qemu-e2k/hw/net/igb.c
Akihiko Odaki 445416e301 pcie: Use common ARI next function number
Currently the only implementers of ARI is SR-IOV devices, and they
behave similar. Share the ARI next function number.

Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Reviewed-by: Ani Sinha <anisinha@redhat.com>
Message-Id: <20230710153838.33917-2-akihiko.odaki@daynix.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2023-07-10 18:59:32 -04:00

636 lines
18 KiB
C

/*
* QEMU Intel 82576 SR/IOV Ethernet Controller Emulation
*
* Datasheet:
* https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82576eg-gbe-datasheet.pdf
*
* Copyright (c) 2020-2023 Red Hat, Inc.
* Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
* Developed by Daynix Computing LTD (http://www.daynix.com)
*
* Authors:
* Akihiko Odaki <akihiko.odaki@daynix.com>
* Gal Hammmer <gal.hammer@sap.com>
* Marcel Apfelbaum <marcel.apfelbaum@gmail.com>
* Dmitry Fleytman <dmitry@daynix.com>
* Leonid Bloch <leonid@daynix.com>
* Yan Vugenfirer <yan@daynix.com>
*
* Based on work done by:
* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
* Copyright (c) 2008 Qumranet
* Based on work done by:
* Copyright (c) 2007 Dan Aloni
* Copyright (c) 2004 Antony T Curtis
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "net/eth.h"
#include "net/net.h"
#include "net/tap.h"
#include "qemu/module.h"
#include "qemu/range.h"
#include "sysemu/sysemu.h"
#include "hw/hw.h"
#include "hw/net/mii.h"
#include "hw/pci/pci.h"
#include "hw/pci/pcie.h"
#include "hw/pci/pcie_sriov.h"
#include "hw/pci/msi.h"
#include "hw/pci/msix.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
#include "igb_common.h"
#include "igb_core.h"
#include "trace.h"
#include "qapi/error.h"
#include "qom/object.h"
#define TYPE_IGB "igb"
OBJECT_DECLARE_SIMPLE_TYPE(IGBState, IGB)
struct IGBState {
PCIDevice parent_obj;
NICState *nic;
NICConf conf;
MemoryRegion mmio;
MemoryRegion flash;
MemoryRegion io;
MemoryRegion msix;
uint32_t ioaddr;
IGBCore core;
};
#define IGB_CAP_SRIOV_OFFSET (0x160)
#define IGB_VF_OFFSET (0x80)
#define IGB_VF_STRIDE (2)
#define E1000E_MMIO_IDX 0
#define E1000E_FLASH_IDX 1
#define E1000E_IO_IDX 2
#define E1000E_MSIX_IDX 3
#define E1000E_MMIO_SIZE (128 * KiB)
#define E1000E_FLASH_SIZE (128 * KiB)
#define E1000E_IO_SIZE (32)
#define E1000E_MSIX_SIZE (16 * KiB)
static void igb_write_config(PCIDevice *dev, uint32_t addr,
uint32_t val, int len)
{
IGBState *s = IGB(dev);
trace_igb_write_config(addr, val, len);
pci_default_write_config(dev, addr, val, len);
if (range_covers_byte(addr, len, PCI_COMMAND) &&
(dev->config[PCI_COMMAND] & PCI_COMMAND_MASTER)) {
igb_start_recv(&s->core);
}
}
uint64_t
igb_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
IGBState *s = opaque;
return igb_core_read(&s->core, addr, size);
}
void
igb_mmio_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
{
IGBState *s = opaque;
igb_core_write(&s->core, addr, val, size);
}
static bool
igb_io_get_reg_index(IGBState *s, uint32_t *idx)
{
if (s->ioaddr < 0x1FFFF) {
*idx = s->ioaddr;
