qemu-e2k/target/riscv/kvm/kvm-cpu.c
Daniel Henrique Barboza 608bdebb60 target/riscv/kvm: support KVM_GET_REG_LIST
KVM for RISC-V started supporting KVM_GET_REG_LIST in Linux 6.6. It
consists of a KVM ioctl() that retrieves a list of all available regs
for get_one_reg/set_one_reg. Regs that aren't present in the list aren't
supported in the host.

This simplifies our lives when initing the KVM regs since we don't have
to always attempt a KVM_GET_ONE_REG for all regs QEMU knows. We'll only
attempt a get_one_reg() if we're sure the reg is supported, i.e. it was
retrieved by KVM_GET_REG_LIST. Any error in get_one_reg() will then
always considered fatal, instead of having to handle special error codes
that might indicate a non-fatal failure.

Start by moving the current kvm_riscv_init_multiext_cfg() logic into a
new kvm_riscv_read_multiext_legacy() helper. We'll prioritize using
KVM_GET_REG_LIST, so check if we have it available and, in case we
don't, use the legacy() logic.

Otherwise, retrieve the available reg list and use it to check if the
host supports our known KVM regs, doing the usual get_one_reg() for
the supported regs and setting cpu->cfg accordingly.

Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com>
Acked-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Andrew Jones <ajones@ventanamicro.com>
Message-ID: <20231003132148.797921-3-dbarboza@ventanamicro.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-10-12 12:38:39 +10:00

1484 lines
41 KiB
C

/*
* RISC-V implementation of KVM hooks
*
* Copyright (c) 2020 Huawei Technologies Co., Ltd
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include <sys/ioctl.h>
#include <linux/kvm.h>
#include "qemu/timer.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "qapi/visitor.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "sysemu/kvm_int.h"
#include "cpu.h"
#include "trace.h"
#include "hw/core/accel-cpu.h"
#include "hw/pci/pci.h"
#include "exec/memattrs.h"
#include "exec/address-spaces.h"
#include "hw/boards.h"
#include "hw/irq.h"
#include "hw/intc/riscv_imsic.h"
#include "qemu/log.h"
#include "hw/loader.h"
#include "kvm_riscv.h"
#include "sbi_ecall_interface.h"
#include "chardev/char-fe.h"
#include "migration/migration.h"
#include "sysemu/runstate.h"
#include "hw/riscv/numa.h"
void riscv_kvm_aplic_request(void *opaque, int irq, int level)
{
kvm_set_irq(kvm_state, irq, !!level);
}
static bool cap_has_mp_state;
static uint64_t kvm_riscv_reg_id(CPURISCVState *env, uint64_t type,
uint64_t idx)
{
uint64_t id = KVM_REG_RISCV | type | idx;
switch (riscv_cpu_mxl(env)) {
case MXL_RV32:
id |= KVM_REG_SIZE_U32;
break;
case MXL_RV64:
id |= KVM_REG_SIZE_U64;
break;
default:
g_assert_not_reached();
}
return id;
}
#define RISCV_CORE_REG(env, name) kvm_riscv_reg_id(env, KVM_REG_RISCV_CORE, \
KVM_REG_RISCV_CORE_REG(name))
#define RISCV_CSR_REG(env, name) kvm_riscv_reg_id(env, KVM_REG_RISCV_CSR, \
KVM_REG_RISCV_CSR_REG(name))
