qemu-e2k/target/arm/machine.c
Aaron Lindsay af903caed9 target/arm: Don't migrate CPUARMState.features
As feature flags are added or removed, the meanings of bits in the
`features` field can change between QEMU versions, causing migration
failures. Additionally, migrating the field is not useful because it is
a constant function of the CPU being used.

Fixes: LP:1914696
Signed-off-by: Aaron Lindsay <aaron@os.amperecomputing.com>
Suggested-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Tested-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2021-02-11 11:50:13 +00:00

850 lines
27 KiB
C

#include "qemu/osdep.h"
#include "cpu.h"
#include "qemu/error-report.h"
#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "internals.h"
#include "migration/cpu.h"
static bool vfp_needed(void *opaque)
{
ARMCPU *cpu = opaque;
return (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
? cpu_isar_feature(aa64_fp_simd, cpu)
: cpu_isar_feature(aa32_vfp_simd, cpu));
}
static int get_fpscr(QEMUFile *f, void *opaque, size_t size,
const VMStateField *field)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
uint32_t val = qemu_get_be32(f);
vfp_set_fpscr(env, val);
return 0;
}
static int put_fpscr(QEMUFile *f, void *opaque, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
qemu_put_be32(f, vfp_get_fpscr(env));
return 0;
}
static const VMStateInfo vmstate_fpscr = {
.name = "fpscr",
.get = get_fpscr,
.put = put_fpscr,
};
static const VMStateDescription vmstate_vfp = {
.name = "cpu/vfp",
.version_id = 3,
.minimum_version_id = 3,
.needed = vfp_needed,
.fields = (VMStateField[]) {
/* For compatibility, store Qn out of Zn here. */
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[0].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[1].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[2].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[3].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[4].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[5].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[6].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[7].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[8].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[9].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[10].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[11].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[12].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[13].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[14].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[15].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[16].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[17].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[18].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[19].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[20].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[21].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[22].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[23].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[24].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[25].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[26].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[27].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[28].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[29].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[30].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[31].d, ARMCPU, 0, 2),
/* The xregs array is a little awkward because element 1 (FPSCR)
* requires a specific accessor, so we have to split it up in
* the vmstate:
*/
VMSTATE_UINT32(env.vfp.xregs[0], ARMCPU),
VMSTATE_UINT32_SUB_ARRAY(env.vfp.xregs, ARMCPU, 2, 14),
{
.name = "fpscr",
.version_id = 0,
.size = sizeof(uint32_t),
.info = &vmstate_fpscr,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_END_OF_LIST()
}
};
static bool iwmmxt_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_IWMMXT);
}
static const VMStateDescription vmstate_iwmmxt = {
.name = "cpu/iwmmxt",
.version_id = 1,
.minimum_version_id = 1,
.needed = iwmmxt_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64_ARRAY(env.iwmmxt.regs, ARMCPU, 16),
VMSTATE_UINT32_ARRAY(env.iwmmxt.cregs, ARMCPU, 16),
VMSTATE_END_OF_LIST()
}
};
#ifdef TARGET_AARCH64
/* The expression ARM_MAX_VQ - 2 is 0 for pure AArch32 build,
* and ARMPredicateReg is actively empty. This triggers errors
* in the expansion of the VMSTATE macros.