return true;
}
if (s->ioaddr < 0x7FFFF) {
trace_e1000e_wrn_io_addr_undefined(s->ioaddr);
return false;
}
if (s->ioaddr < 0xFFFFF) {
trace_e1000e_wrn_io_addr_flash(s->ioaddr);
return false;
}
trace_e1000e_wrn_io_addr_unknown(s->ioaddr);
return false;
}
static uint64_t
igb_io_read(void *opaque, hwaddr addr, unsigned size)
{
IGBState *s = opaque;
uint32_t idx = 0;
uint64_t val;
switch (addr) {
case E1000_IOADDR:
trace_e1000e_io_read_addr(s->ioaddr);
return s->ioaddr;
case E1000_IODATA:
if (igb_io_get_reg_index(s, &idx)) {
val = igb_core_read(&s->core, idx, sizeof(val));
trace_e1000e_io_read_data(idx, val);
return val;
}
return 0;
default:
trace_e1000e_wrn_io_read_unknown(addr);
return 0;
}
}
static void
igb_io_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
{
IGBState *s = opaque;
uint32_t idx = 0;
switch (addr) {
case E1000_IOADDR:
trace_e1000e_io_write_addr(val);
s->ioaddr = (uint32_t) val;
return;
case E1000_IODATA:
if (igb_io_get_reg_index(s, &idx)) {
trace_e1000e_io_write_data(idx, val);
igb_core_write(&s->core, idx, val, sizeof(val));
}
return;
default:
trace_e1000e_wrn_io_write_unknown(addr);
return;
}
}
static const MemoryRegionOps mmio_ops = {
.read = igb_mmio_read,
.write = igb_mmio_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static const MemoryRegionOps io_ops = {
.read = igb_io_read,
.write = igb_io_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static bool
igb_nc_can_receive(NetClientState *nc)
{
IGBState *s = qemu_get_nic_opaque(nc);
return igb_can_receive(&s->core);
}
static ssize_t
igb_nc_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
{
IGBState *s = qemu_get_nic_opaque(nc);
return igb_receive_iov(&s->core, iov, iovcnt);
}
static ssize_t
igb_nc_receive(NetClientState *nc, const uint8_t *buf, size_t size)
{
IGBState *s = qemu_get_nic_opaque(nc);
return igb_receive(&s->core, buf, size);
}
static void
igb_set_link_status(NetClientState *nc)
{
IGBState *s = qemu_get_nic_opaque(nc);
igb_core_set_link_status(&s->core);
}
static NetClientInfo net_igb_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = igb_nc_can_receive,
.receive = igb_nc_receive,
.receive_iov = igb_nc_receive_iov,
.link_status_changed = igb_set_link_status,
};
/*
* EEPROM (NVM) contents documented in section 6.1, table 6-1:
* and in 6.10 Software accessed words.
*/
static const uint16_t igb_eeprom_template[] = {
/* Address |Compat.|OEM sp.| ImRev | OEM sp. */
0x0000, 0x0000, 0x0000, 0x0d34, 0xffff, 0x2010, 0xffff, 0xffff,
/* PBA |ICtrl1 | SSID | SVID | DevID |-------|ICtrl2 */
0x1040, 0xffff, 0x002b, 0x0000, 0x8086, 0x10c9, 0x0000, 0x70c3,
/* SwPin0| DevID | EESZ |-------|ICtrl3 |PCI-tc | MSIX | APtr */
0x0004, 0x10c9, 0x5c00, 0x0000, 0x2880, 0x0014, 0x4a40, 0x0060,
/* PCIe Init. Conf 1,2,3 |PCICtrl| LD1,3 |DDevID |DevRev | LD0,2 */
0x6cfb, 0xc7b0, 0x0abe, 0x0403, 0x0783, 0x10a6, 0x0001, 0x0602,
/* SwPin1| FunC |LAN-PWR|ManHwC |ICtrl3 | IOVct |VDevID |-------*/
0x0004, 0x0020, 0x0000, 0x004a, 0x2080, 0x00f5, 0x10ca, 0x0000,
/*---------------| LD1,3 | LD0,2 | ROEnd | ROSta | Wdog | VPD */