#define RISCV_TIMER_REG(env, name) kvm_riscv_reg_id(env, KVM_REG_RISCV_TIMER, \
KVM_REG_RISCV_TIMER_REG(name))
#define RISCV_FP_F_REG(env, idx) kvm_riscv_reg_id(env, KVM_REG_RISCV_FP_F, idx)
#define RISCV_FP_D_REG(env, idx) kvm_riscv_reg_id(env, KVM_REG_RISCV_FP_D, idx)
#define KVM_RISCV_GET_CSR(cs, env, csr, reg) \
do { \
int ret = kvm_get_one_reg(cs, RISCV_CSR_REG(env, csr), &reg); \
if (ret) { \
return ret; \
} \
} while (0)
#define KVM_RISCV_SET_CSR(cs, env, csr, reg) \
do { \
int ret = kvm_set_one_reg(cs, RISCV_CSR_REG(env, csr), &reg); \
if (ret) { \
return ret; \
} \
} while (0)
#define KVM_RISCV_GET_TIMER(cs, env, name, reg) \
do { \
int ret = kvm_get_one_reg(cs, RISCV_TIMER_REG(env, name), &reg); \
if (ret) { \
abort(); \
} \
} while (0)
#define KVM_RISCV_SET_TIMER(cs, env, name, reg) \
do { \
int ret = kvm_set_one_reg(cs, RISCV_TIMER_REG(env, name), &reg); \
if (ret) { \
abort(); \
} \
} while (0)
typedef struct KVMCPUConfig {
const char *name;
const char *description;
target_ulong offset;
int kvm_reg_id;
bool user_set;
bool supported;
} KVMCPUConfig;
#define KVM_MISA_CFG(_bit, _reg_id) \
{.offset = _bit, .kvm_reg_id = _reg_id}
/* KVM ISA extensions */
static KVMCPUConfig kvm_misa_ext_cfgs[] = {
KVM_MISA_CFG(RVA, KVM_RISCV_ISA_EXT_A),
KVM_MISA_CFG(RVC, KVM_RISCV_ISA_EXT_C),
KVM_MISA_CFG(RVD, KVM_RISCV_ISA_EXT_D),
KVM_MISA_CFG(RVF, KVM_RISCV_ISA_EXT_F),
KVM_MISA_CFG(RVH, KVM_RISCV_ISA_EXT_H),
KVM_MISA_CFG(RVI, KVM_RISCV_ISA_EXT_I),
KVM_MISA_CFG(RVM, KVM_RISCV_ISA_EXT_M),
};
static void kvm_cpu_set_misa_ext_cfg(Object *obj, Visitor *v,
const char *name,
void *opaque, Error **errp)
{
KVMCPUConfig *misa_ext_cfg = opaque;
target_ulong misa_bit = misa_ext_cfg->offset;
RISCVCPU *cpu = RISCV_CPU(obj);
CPURISCVState *env = &cpu->env;
bool value, host_bit;
if (!visit_type_bool(v, name, &value, errp)) {
return;
}
host_bit = env->misa_ext_mask & misa_bit;
if (value == host_bit) {
return;
}
if (!value) {
misa_ext_cfg->user_set = true;
return;
}
/*
* Forbid users to enable extensions that aren't
* available in the hart.
*/
error_setg(errp, "Enabling MISA bit '%s' is not allowed: it's not "
"enabled in the host", misa_ext_cfg->name);
}
static void kvm_riscv_update_cpu_misa_ext(RISCVCPU *cpu, CPUState *cs)
{
CPURISCVState *env = &cpu->env;
uint64_t id, reg;
int i, ret;
for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) {
KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i];
target_ulong misa_bit = misa_cfg->offset;
if (!misa_cfg->user_set) {
continue;
}
/* If we're here we're going to disable the MISA bit */
reg = 0;
id = kvm_riscv_reg_id(env, KVM_REG_RISCV_ISA_EXT,
misa_cfg->kvm_reg_id);
ret = kvm_set_one_reg(cs, id, &reg);
if (ret != 0) {
/*
* We're not checking for -EINVAL because if the bit is about
* to be disabled, it means that it was already enabled by
* KVM. We determined that by fetching the 'isa' register
* during init() time. Any error at this point is worth
* aborting.
