,
void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn, *m = vm;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i], mm = m[i];
uint64_t pp = expand_pred_s(pg[H1(i)]);
d[i] = (nn & pp) | (mm & ~pp);
}
}
void HELPER(sve_sel_zpzz_d)(void *vd, void *vn, void *vm,
void *vg, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc) / 8;
uint64_t *d = vd, *n = vn, *m = vm;
uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) {
uint64_t nn = n[i], mm = m[i];
d[i] = (pg[H1(i)] & 1 ? nn : mm);
}
}