*/
static bool sve_needed(void *opaque)
{
ARMCPU *cpu = opaque;
return cpu_isar_feature(aa64_sve, cpu);
}
/* The first two words of each Zreg is stored in VFP state. */
static const VMStateDescription vmstate_zreg_hi_reg = {
.name = "cpu/sve/zreg_hi",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64_SUB_ARRAY(d, ARMVectorReg, 2, ARM_MAX_VQ - 2),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_preg_reg = {
.name = "cpu/sve/preg",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64_ARRAY(p, ARMPredicateReg, 2 * ARM_MAX_VQ / 8),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_sve = {
.name = "cpu/sve",
.version_id = 1,
.minimum_version_id = 1,
.needed = sve_needed,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_ARRAY(env.vfp.zregs, ARMCPU, 32, 0,
vmstate_zreg_hi_reg, ARMVectorReg),
VMSTATE_STRUCT_ARRAY(env.vfp.pregs, ARMCPU, 17, 0,
vmstate_preg_reg, ARMPredicateReg),
VMSTATE_END_OF_LIST()
}
};
#endif /* AARCH64 */
static bool serror_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return env->serror.pending != 0;
}
static const VMStateDescription vmstate_serror = {
.name = "cpu/serror",
.version_id = 1,
.minimum_version_id = 1,
.needed = serror_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT8(env.serror.pending, ARMCPU),
VMSTATE_UINT8(env.serror.has_esr, ARMCPU),
VMSTATE_UINT64(env.serror.esr, ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool irq_line_state_needed(void *opaque)
{
return true;
}
static const VMStateDescription vmstate_irq_line_state = {
.name = "cpu/irq-line-state",
.version_id = 1,
.minimum_version_id = 1,
.needed = irq_line_state_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.irq_line_state, ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool m_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_M);
}
static const VMStateDescription vmstate_m_faultmask_primask = {
.name = "cpu/m/faultmask-primask",
.version_id = 1,
.minimum_version_id = 1,
.needed = m_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.faultmask[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.primask[M_REG_NS], ARMCPU),
VMSTATE_END_OF_LIST()
}
};
/* CSSELR is in a subsection because we didn't implement it previously.
* Migration from an old implementation will leave it at zero, which
* is OK since the only CPUs in the old implementation make the
* register RAZ/WI.
* Since there was no version of QEMU which implemented the CSSELR for
* just non-secure, we transfer both banks here rather than putting
* the secure banked version in the m-security subsection.
*/
static bool csselr_vmstate_validate(void *opaque, int version_id)
{
ARMCPU *cpu = opaque;
return cpu->env.v7m.csselr[M_REG_NS] <= R_V7M_CSSELR_INDEX_MASK
&& cpu->env.v7m.csselr[M_REG_S] <= R_V7M_CSSELR_INDEX_MASK;
}
static bool m_csselr_needed(void *opaque)
{
ARMCPU *cpu = opaque;
return !arm_v7m_csselr_razwi(cpu);
}
static const VMStateDescription vmstate_m_csselr = {
.name = "cpu/m/csselr",
.version_id = 1,
.minimum_version_id = 1,
.needed = m_csselr_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(env.v7m.csselr, ARMCPU, M_REG_NUM_BANKS),
VMSTATE_VALIDATE("CSSELR is valid", csselr_vmstate_validate),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_m_scr = {
.name = "cpu/m/scr",
.version_id = 1,
.minimum_version_id = 1,
.needed = m_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.scr[M_REG_NS], ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_m_other_sp = {
.name = "cpu/m/other-sp",
.version_id = 1,
.minimum_version_id = 1,
.needed = m_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.other_sp, ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool m_v8m_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_M) && arm_feature(env, ARM_FEATURE_V8);
}
static const VMStateDescription vmstate_m_v8m = {
.name = "cpu/m/v8m",
.version_id = 1,
.minimum_version_id = 1,
.needed = m_v8m_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(env.v7m.msplim, ARMCPU, M_REG_NUM_BANKS),