*/
error_report("Unable to set KVM reg %s, error %d",
misa_cfg->name, ret);
exit(EXIT_FAILURE);
}
env->misa_ext &= ~misa_bit;
}
}
#define KVM_EXT_CFG(_name, _prop, _reg_id) \
{.name = _name, .offset = CPU_CFG_OFFSET(_prop), \
.kvm_reg_id = _reg_id}
static KVMCPUConfig kvm_multi_ext_cfgs[] = {
KVM_EXT_CFG("zicbom", ext_icbom, KVM_RISCV_ISA_EXT_ZICBOM),
KVM_EXT_CFG("zicboz", ext_icboz, KVM_RISCV_ISA_EXT_ZICBOZ),
KVM_EXT_CFG("zihintpause", ext_zihintpause, KVM_RISCV_ISA_EXT_ZIHINTPAUSE),
KVM_EXT_CFG("zbb", ext_zbb, KVM_RISCV_ISA_EXT_ZBB),
KVM_EXT_CFG("ssaia", ext_ssaia, KVM_RISCV_ISA_EXT_SSAIA),
KVM_EXT_CFG("sstc", ext_sstc, KVM_RISCV_ISA_EXT_SSTC),
KVM_EXT_CFG("svinval", ext_svinval, KVM_RISCV_ISA_EXT_SVINVAL),
KVM_EXT_CFG("svpbmt", ext_svpbmt, KVM_RISCV_ISA_EXT_SVPBMT),
};
static void *kvmconfig_get_cfg_addr(RISCVCPU *cpu, KVMCPUConfig *kvmcfg)
{
return (void *)&cpu->cfg + kvmcfg->offset;
}
static void kvm_cpu_cfg_set(RISCVCPU *cpu, KVMCPUConfig *multi_ext,
uint32_t val)
{
bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext);
*ext_enabled = val;
}
static uint32_t kvm_cpu_cfg_get(RISCVCPU *cpu,
KVMCPUConfig *multi_ext)
{
bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext);
return *ext_enabled;
}
static void kvm_cpu_set_multi_ext_cfg(Object *obj, Visitor *v,
const char *name,
void *opaque, Error **errp)
{
KVMCPUConfig *multi_ext_cfg = opaque;
RISCVCPU *cpu = RISCV_CPU(obj);
bool value, host_val;
if (!visit_type_bool(v, name, &value, errp)) {
return;
}
host_val = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
/*
* Ignore if the user is setting the same value
* as the host.
*/
if (value == host_val) {
return;
}
if (!multi_ext_cfg->supported) {
/*
* Error out if the user is trying to enable an
* extension that KVM doesn't support. Ignore
* option otherwise.
*/
if (value) {
error_setg(errp, "KVM does not support disabling extension %s",
multi_ext_cfg->name);
}
return;
}
multi_ext_cfg->user_set = true;
kvm_cpu_cfg_set(cpu, multi_ext_cfg, value);
}
static KVMCPUConfig kvm_cbom_blocksize = {
.name = "cbom_blocksize",
.offset = CPU_CFG_OFFSET(cbom_blocksize),
.kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicbom_block_size)
};
static KVMCPUConfig kvm_cboz_blocksize = {
.name = "cboz_blocksize",
.offset = CPU_CFG_OFFSET(cboz_blocksize),
.kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicboz_block_size)
};
static void kvm_cpu_set_cbomz_blksize(Object *obj, Visitor *v,
const char *name,
void *opaque, Error **errp)
{
KVMCPUConfig *cbomz_cfg = opaque;
RISCVCPU *cpu = RISCV_CPU(obj);
uint16_t value, *host_val;
if (!visit_type_uint16(v, name, &value, errp)) {
return;
}
host_val = kvmconfig_get_cfg_addr(cpu, cbomz_cfg);
if (value != *host_val) {
error_report("Unable to set %s to a different value than "
"the host (%u)",
cbomz_cfg->name, *host_val);
exit(EXIT_FAILURE);
}
cbomz_cfg->user_set = true;
}
static void kvm_riscv_update_cpu_cfg_isa_ext(RISCVCPU *cpu, CPUState *cs)
{
CPURISCVState *env = &cpu->env;
uint64_t id, reg;
int i, ret;
for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i];
if (!multi_ext_cfg->user_set) {
continue;
}
id = kvm_riscv_reg_id(env, KVM_REG_RISCV_ISA_EXT,
multi_ext_cfg->kvm_reg_id);
reg = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
ret = kvm_set_one_reg(cs, id, &reg);
if (ret != 0) {
error_report("Unable to %s extension %s in KVM, error %d",
reg ? "enable" : "disable",
multi_ext_cfg->name, ret);
exit(EXIT_FAILURE);
}
}
}
static void cpu_set_cfg_unavailable(Object *obj, Visitor *v,
const char *name,
void *opaque, Error **errp)
{
const char *propname = opaque;
bool value;
if (!visit_type_bool(v, name, &value, errp)) {
return;
}
if (value) {
error_setg(errp, "extension %s is not available with KVM",
propname);
}
}
static void riscv_cpu_add_kvm_unavail_prop(Object *obj, const char *prop_name)
{
/* Check if KVM created the property already */
if (object_property_find(obj, prop_name)) {
return;
}
/*
* Set the default to disabled for every extension
* unknown to KVM and error out if the user attempts
* to enable any of them.