0x0000, 0x0000, 0x4784, 0x4602, 0x0000, 0x0000, 0x1000, 0xffff,
/* PCSet0| Ccfg0 |PXEver |IBAcap |PCSet1 | Ccfg1 |iSCVer | ?? */
0x0100, 0x4000, 0x131f, 0x4013, 0x0100, 0x4000, 0xffff, 0xffff,
/* PCSet2| Ccfg2 |PCSet3 | Ccfg3 | ?? |AltMacP| ?? |CHKSUM */
0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x00e0, 0xffff, 0x0000,
/* NC-SIC */
0x0003,
};
static void igb_core_realize(IGBState *s)
{
s->core.owner = &s->parent_obj;
s->core.owner_nic = s->nic;
}
static void
igb_init_msix(IGBState *s)
{
int i, res;
res = msix_init(PCI_DEVICE(s), IGB_MSIX_VEC_NUM,
&s->msix,
E1000E_MSIX_IDX, 0,
&s->msix,
E1000E_MSIX_IDX, 0x2000,
0x70, NULL);
if (res < 0) {
trace_e1000e_msix_init_fail(res);
} else {
for (i = 0; i < IGB_MSIX_VEC_NUM; i++) {
msix_vector_use(PCI_DEVICE(s), i);
}
}
}
static void
igb_cleanup_msix(IGBState *s)
{
msix_unuse_all_vectors(PCI_DEVICE(s));
msix_uninit(PCI_DEVICE(s), &s->msix, &s->msix);
}
static void
igb_init_net_peer(IGBState *s, PCIDevice *pci_dev, uint8_t *macaddr)
{
DeviceState *dev = DEVICE(pci_dev);
NetClientState *nc;
int i;
s->nic = qemu_new_nic(&net_igb_info, &s->conf,
object_get_typename(OBJECT(s)), dev->id, s);
s->core.max_queue_num = s->conf.peers.queues ? s->conf.peers.queues - 1 : 0;
trace_e1000e_mac_set_permanent(MAC_ARG(macaddr));
memcpy(s->core.permanent_mac, macaddr, sizeof(s->core.permanent_mac));
qemu_format_nic_info_str(qemu_get_queue(s->nic), macaddr);
/* Setup virtio headers */
for (i = 0; i < s->conf.peers.queues; i++) {
nc = qemu_get_subqueue(s->nic, i);
if (!nc->peer || !qemu_has_vnet_hdr(nc->peer)) {
trace_e1000e_cfg_support_virtio(false);
return;
}
}
trace_e1000e_cfg_support_virtio(true);
s->core.has_vnet = true;
for (i = 0; i < s->conf.peers.queues; i++) {
nc = qemu_get_subqueue(s->nic, i);
qemu_set_vnet_hdr_len(nc->peer, sizeof(struct virtio_net_hdr));
qemu_using_vnet_hdr(nc->peer, true);
}
}
static int
igb_add_pm_capability(PCIDevice *pdev, uint8_t offset, uint16_t pmc)
{
Error *local_err = NULL;
int ret = pci_add_capability(pdev, PCI_CAP_ID_PM, offset,
PCI_PM_SIZEOF, &local_err);
if (local_err) {
error_report_err(local_err);
return ret;
}
pci_set_word(pdev->config + offset + PCI_PM_PMC,
PCI_PM_CAP_VER_1_1 |
pmc);
pci_set_word(pdev->wmask + offset + PCI_PM_CTRL,
PCI_PM_CTRL_STATE_MASK |
PCI_PM_CTRL_PME_ENABLE |
PCI_PM_CTRL_DATA_SEL_MASK);
pci_set_word(pdev->w1cmask + offset + PCI_PM_CTRL,
PCI_PM_CTRL_PME_STATUS);
return ret;
}
static void igb_pci_realize(PCIDevice *pci_dev, Error **errp)
{
IGBState *s = IGB(pci_dev);
uint8_t *macaddr;
int ret;
trace_e1000e_cb_pci_realize();
pci_dev->config_write = igb_write_config;
pci_dev->config[PCI_CACHE_LINE_SIZE] = 0x10;
pci_dev->config[PCI_INTERRUPT_PIN] = 1;
/* Define IO/MMIO regions */
memory_region_init_io(&s->mmio, OBJECT(s), &mmio_ops, s,
"igb-mmio", E1000E_MMIO_SIZE);
pci_register_bar(pci_dev, E1000E_MMIO_IDX,
PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio);
/*
* We provide a dummy implementation for the flash BAR
* for drivers that may theoretically probe for its presence.