VMSTATE_UINT32_ARRAY(env.v7m.psplim, ARMCPU, M_REG_NUM_BANKS),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_m_fp = {
.name = "cpu/m/fp",
.version_id = 1,
.minimum_version_id = 1,
.needed = vfp_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(env.v7m.fpcar, ARMCPU, M_REG_NUM_BANKS),
VMSTATE_UINT32_ARRAY(env.v7m.fpccr, ARMCPU, M_REG_NUM_BANKS),
VMSTATE_UINT32_ARRAY(env.v7m.fpdscr, ARMCPU, M_REG_NUM_BANKS),
VMSTATE_UINT32_ARRAY(env.v7m.cpacr, ARMCPU, M_REG_NUM_BANKS),
VMSTATE_UINT32(env.v7m.nsacr, ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_m = {
.name = "cpu/m",
.version_id = 4,
.minimum_version_id = 4,
.needed = m_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.vecbase[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.basepri[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.control[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.ccr[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.cfsr[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.hfsr, ARMCPU),
VMSTATE_UINT32(env.v7m.dfsr, ARMCPU),
VMSTATE_UINT32(env.v7m.mmfar[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.bfar, ARMCPU),
VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_NS], ARMCPU),
VMSTATE_INT32(env.v7m.exception, ARMCPU),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_m_faultmask_primask,
&vmstate_m_csselr,
&vmstate_m_scr,
&vmstate_m_other_sp,
&vmstate_m_v8m,
&vmstate_m_fp,
NULL
}
};
static bool thumb2ee_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_THUMB2EE);
}
static const VMStateDescription vmstate_thumb2ee = {
.name = "cpu/thumb2ee",
.version_id = 1,
.minimum_version_id = 1,
.needed = thumb2ee_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.teecr, ARMCPU),
VMSTATE_UINT32(env.teehbr, ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool pmsav7_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V7) &&
!arm_feature(env, ARM_FEATURE_V8);
}
static bool pmsav7_rgnr_vmstate_validate(void *opaque, int version_id)
{
ARMCPU *cpu = opaque;
return cpu->env.pmsav7.rnr[M_REG_NS] < cpu->pmsav7_dregion;
}
static const VMStateDescription vmstate_pmsav7 = {
.name = "cpu/pmsav7",
.version_id = 1,
.minimum_version_id = 1,
.needed = pmsav7_needed,
.fields = (VMStateField[]) {
VMSTATE_VARRAY_UINT32(env.pmsav7.drbar, ARMCPU, pmsav7_dregion, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.pmsav7.drsr, ARMCPU, pmsav7_dregion, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.pmsav7.dracr, ARMCPU, pmsav7_dregion, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VALIDATE("rgnr is valid", pmsav7_rgnr_vmstate_validate),
VMSTATE_END_OF_LIST()
}
};
static bool pmsav7_rnr_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
/* For R profile cores pmsav7.rnr is migrated via the cpreg
* "RGNR" definition in helper.h. For M profile we have to
* migrate it separately.
*/
return arm_feature(env, ARM_FEATURE_M);
}
static const VMStateDescription vmstate_pmsav7_rnr = {
.name = "cpu/pmsav7-rnr",
.version_id = 1,
.minimum_version_id = 1,
.needed = pmsav7_rnr_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.pmsav7.rnr[M_REG_NS], ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool pmsav8_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V8);
}
static const VMStateDescription vmstate_pmsav8 = {
.name = "cpu/pmsav8",
.version_id = 1,
.minimum_version_id = 1,
.needed = pmsav8_needed,
.fields = (VMStateField[]) {
VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_NS], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_NS], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_UINT32(env.pmsav8.mair0[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.pmsav8.mair1[M_REG_NS], ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool s_rnr_vmstate_validate(void *opaque, int version_id)
{
ARMCPU *cpu = opaque;
return cpu->env.pmsav7.rnr[M_REG_S] < cpu->pmsav7_dregion;
}
static bool sau_rnr_vmstate_validate(void *opaque, int version_id)