*/
object_property_add(obj, prop_name, "bool",
NULL, cpu_set_cfg_unavailable,
NULL, (void *)prop_name);
}
static void riscv_cpu_add_kvm_unavail_prop_array(Object *obj,
const RISCVCPUMultiExtConfig *array)
{
const RISCVCPUMultiExtConfig *prop;
g_assert(array);
for (prop = array; prop && prop->name; prop++) {
riscv_cpu_add_kvm_unavail_prop(obj, prop->name);
}
}
static void kvm_riscv_add_cpu_user_properties(Object *cpu_obj)
{
int i;
riscv_add_satp_mode_properties(cpu_obj);
for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) {
KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i];
int bit = misa_cfg->offset;
misa_cfg->name = riscv_get_misa_ext_name(bit);
misa_cfg->description = riscv_get_misa_ext_description(bit);
object_property_add(cpu_obj, misa_cfg->name, "bool",
NULL,
kvm_cpu_set_misa_ext_cfg,
NULL, misa_cfg);
object_property_set_description(cpu_obj, misa_cfg->name,
misa_cfg->description);
}
for (i = 0; misa_bits[i] != 0; i++) {
const char *ext_name = riscv_get_misa_ext_name(misa_bits[i]);
riscv_cpu_add_kvm_unavail_prop(cpu_obj, ext_name);
}
for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
KVMCPUConfig *multi_cfg = &kvm_multi_ext_cfgs[i];
object_property_add(cpu_obj, multi_cfg->name, "bool",
NULL,
kvm_cpu_set_multi_ext_cfg,
NULL, multi_cfg);
}
object_property_add(cpu_obj, "cbom_blocksize", "uint16",
NULL, kvm_cpu_set_cbomz_blksize,
NULL, &kvm_cbom_blocksize);
object_property_add(cpu_obj, "cboz_blocksize", "uint16",
NULL, kvm_cpu_set_cbomz_blksize,
NULL, &kvm_cboz_blocksize);
riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_extensions);
riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_vendor_exts);
riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_experimental_exts);
}
static int kvm_riscv_get_regs_core(CPUState *cs)
{
int ret = 0;
int i;
target_ulong reg;
CPURISCVState *env = &RISCV_CPU(cs)->env;
ret = kvm_get_one_reg(cs, RISCV_CORE_REG(env, regs.pc), &reg);
if (ret) {
return ret;
}
env->pc = reg;
for (i = 1; i < 32; i++) {
uint64_t id = kvm_riscv_reg_id(env, KVM_REG_RISCV_CORE, i);
ret = kvm_get_one_reg(cs, id, &reg);
if (ret) {
return ret;
}
env->gpr[i] = reg;
}
return ret;
}
static int kvm_riscv_put_regs_core(CPUState *cs)
{
int ret = 0;
int i;
target_ulong reg;
CPURISCVState *env = &RISCV_CPU(cs)->env;
reg = env->pc;
ret = kvm_set_one_reg(cs, RISCV_CORE_REG(env, regs.pc), &reg);
if (ret) {
return ret;
}
for (i = 1; i < 32; i++) {
uint64_t id = kvm_riscv_reg_id(env, KVM_REG_RISCV_CORE, i);
reg = env->gpr[i];
ret = kvm_set_one_reg(cs, id, &reg);
if (ret) {
return ret;
}
}
return ret;
}
static int kvm_riscv_get_regs_csr(CPUState *cs)
{
int ret = 0;
CPURISCVState *env = &RISCV_CPU(cs)->env;
KVM_RISCV_GET_CSR(cs, env, sstatus, env->mstatus);
KVM_RISCV_GET_CSR(cs, env, sie, env->mie);
KVM_RISCV_GET_CSR(cs, env, stvec, env->stvec);
KVM_RISCV_GET_CSR(cs, env, sscratch, env->sscratch);
KVM_RISCV_GET_CSR(cs, env, sepc, env->sepc);
KVM_RISCV_GET_CSR(cs, env, scause, env->scause);
KVM_RISCV_GET_CSR(cs, env, stval, env->stval);
KVM_RISCV_GET_CSR(cs, env, sip, env->mip);
KVM_RISCV_GET_CSR(cs, env, satp, env->satp);
return ret;