*/
memory_region_init(&s->flash, OBJECT(s),
"igb-flash", E1000E_FLASH_SIZE);
pci_register_bar(pci_dev, E1000E_FLASH_IDX,
PCI_BASE_ADDRESS_SPACE_MEMORY, &s->flash);
memory_region_init_io(&s->io, OBJECT(s), &io_ops, s,
"igb-io", E1000E_IO_SIZE);
pci_register_bar(pci_dev, E1000E_IO_IDX,
PCI_BASE_ADDRESS_SPACE_IO, &s->io);
memory_region_init(&s->msix, OBJECT(s), "igb-msix",
E1000E_MSIX_SIZE);
pci_register_bar(pci_dev, E1000E_MSIX_IDX,
PCI_BASE_ADDRESS_MEM_TYPE_64, &s->msix);
/* Create networking backend */
qemu_macaddr_default_if_unset(&s->conf.macaddr);
macaddr = s->conf.macaddr.a;
/* Add PCI capabilities in reverse order */
assert(pcie_endpoint_cap_init(pci_dev, 0xa0) > 0);
igb_init_msix(s);
ret = msi_init(pci_dev, 0x50, 1, true, true, NULL);
if (ret) {
trace_e1000e_msi_init_fail(ret);
}
if (igb_add_pm_capability(pci_dev, 0x40, PCI_PM_CAP_DSI) < 0) {
hw_error("Failed to initialize PM capability");
}
/* PCIe extended capabilities (in order) */
if (pcie_aer_init(pci_dev, 1, 0x100, 0x40, errp) < 0) {
hw_error("Failed to initialize AER capability");
}
pcie_ari_init(pci_dev, 0x150);
pcie_sriov_pf_init(pci_dev, IGB_CAP_SRIOV_OFFSET, TYPE_IGBVF,
IGB_82576_VF_DEV_ID, IGB_MAX_VF_FUNCTIONS, IGB_MAX_VF_FUNCTIONS,
IGB_VF_OFFSET, IGB_VF_STRIDE);
pcie_sriov_pf_init_vf_bar(pci_dev, IGBVF_MMIO_BAR_IDX,
PCI_BASE_ADDRESS_MEM_TYPE_64 | PCI_BASE_ADDRESS_MEM_PREFETCH,
IGBVF_MMIO_SIZE);
pcie_sriov_pf_init_vf_bar(pci_dev, IGBVF_MSIX_BAR_IDX,
PCI_BASE_ADDRESS_MEM_TYPE_64 | PCI_BASE_ADDRESS_MEM_PREFETCH,
IGBVF_MSIX_SIZE);
igb_init_net_peer(s, pci_dev, macaddr);
/* Initialize core */
igb_core_realize(s);
igb_core_pci_realize(&s->core,
igb_eeprom_template,
sizeof(igb_eeprom_template),
macaddr);
}
static void igb_pci_uninit(PCIDevice *pci_dev)
{
IGBState *s = IGB(pci_dev);
trace_e1000e_cb_pci_uninit();
igb_core_pci_uninit(&s->core);
pcie_sriov_pf_exit(pci_dev);
pcie_cap_exit(pci_dev);
qemu_del_nic(s->nic);
igb_cleanup_msix(s);
msi_uninit(pci_dev);
}
static void igb_qdev_reset_hold(Object *obj)
{
PCIDevice *d = PCI_DEVICE(obj);
IGBState *s = IGB(obj);
trace_e1000e_cb_qdev_reset_hold();
pcie_sriov_pf_disable_vfs(d);
igb_core_reset(&s->core);
}
static int igb_pre_save(void *opaque)
{
IGBState *s = opaque;
trace_e1000e_cb_pre_save();
igb_core_pre_save(&s->core);
return 0;
}
static int igb_post_load(void *opaque, int version_id)
{
IGBState *s = opaque;
trace_e1000e_cb_post_load();
return igb_core_post_load(&s->core);
}
static const VMStateDescription igb_vmstate_tx_ctx = {
.name = "igb-tx-ctx",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(vlan_macip_lens, struct e1000_adv_tx_context_desc),
VMSTATE_UINT32(seqnum_seed, struct e1000_adv_tx_context_desc),
VMSTATE_UINT32(type_tucmd_mlhl, struct e1000_adv_tx_context_desc),
VMSTATE_UINT32(mss_l4len_idx, struct e1000_adv_tx_context_desc),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription igb_vmstate_tx = {
.name = "igb-tx",