{
ARMCPU *cpu = opaque;
return cpu->env.sau.rnr < cpu->sau_sregion;
}
static bool m_security_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_M_SECURITY);
}
static const VMStateDescription vmstate_m_security = {
.name = "cpu/m-security",
.version_id = 1,
.minimum_version_id = 1,
.needed = m_security_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.secure, ARMCPU),
VMSTATE_UINT32(env.v7m.other_ss_msp, ARMCPU),
VMSTATE_UINT32(env.v7m.other_ss_psp, ARMCPU),
VMSTATE_UINT32(env.v7m.basepri[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.primask[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.faultmask[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.control[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.vecbase[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.pmsav8.mair0[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.pmsav8.mair1[M_REG_S], ARMCPU),
VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_S], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_S], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_UINT32(env.pmsav7.rnr[M_REG_S], ARMCPU),
VMSTATE_VALIDATE("secure MPU_RNR is valid", s_rnr_vmstate_validate),
VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.ccr[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.mmfar[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.cfsr[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.sfsr, ARMCPU),
VMSTATE_UINT32(env.v7m.sfar, ARMCPU),
VMSTATE_VARRAY_UINT32(env.sau.rbar, ARMCPU, sau_sregion, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.sau.rlar, ARMCPU, sau_sregion, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_UINT32(env.sau.rnr, ARMCPU),
VMSTATE_VALIDATE("SAU_RNR is valid", sau_rnr_vmstate_validate),
VMSTATE_UINT32(env.sau.ctrl, ARMCPU),
VMSTATE_UINT32(env.v7m.scr[M_REG_S], ARMCPU),
/* AIRCR is not secure-only, but our implementation is R/O if the
* security extension is unimplemented, so we migrate it here.
*/
VMSTATE_UINT32(env.v7m.aircr, ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static int get_cpsr(QEMUFile *f, void *opaque, size_t size,
const VMStateField *field)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
uint32_t val = qemu_get_be32(f);
if (arm_feature(env, ARM_FEATURE_M)) {
if (val & XPSR_EXCP) {
/* This is a CPSR format value from an older QEMU. (We can tell
* because values transferred in XPSR format always have zero
* for the EXCP field, and CPSR format will always have bit 4
* set in CPSR_M.) Rearrange it into XPSR format. The significant
* differences are that the T bit is not in the same place, the
* primask/faultmask info may be in the CPSR I and F bits, and
* we do not want the mode bits.
* We know that this cleanup happened before v8M, so there
* is no complication with banked primask/faultmask.
*/
uint32_t newval = val;
assert(!arm_feature(env, ARM_FEATURE_M_SECURITY));
newval &= (CPSR_NZCV | CPSR_Q | CPSR_IT | CPSR_GE);
if (val & CPSR_T) {
newval |= XPSR_T;
}
/* If the I or F bits are set then this is a migration from
* an old QEMU which still stored the M profile FAULTMASK
* and PRIMASK in env->daif. For a new QEMU, the data is
* transferred using the vmstate_m_faultmask_primask subsection.
*/
if (val & CPSR_F) {
env->v7m.faultmask[M_REG_NS] = 1;
}
if (val & CPSR_I) {
env->v7m.primask[M_REG_NS] = 1;
}
val = newval;
}
/* Ignore the low bits, they are handled by vmstate_m. */
xpsr_write(env, val, ~XPSR_EXCP);
return 0;
}
env->aarch64 = ((val & PSTATE_nRW) == 0);
if (is_a64(env)) {
pstate_write(env, val);
return 0;
}
cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
return 0;
}
static int put_cpsr(QEMUFile *f, void *opaque, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
uint32_t val;
if (arm_feature(env, ARM_FEATURE_M)) {
/* The low 9 bits are v7m.exception, which is handled by vmstate_m. */
val = xpsr_read(env) & ~XPSR_EXCP;
} else if (is_a64(env)) {
val = pstate_read(env);