}
static int kvm_riscv_put_regs_csr(CPUState *cs)
{
int ret = 0;
CPURISCVState *env = &RISCV_CPU(cs)->env;
KVM_RISCV_SET_CSR(cs, env, sstatus, env->mstatus);
KVM_RISCV_SET_CSR(cs, env, sie, env->mie);
KVM_RISCV_SET_CSR(cs, env, stvec, env->stvec);
KVM_RISCV_SET_CSR(cs, env, sscratch, env->sscratch);
KVM_RISCV_SET_CSR(cs, env, sepc, env->sepc);
KVM_RISCV_SET_CSR(cs, env, scause, env->scause);
KVM_RISCV_SET_CSR(cs, env, stval, env->stval);
KVM_RISCV_SET_CSR(cs, env, sip, env->mip);
KVM_RISCV_SET_CSR(cs, env, satp, env->satp);
return ret;
}
static int kvm_riscv_get_regs_fp(CPUState *cs)
{
int ret = 0;
int i;
CPURISCVState *env = &RISCV_CPU(cs)->env;
if (riscv_has_ext(env, RVD)) {
uint64_t reg;
for (i = 0; i < 32; i++) {
ret = kvm_get_one_reg(cs, RISCV_FP_D_REG(env, i), &reg);
if (ret) {
return ret;
}
env->fpr[i] = reg;
}
return ret;
}
if (riscv_has_ext(env, RVF)) {
uint32_t reg;
for (i = 0; i < 32; i++) {
ret = kvm_get_one_reg(cs, RISCV_FP_F_REG(env, i), &reg);
if (ret) {
return ret;
}
env->fpr[i] = reg;
}
return ret;
}
return ret;
}
static int kvm_riscv_put_regs_fp(CPUState *cs)
{
int ret = 0;
int i;
CPURISCVState *env = &RISCV_CPU(cs)->env;
if (riscv_has_ext(env, RVD)) {
uint64_t reg;
for (i = 0; i < 32; i++) {
reg = env->fpr[i];
ret = kvm_set_one_reg(cs, RISCV_FP_D_REG(env, i), &reg);
if (ret) {
return ret;
}
}
return ret;
}
if (riscv_has_ext(env, RVF)) {
uint32_t reg;
for (i = 0; i < 32; i++) {
reg = env->fpr[i];
ret = kvm_set_one_reg(cs, RISCV_FP_F_REG(env, i), &reg);
if (ret) {
return ret;
}
}
return ret;
}
return ret;
}
static void kvm_riscv_get_regs_timer(CPUState *cs)
{
CPURISCVState *env = &RISCV_CPU(cs)->env;
if (env->kvm_timer_dirty) {
return;
}
KVM_RISCV_GET_TIMER(cs, env, time, env->kvm_timer_time);
KVM_RISCV_GET_TIMER(cs, env, compare, env->kvm_timer_compare);
KVM_RISCV_GET_TIMER(cs, env, state, env->kvm_timer_state);
KVM_RISCV_GET_TIMER(cs, env, frequency, env->kvm_timer_frequency);
env->kvm_timer_dirty = true;
}
static void kvm_riscv_put_regs_timer(CPUState *cs)
{
uint64_t reg;
CPURISCVState *env = &RISCV_CPU(cs)->env;
if (!env->kvm_timer_dirty) {
return;
}
KVM_RISCV_SET_TIMER(cs, env, time, env->kvm_timer_time);
KVM_RISCV_SET_TIMER(cs, env, compare, env->kvm_timer_compare);
/*
* To set register of RISCV_TIMER_REG(state) will occur a error from KVM
* on env->kvm_timer_state == 0, It's better to adapt in KVM, but it
* doesn't matter that adaping in QEMU now.
* TODO If KVM changes, adapt here.
*/
if (env->kvm_timer_state) {
KVM_RISCV_SET_TIMER(cs, env, state, env->kvm_timer_state);
}
/*
* For now, migration will not work between Hosts with different timer
* frequency. Therefore, we should check whether they are the same here
* during the migration.
*/
if (migration_is_running(migrate_get_current()->state)) {
KVM_RISCV_GET_TIMER(cs, env, frequency, reg);
if (reg != env->kvm_timer_frequency) {
error_report("Dst Hosts timer frequency != Src Hosts");
}
}
env->kvm_timer_dirty = false;
}
typedef struct KVMScratchCPU {
int kvmfd;
int vmfd;
int cpufd;
} KVMScratchCPU;
/*
* Heavily inspired by kvm_arm_create_scratch_host_vcpu()
* from target/arm/kvm.c.
