qemu-e2k/accel/tcg/softmmu_template.h
David Hildenbrand f52bfb1214 accel/tcg: allow to invalidate a write TLB entry immediately
Background: s390x implements Low-Address Protection (LAP). If LAP is
enabled, writing to effective addresses (before any translation)
0-511 and 4096-4607 triggers a protection exception.

So we have subpage protection on the first two pages of every address
space (where the lowcore - the CPU private data resides).

By immediately invalidating the write entry but allowing the caller to
continue, we force every write access onto these first two pages into
the slow path. we will get a tlb fault with the specific accessed
addresses and can then evaluate if protection applies or not.

We have to make sure to ignore the invalid bit if tlb_fill() succeeds.

Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20171016202358.3633-2-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
2017-10-20 13:32:10 +02:00

434 lines
15 KiB
C

/*
* Software MMU support
*
* Generate helpers used by TCG for qemu_ld/st ops and code load
* functions.
*
* Included from target op helpers and exec.c.
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#if DATA_SIZE == 8
#define SUFFIX q
#define LSUFFIX q
#define SDATA_TYPE int64_t
#define DATA_TYPE uint64_t
#elif DATA_SIZE == 4
#define SUFFIX l
#define LSUFFIX l
#define SDATA_TYPE int32_t
#define DATA_TYPE uint32_t
#elif DATA_SIZE == 2
#define SUFFIX w
#define LSUFFIX uw
#define SDATA_TYPE int16_t
#define DATA_TYPE uint16_t
#elif DATA_SIZE == 1
#define SUFFIX b
#define LSUFFIX ub
#define SDATA_TYPE int8_t
#define DATA_TYPE uint8_t
#else
#error unsupported data size
#endif
/* For the benefit of TCG generated code, we want to avoid the complication
of ABI-specific return type promotion and always return a value extended
to the register size of the host. This is tcg_target_long, except in the
case of a 32-bit host and 64-bit data, and for that we always have
uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
# define WORD_TYPE DATA_TYPE
# define USUFFIX SUFFIX
#else
# define WORD_TYPE tcg_target_ulong
# define USUFFIX glue(u, SUFFIX)
# define SSUFFIX glue(s, SUFFIX)
#endif
#ifdef SOFTMMU_CODE_ACCESS
#define READ_ACCESS_TYPE MMU_INST_FETCH
#define ADDR_READ addr_code
#else
#define READ_ACCESS_TYPE MMU_DATA_LOAD
#define ADDR_READ addr_read
#endif
#if DATA_SIZE == 8
# define BSWAP(X) bswap64(X)
#elif DATA_SIZE == 4
# define BSWAP(X) bswap32(X)
#elif DATA_SIZE == 2
# define BSWAP(X) bswap16(X)
#else
# define BSWAP(X) (X)
#endif
#if DATA_SIZE == 1
# define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
# define helper_be_ld_name helper_le_ld_name
# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
# define helper_be_lds_name helper_le_lds_name
# define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
# define helper_be_st_name helper_le_st_name
#else
# define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
# define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
# define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
# define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
#endif
#ifndef SOFTMMU_CODE_ACCESS
static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
size_t mmu_idx, size_t index,
target_ulong addr,
uintptr_t retaddr)
{
CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, DATA_SIZE);
}
#endif
WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
TCGMemOpIdx oi, uintptr_t retaddr)
{
unsigned mmu_idx = get_mmuidx(oi);
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
unsigned a_bits = get_alignment_bits(get_memop(oi));
uintptr_t haddr;
DATA_TYPE res;
if (addr & ((1 << a_bits) - 1)) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
mmu_idx, retaddr);
}
/* If the TLB entry is for a different page, reload and try again. */
if ((addr & TARGET_PAGE_MASK)
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
mmu_idx, retaddr);
}
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
}
/* Handle an IO access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
if ((addr & (DATA_SIZE - 1)) != 0) {
goto do_unaligned_access;
}
/* ??? Note that the io helpers always read data in the target
byte ordering. We should push the LE/BE request down into io. */
res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr);
res = TGT_LE(res);
return res;
}
/* Handle slow unaligned access (it spans two pages or IO). */
if (DATA_SIZE > 1
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
>= TARGET_PAGE_SIZE)) {
target_ulong addr1, addr2;
DATA_TYPE res1, res2;
unsigned shift;
do_unaligned_access:
addr1 = addr & ~(DATA_SIZE - 1);
addr2 = addr1 + DATA_SIZE;
res1 = helper_le_ld_name(env, addr1, oi, retaddr);
res2 = helper_le_ld_name(env, addr2, oi, retaddr);
shift = (addr & (DATA_SIZE - 1)) * 8;
/* Little-endian combine. */
res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
return res;
}
haddr = addr + env->tlb_table[mmu_idx][index].addend;
#if DATA_SIZE == 1
res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
#else
res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
#endif
return res;
}
#if DATA_SIZE > 1
WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
TCGMemOpIdx oi, uintptr_t retaddr)
{
unsigned mmu_idx = get_mmuidx(oi);
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
unsigned a_bits = get_alignment_bits(get_memop(oi));
uintptr_t haddr;
DATA_TYPE res;
if (addr & ((1 << a_bits) - 1)) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
mmu_idx, retaddr);
}
/* If the TLB entry is for a different page, reload and try again. */
if ((addr & TARGET_PAGE_MASK)
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
mmu_idx, retaddr);
}
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
}
/* Handle an IO access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
if ((addr & (DATA_SIZE - 1)) != 0) {
goto do_unaligned_access;
}
/* ??? Note that the io helpers always read data in the target
byte ordering. We should push the LE/BE request down into io. */
res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr);