} else {
val = cpsr_read(env);
}
qemu_put_be32(f, val);
return 0;
}
static const VMStateInfo vmstate_cpsr = {
.name = "cpsr",
.get = get_cpsr,
.put = put_cpsr,
};
static int get_power(QEMUFile *f, void *opaque, size_t size,
const VMStateField *field)
{
ARMCPU *cpu = opaque;
bool powered_off = qemu_get_byte(f);
cpu->power_state = powered_off ? PSCI_OFF : PSCI_ON;
return 0;
}
static int put_power(QEMUFile *f, void *opaque, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
ARMCPU *cpu = opaque;
/* Migration should never happen while we transition power states */
if (cpu->power_state == PSCI_ON ||
cpu->power_state == PSCI_OFF) {
bool powered_off = (cpu->power_state == PSCI_OFF) ? true : false;
qemu_put_byte(f, powered_off);
return 0;
} else {
return 1;
}
}
static const VMStateInfo vmstate_powered_off = {
.name = "powered_off",
.get = get_power,
.put = put_power,
};
static int cpu_pre_save(void *opaque)
{
ARMCPU *cpu = opaque;
if (!kvm_enabled()) {
pmu_op_start(&cpu->env);
}
if (kvm_enabled()) {
if (!write_kvmstate_to_list(cpu)) {
/* This should never fail */
abort();
}
/*
* kvm_arm_cpu_pre_save() must be called after
* write_kvmstate_to_list()
*/
kvm_arm_cpu_pre_save(cpu);
} else {
if (!write_cpustate_to_list(cpu, false)) {
/* This should never fail. */
abort();
}
}
cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
memcpy(cpu->cpreg_vmstate_indexes, cpu->cpreg_indexes,
cpu->cpreg_array_len * sizeof(uint64_t));
memcpy(cpu->cpreg_vmstate_values, cpu->cpreg_values,
cpu->cpreg_array_len * sizeof(uint64_t));
return 0;
}
static int cpu_post_save(void *opaque)
{
ARMCPU *cpu = opaque;
if (!kvm_enabled()) {
pmu_op_finish(&cpu->env);
}
return 0;
}
static int cpu_pre_load(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
/*
* Pre-initialize irq_line_state to a value that's never valid as
* real data, so cpu_post_load() can tell whether we've seen the
* irq-line-state subsection in the incoming migration state.
*/
env->irq_line_state = UINT32_MAX;
if (!kvm_enabled()) {
pmu_op_start(&cpu->env);
}
return 0;
}
static int cpu_post_load(void *opaque, int version_id)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
int i, v;
/*
* Handle migration compatibility from old QEMU which didn't
* send the irq-line-state subsection. A QEMU without it did not
* implement the HCR_EL2.{VI,VF} bits as generating interrupts,
* so for TCG the line state matches the bits set in cs->interrupt_request.
* For KVM the line state is not stored in cs->interrupt_request
* and so this will leave irq_line_state as 0, but this is OK because
* we only need to care about it for TCG.
*/
if (env->irq_line_state == UINT32_MAX) {
CPUState *cs = CPU(cpu);
env->irq_line_state = cs->interrupt_request &
(CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ |
CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VFIQ);
}
/* Update the values list from the incoming migration data.
* Anything in the incoming data which we don't know about is
* a migration failure; anything we know about but the incoming
* data doesn't specify retains its current (reset) value.
* The indexes list remains untouched -- we only inspect the
* incoming migration index list so we can match the values array
* entries with the right slots in our own values array.
*/
for (i = 0, v = 0; i < cpu->cpreg_array_len
&& v < cpu->cpreg_vmstate_array_len; i++) {
if (cpu->cpreg_vmstate_indexes[v] > cpu->cpreg_indexes[i]) {
/* register in our list but not incoming : skip it */
continue;
}
if (cpu->cpreg_vmstate_indexes[v] < cpu->cpreg_indexes[i]) {
/* register in their list but not ours: fail migration */
return -1;
}
/* matching register, copy the value over */
cpu->cpreg_values[i] = cpu->cpreg_vmstate_values[v];
v++;
}
if (kvm_enabled()) {
if (!write_list_to_kvmstate(cpu, KVM_PUT_FULL_STATE)) {
return -1;
}
/* Note that it's OK for the TCG side not to know about
* every register in the list; KVM is authoritative if
* we're using it.