*/
static bool kvm_riscv_create_scratch_vcpu(KVMScratchCPU *scratch)
{
int kvmfd = -1, vmfd = -1, cpufd = -1;
kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
if (kvmfd < 0) {
goto err;
}
do {
vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
} while (vmfd == -1 && errno == EINTR);
if (vmfd < 0) {
goto err;
}
cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
if (cpufd < 0) {
goto err;
}
scratch->kvmfd = kvmfd;
scratch->vmfd = vmfd;
scratch->cpufd = cpufd;
return true;
err:
if (cpufd >= 0) {
close(cpufd);
}
if (vmfd >= 0) {
close(vmfd);
}
if (kvmfd >= 0) {
close(kvmfd);
}
return false;
}
static void kvm_riscv_destroy_scratch_vcpu(KVMScratchCPU *scratch)
{
close(scratch->cpufd);
close(scratch->vmfd);
close(scratch->kvmfd);
}
static void kvm_riscv_init_machine_ids(RISCVCPU *cpu, KVMScratchCPU *kvmcpu)
{
CPURISCVState *env = &cpu->env;
struct kvm_one_reg reg;
int ret;
reg.id = kvm_riscv_reg_id(env, KVM_REG_RISCV_CONFIG,
KVM_REG_RISCV_CONFIG_REG(mvendorid));
reg.addr = (uint64_t)&cpu->cfg.mvendorid;
ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
if (ret != 0) {
error_report("Unable to retrieve mvendorid from host, error %d", ret);
}
reg.id = kvm_riscv_reg_id(env, KVM_REG_RISCV_CONFIG,
KVM_REG_RISCV_CONFIG_REG(marchid));
reg.addr = (uint64_t)&cpu->cfg.marchid;
ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
if (ret != 0) {
error_report("Unable to retrieve marchid from host, error %d", ret);
}
reg.id = kvm_riscv_reg_id(env, KVM_REG_RISCV_CONFIG,
KVM_REG_RISCV_CONFIG_REG(mimpid));
reg.addr = (uint64_t)&cpu->cfg.mimpid;
ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
if (ret != 0) {
error_report("Unable to retrieve mimpid from host, error %d", ret);
}
}
static void kvm_riscv_init_misa_ext_mask(RISCVCPU *cpu,
KVMScratchCPU *kvmcpu)
{
CPURISCVState *env = &cpu->env;
struct kvm_one_reg reg;
int ret;
reg.id = kvm_riscv_reg_id(env, KVM_REG_RISCV_CONFIG,
KVM_REG_RISCV_CONFIG_REG(isa));
reg.addr = (uint64_t)&env->misa_ext_mask;
ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
if (ret) {
error_report("Unable to fetch ISA register from KVM, "
"error %d", ret);
kvm_riscv_destroy_scratch_vcpu(kvmcpu);
exit(EXIT_FAILURE);
}
env->misa_ext = env->misa_ext_mask;
}
static void kvm_riscv_read_cbomz_blksize(RISCVCPU *cpu, KVMScratchCPU *kvmcpu,
KVMCPUConfig *cbomz_cfg)
{
CPURISCVState *env = &cpu->env;
struct kvm_one_reg reg;
int ret;
reg.id = kvm_riscv_reg_id(env, KVM_REG_RISCV_CONFIG,
cbomz_cfg->kvm_reg_id);
reg.addr = (uint64_t)kvmconfig_get_cfg_addr(cpu, cbomz_cfg);
ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
if (ret != 0) {
error_report("Unable to read KVM reg %s, error %d",
cbomz_cfg->name, ret);
exit(EXIT_FAILURE);
}
}
static void kvm_riscv_read_multiext_legacy(RISCVCPU *cpu,
KVMScratchCPU *kvmcpu)
{
CPURISCVState *env = &cpu->env;
uint64_t val;
int i, ret;
for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i];
struct kvm_one_reg reg;
reg.id = kvm_riscv_reg_id(env, KVM_REG_RISCV_ISA_EXT,
multi_ext_cfg->kvm_reg_id);
reg.addr = (uint64_t)&val;
ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
if (ret != 0) {
if (errno == EINVAL) {
/* Silently default to 'false' if KVM does not support it. */
multi_ext_cfg->supported = false;
val = false;
} else {
error_report("Unable to read ISA_EXT KVM register %s, "
"error code: %s", multi_ext_cfg->name,
strerrorname_np(errno));
exit(EXIT_FAILURE);
}
} else {
multi_ext_cfg->supported = true;
}
kvm_cpu_cfg_set(cpu, multi_ext_cfg, val);
}
if (cpu->cfg.ext_icbom) {
kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize);
}
if (cpu->cfg.ext_icboz) {
kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize);
}
}
static int uint64_cmp(const void *a, const void *b)
{
uint64_t val1 = *(const uint64_t *)a;
uint64_t val2 = *(const uint64_t *)b;
if (val1 < val2) {
return -1;
}
if (val1 > val2) {
return 1;
}
return 0;
}
static void kvm_riscv_init_multiext_cfg(RISCVCPU *cpu, KVMScratchCPU *kvmcpu)
{
KVMCPUConfig *multi_ext_cfg;
struct kvm_one_reg reg;
struct kvm_reg_list rl_struct;
struct kvm_reg_list *reglist;
uint64_t val, reg_id, *reg_search;
int i, ret;
rl_struct.n = 0;
ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, &rl_struct);
/*
* If KVM_GET_REG_LIST isn't supported we'll get errno 22
* (EINVAL). Use read_legacy() in this case.