.version_id = 2,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_ARRAY(ctx, struct igb_tx, 2, 0, igb_vmstate_tx_ctx,
struct e1000_adv_tx_context_desc),
VMSTATE_UINT32(first_cmd_type_len, struct igb_tx),
VMSTATE_UINT32(first_olinfo_status, struct igb_tx),
VMSTATE_BOOL(first, struct igb_tx),
VMSTATE_BOOL(skip_cp, struct igb_tx),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription igb_vmstate_intr_timer = {
.name = "igb-intr-timer",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_TIMER_PTR(timer, IGBIntrDelayTimer),
VMSTATE_BOOL(running, IGBIntrDelayTimer),
VMSTATE_END_OF_LIST()
}
};
#define VMSTATE_IGB_INTR_DELAY_TIMER(_f, _s) \
VMSTATE_STRUCT(_f, _s, 0, \
igb_vmstate_intr_timer, IGBIntrDelayTimer)
#define VMSTATE_IGB_INTR_DELAY_TIMER_ARRAY(_f, _s, _num) \
VMSTATE_STRUCT_ARRAY(_f, _s, _num, 0, \
igb_vmstate_intr_timer, IGBIntrDelayTimer)
static const VMStateDescription igb_vmstate = {
.name = "igb",
.version_id = 1,
.minimum_version_id = 1,
.pre_save = igb_pre_save,
.post_load = igb_post_load,
.fields = (VMStateField[]) {
VMSTATE_PCI_DEVICE(parent_obj, IGBState),
VMSTATE_MSIX(parent_obj, IGBState),
VMSTATE_UINT32(ioaddr, IGBState),
VMSTATE_UINT8(core.rx_desc_len, IGBState),
VMSTATE_UINT16_ARRAY(core.eeprom, IGBState, IGB_EEPROM_SIZE),
VMSTATE_UINT16_ARRAY(core.phy, IGBState, MAX_PHY_REG_ADDRESS + 1),
VMSTATE_UINT32_ARRAY(core.mac, IGBState, E1000E_MAC_SIZE),
VMSTATE_UINT8_ARRAY(core.permanent_mac, IGBState, ETH_ALEN),
VMSTATE_IGB_INTR_DELAY_TIMER_ARRAY(core.eitr, IGBState,
IGB_INTR_NUM),
VMSTATE_UINT32_ARRAY(core.eitr_guest_value, IGBState, IGB_INTR_NUM),
VMSTATE_STRUCT_ARRAY(core.tx, IGBState, IGB_NUM_QUEUES, 0,
igb_vmstate_tx, struct igb_tx),
VMSTATE_INT64(core.timadj, IGBState),
VMSTATE_END_OF_LIST()
}
};
static Property igb_properties[] = {
DEFINE_NIC_PROPERTIES(IGBState, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void igb_class_init(ObjectClass *class, void *data)
{
DeviceClass *dc = DEVICE_CLASS(class);
ResettableClass *rc = RESETTABLE_CLASS(class);
PCIDeviceClass *c = PCI_DEVICE_CLASS(class);
c->realize = igb_pci_realize;
c->exit = igb_pci_uninit;
c->vendor_id = PCI_VENDOR_ID_INTEL;
c->device_id = E1000_DEV_ID_82576;
c->revision = 1;
c->class_id = PCI_CLASS_NETWORK_ETHERNET;
rc->phases.hold = igb_qdev_reset_hold;
dc->desc = "Intel 82576 Gigabit Ethernet Controller";
dc->vmsd = &igb_vmstate;
device_class_set_props(dc, igb_properties);
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
}
static void igb_instance_init(Object *obj)
{
IGBState *s = IGB(obj);
device_add_bootindex_property(obj, &s->conf.bootindex,
"bootindex", "/ethernet-phy@0",
DEVICE(obj));
}
static const TypeInfo igb_info = {
.name = TYPE_IGB,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(IGBState),
.class_init = igb_class_init,
.instance_init = igb_instance_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_PCIE_DEVICE },
{ }
},
};
static void igb_register_types(void)
{
type_register_static(&igb_info);
}
type_init(igb_register_types)