*/
write_list_to_cpustate(cpu);
kvm_arm_cpu_post_load(cpu);
} else {
if (!write_list_to_cpustate(cpu)) {
return -1;
}
}
hw_breakpoint_update_all(cpu);
hw_watchpoint_update_all(cpu);
if (!kvm_enabled()) {
pmu_op_finish(&cpu->env);
}
arm_rebuild_hflags(&cpu->env);
return 0;
}
const VMStateDescription vmstate_arm_cpu = {
.name = "cpu",
.version_id = 22,
.minimum_version_id = 22,
.pre_save = cpu_pre_save,
.post_save = cpu_post_save,
.pre_load = cpu_pre_load,
.post_load = cpu_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(env.regs, ARMCPU, 16),
VMSTATE_UINT64_ARRAY(env.xregs, ARMCPU, 32),
VMSTATE_UINT64(env.pc, ARMCPU),
{
.name = "cpsr",
.version_id = 0,
.size = sizeof(uint32_t),
.info = &vmstate_cpsr,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_UINT32(env.spsr, ARMCPU),
VMSTATE_UINT64_ARRAY(env.banked_spsr, ARMCPU, 8),
VMSTATE_UINT32_ARRAY(env.banked_r13, ARMCPU, 8),
VMSTATE_UINT32_ARRAY(env.banked_r14, ARMCPU, 8),
VMSTATE_UINT32_ARRAY(env.usr_regs, ARMCPU, 5),
VMSTATE_UINT32_ARRAY(env.fiq_regs, ARMCPU, 5),
VMSTATE_UINT64_ARRAY(env.elr_el, ARMCPU, 4),
VMSTATE_UINT64_ARRAY(env.sp_el, ARMCPU, 4),
/* The length-check must come before the arrays to avoid
* incoming data possibly overflowing the array.
*/
VMSTATE_INT32_POSITIVE_LE(cpreg_vmstate_array_len, ARMCPU),
VMSTATE_VARRAY_INT32(cpreg_vmstate_indexes, ARMCPU,
cpreg_vmstate_array_len,
0, vmstate_info_uint64, uint64_t),
VMSTATE_VARRAY_INT32(cpreg_vmstate_values, ARMCPU,
cpreg_vmstate_array_len,
0, vmstate_info_uint64, uint64_t),
VMSTATE_UINT64(env.exclusive_addr, ARMCPU),
VMSTATE_UINT64(env.exclusive_val, ARMCPU),
VMSTATE_UINT64(env.exclusive_high, ARMCPU),
VMSTATE_UNUSED(sizeof(uint64_t)),
VMSTATE_UINT32(env.exception.syndrome, ARMCPU),
VMSTATE_UINT32(env.exception.fsr, ARMCPU),
VMSTATE_UINT64(env.exception.vaddress, ARMCPU),
VMSTATE_TIMER_PTR(gt_timer[GTIMER_PHYS], ARMCPU),
VMSTATE_TIMER_PTR(gt_timer[GTIMER_VIRT], ARMCPU),
{
.name = "power_state",
.version_id = 0,
.size = sizeof(bool),
.info = &vmstate_powered_off,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_vfp,
&vmstate_iwmmxt,
&vmstate_m,
&vmstate_thumb2ee,
/* pmsav7_rnr must come before pmsav7 so that we have the
* region number before we test it in the VMSTATE_VALIDATE
* in vmstate_pmsav7.
*/
&vmstate_pmsav7_rnr,
&vmstate_pmsav7,
&vmstate_pmsav8,
&vmstate_m_security,
#ifdef TARGET_AARCH64
&vmstate_sve,
#endif
&vmstate_serror,
&vmstate_irq_line_state,
NULL
}
};