*/
if (errno == EINVAL) {
return kvm_riscv_read_multiext_legacy(cpu, kvmcpu);
} else if (errno != E2BIG) {
/*
* E2BIG is an expected error message for the API since we
* don't know the number of registers. The right amount will
* be written in rl_struct.n.
*
* Error out if we get any other errno.
*/
error_report("Error when accessing get-reg-list, code: %s",
strerrorname_np(errno));
exit(EXIT_FAILURE);
}
reglist = g_malloc(sizeof(struct kvm_reg_list) +
rl_struct.n * sizeof(uint64_t));
reglist->n = rl_struct.n;
ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, reglist);
if (ret) {
error_report("Error when reading KVM_GET_REG_LIST, code %s ",
strerrorname_np(errno));
exit(EXIT_FAILURE);
}
/* sort reglist to use bsearch() */
qsort(&reglist->reg, reglist->n, sizeof(uint64_t), uint64_cmp);
for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
multi_ext_cfg = &kvm_multi_ext_cfgs[i];
reg_id = kvm_riscv_reg_id(&cpu->env, KVM_REG_RISCV_ISA_EXT,
multi_ext_cfg->kvm_reg_id);
reg_search = bsearch(&reg_id, reglist->reg, reglist->n,
sizeof(uint64_t), uint64_cmp);
if (!reg_search) {
continue;
}
reg.id = reg_id;
reg.addr = (uint64_t)&val;
ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
if (ret != 0) {
error_report("Unable to read ISA_EXT KVM register %s, "
"error code: %s", multi_ext_cfg->name,
strerrorname_np(errno));
exit(EXIT_FAILURE);
}
multi_ext_cfg->supported = true;
kvm_cpu_cfg_set(cpu, multi_ext_cfg, val);
}
if (cpu->cfg.ext_icbom) {
kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize);
}
if (cpu->cfg.ext_icboz) {
kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize);
}
}
static void riscv_init_kvm_registers(Object *cpu_obj)
{
RISCVCPU *cpu = RISCV_CPU(cpu_obj);
KVMScratchCPU kvmcpu;
if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) {
return;
}
kvm_riscv_init_machine_ids(cpu, &kvmcpu);
kvm_riscv_init_misa_ext_mask(cpu, &kvmcpu);
kvm_riscv_init_multiext_cfg(cpu, &kvmcpu);
kvm_riscv_destroy_scratch_vcpu(&kvmcpu);
}
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
int kvm_arch_get_registers(CPUState *cs)
{
int ret = 0;
ret = kvm_riscv_get_regs_core(cs);
if (ret) {
return ret;
}
ret = kvm_riscv_get_regs_csr(cs);
if (ret) {
return ret;
}
ret = kvm_riscv_get_regs_fp(cs);
if (ret) {
return ret;
}
return ret;
}
int kvm_riscv_sync_mpstate_to_kvm(RISCVCPU *cpu, int state)
{
if (cap_has_mp_state) {
struct kvm_mp_state mp_state = {
.mp_state = state
};
int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
if (ret) {
fprintf(stderr, "%s: failed to sync MP_STATE %d/%s\n",
__func__, ret, strerror(-ret));
return -1;
}
}
return 0;
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
int ret = 0;
ret = kvm_riscv_put_regs_core(cs);
if (ret) {
return ret;
}
ret = kvm_riscv_put_regs_csr(cs);
if (ret) {
return ret;
}
ret = kvm_riscv_put_regs_fp(cs);
if (ret) {
return ret;
}
if (KVM_PUT_RESET_STATE == level) {
RISCVCPU *cpu = RISCV_CPU(cs);
if (cs->cpu_index == 0) {
ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_RUNNABLE);
} else {
ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_STOPPED);
}
if (ret) {
return ret;