res = TGT_BE(res);
return res;
}
/* Handle slow unaligned access (it spans two pages or IO). */
if (DATA_SIZE > 1
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
>= TARGET_PAGE_SIZE)) {
target_ulong addr1, addr2;
DATA_TYPE res1, res2;
unsigned shift;
do_unaligned_access:
addr1 = addr & ~(DATA_SIZE - 1);
addr2 = addr1 + DATA_SIZE;
res1 = helper_be_ld_name(env, addr1, oi, retaddr);
res2 = helper_be_ld_name(env, addr2, oi, retaddr);
shift = (addr & (DATA_SIZE - 1)) * 8;
/* Big-endian combine. */
res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
return res;
}
haddr = addr + env->tlb_table[mmu_idx][index].addend;
res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
return res;
}
#endif /* DATA_SIZE > 1 */
#ifndef SOFTMMU_CODE_ACCESS
/* Provide signed versions of the load routines as well. We can of course
avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
TCGMemOpIdx oi, uintptr_t retaddr)
{
return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
}
# if DATA_SIZE > 1
WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
TCGMemOpIdx oi, uintptr_t retaddr)
{
return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
}
# endif
#endif
static inline void glue(io_write, SUFFIX)(CPUArchState *env,
size_t mmu_idx, size_t index,
DATA_TYPE val,
target_ulong addr,
uintptr_t retaddr)
{
CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
return io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr, DATA_SIZE);
}
void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
TCGMemOpIdx oi, uintptr_t retaddr)
{
unsigned mmu_idx = get_mmuidx(oi);
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
unsigned a_bits = get_alignment_bits(get_memop(oi));
uintptr_t haddr;
if (addr & ((1 << a_bits) - 1)) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
mmu_idx, retaddr);
}
/* If the TLB entry is for a different page, reload and try again. */
if ((addr & TARGET_PAGE_MASK)
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if (!VICTIM_TLB_HIT(addr_write, addr)) {
tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
}
tlb_addr = env->tlb_table[mmu_idx][index].addr_write & ~TLB_INVALID_MASK;
}
/* Handle an IO access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
if ((addr & (DATA_SIZE - 1)) != 0) {
goto do_unaligned_access;
}
/* ??? Note that the io helpers always read data in the target
byte ordering. We should push the LE/BE request down into io. */
val = TGT_LE(val);
glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr);
return;
}
/* Handle slow unaligned access (it spans two pages or IO). */
if (DATA_SIZE > 1
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
>= TARGET_PAGE_SIZE)) {
int i, index2;
target_ulong page2, tlb_addr2;
do_unaligned_access:
/* Ensure the second page is in the TLB. Note that the first page
is already guaranteed to be filled, and that the second page
cannot evict the first. */
page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
&& !VICTIM_TLB_HIT(addr_write, page2)) {
tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE,
mmu_idx, retaddr);
}
/* XXX: not efficient, but simple. */
/* This loop must go in the forward direction to avoid issues
with self-modifying code in Windows 64-bit. */
for (i = 0; i < DATA_SIZE; ++i) {
/* Little-endian extract. */
uint8_t val8 = val >> (i * 8);
glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
oi, retaddr);
}
return;
}
haddr = addr + env->tlb_table[mmu_idx][index].addend;
#if DATA_SIZE == 1
glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
#else
glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
#endif
}
#if DATA_SIZE > 1
void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
TCGMemOpIdx oi, uintptr_t retaddr)
{
unsigned mmu_idx = get_mmuidx(oi);
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
unsigned a_bits = get_alignment_bits(get_memop(oi));
uintptr_t haddr;
if (addr & ((1 << a_bits) - 1)) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
mmu_idx, retaddr);
}
/* If the TLB entry is for a different page, reload and try again. */
if ((addr & TARGET_PAGE_MASK)
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if (!VICTIM_TLB_HIT(addr_write, addr)) {
tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
}
tlb_addr = env->tlb_table[mmu_idx][index].addr_write & ~TLB_INVALID_MASK;
}
/* Handle an IO access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
if ((addr & (DATA_SIZE - 1)) != 0) {
goto do_unaligned_access;
}
/* ??? Note that the io helpers always read data in the target
byte ordering. We should push the LE/BE request down into io. */
val = TGT_BE(val);
glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr);
return;
}
/* Handle slow unaligned access (it spans two pages or IO). */
if (DATA_SIZE > 1
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
>= TARGET_PAGE_SIZE)) {
int i, index2;
target_ulong page2, tlb_addr2;
do_unaligned_access:
/* Ensure the second page is in the TLB. Note that the first page
is already guaranteed to be filled, and that the second page
cannot evict the first. */
page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
&& !VICTIM_TLB_HIT(addr_write, page2)) {
tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE,
mmu_idx, retaddr);
}
/* XXX: not efficient, but simple */
/* This loop must go in the forward direction to avoid issues
with self-modifying code. */
for (i = 0; i < DATA_SIZE; ++i) {
/* Big-endian extract. */
uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
oi, retaddr);
}
return;
}
haddr = addr + env->tlb_table[mmu_idx][index].addend;
glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
}
#endif /* DATA_SIZE > 1 */
#endif /* !defined(SOFTMMU_CODE_ACCESS) */
#undef READ_ACCESS_TYPE
#undef DATA_TYPE
#undef SUFFIX
#undef LSUFFIX
#undef DATA_SIZE
#undef ADDR_READ
#undef WORD_TYPE
#undef SDATA_TYPE
#undef USUFFIX
#undef SSUFFIX
#undef BSWAP
#undef helper_le_ld_name
#undef helper_be_ld_name
#undef helper_le_lds_name
#undef helper_be_lds_name
#undef helper_le_st_name
#undef helper_be_st_name