}
}
return ret;
}
int kvm_arch_release_virq_post(int virq)
{
return 0;
}
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
uint64_t address, uint32_t data, PCIDevice *dev)
{
return 0;
}
int kvm_arch_destroy_vcpu(CPUState *cs)
{
return 0;
}
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
return cpu->cpu_index;
}
static void kvm_riscv_vm_state_change(void *opaque, bool running,
RunState state)
{
CPUState *cs = opaque;
if (running) {
kvm_riscv_put_regs_timer(cs);
} else {
kvm_riscv_get_regs_timer(cs);
}
}
void kvm_arch_init_irq_routing(KVMState *s)
{
}
static int kvm_vcpu_set_machine_ids(RISCVCPU *cpu, CPUState *cs)
{
CPURISCVState *env = &cpu->env;
target_ulong reg;
uint64_t id;
int ret;
id = kvm_riscv_reg_id(env, KVM_REG_RISCV_CONFIG,
KVM_REG_RISCV_CONFIG_REG(mvendorid));
/*
* cfg.mvendorid is an uint32 but a target_ulong will
* be written. Assign it to a target_ulong var to avoid
* writing pieces of other cpu->cfg fields in the reg.
*/
reg = cpu->cfg.mvendorid;
ret = kvm_set_one_reg(cs, id, &reg);
if (ret != 0) {
return ret;
}
id = kvm_riscv_reg_id(env, KVM_REG_RISCV_CONFIG,
KVM_REG_RISCV_CONFIG_REG(marchid));
ret = kvm_set_one_reg(cs, id, &cpu->cfg.marchid);
if (ret != 0) {
return ret;
}
id = kvm_riscv_reg_id(env, KVM_REG_RISCV_CONFIG,
KVM_REG_RISCV_CONFIG_REG(mimpid));
ret = kvm_set_one_reg(cs, id, &cpu->cfg.mimpid);
return ret;
}
int kvm_arch_init_vcpu(CPUState *cs)
{
int ret = 0;
RISCVCPU *cpu = RISCV_CPU(cs);
qemu_add_vm_change_state_handler(kvm_riscv_vm_state_change, cs);
if (!object_dynamic_cast(OBJECT(cpu), TYPE_RISCV_CPU_HOST)) {
ret = kvm_vcpu_set_machine_ids(cpu, cs);
if (ret != 0) {
return ret;
}
}
kvm_riscv_update_cpu_misa_ext(cpu, cs);
kvm_riscv_update_cpu_cfg_isa_ext(cpu, cs);
return ret;
}
int kvm_arch_msi_data_to_gsi(uint32_t data)
{
abort();
}
int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
int vector, PCIDevice *dev)
{
return 0;
}
int kvm_arch_get_default_type(MachineState *ms)
{
return 0;
}
int kvm_arch_init(MachineState *ms, KVMState *s)
{
cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
return 0;
}
int kvm_arch_irqchip_create(KVMState *s)
{
if (kvm_kernel_irqchip_split()) {
error_report("-machine kernel_irqchip=split is not supported on RISC-V.");
exit(1);
}
/*
* We can create the VAIA using the newer device control API.
*/
return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
}
int kvm_arch_process_async_events(CPUState *cs)
{
return 0;
}
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
}
MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
{
return MEMTXATTRS_UNSPECIFIED;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
{
return true;
}
static int kvm_riscv_handle_sbi(CPUState *cs, struct kvm_run *run)
{
int ret = 0;
unsigned char ch;
switch (run->riscv_sbi.extension_id) {
case SBI_EXT_0_1_CONSOLE_PUTCHAR:
ch = run->riscv_sbi.args[0];
qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch));
break;
case SBI_EXT_0_1_CONSOLE_GETCHAR:
ret = qemu_chr_fe_read_all(serial_hd(0)->be, &ch, sizeof(ch));
if (ret == sizeof(ch)) {
run->riscv_sbi.ret[0] = ch;
} else {
run->riscv_sbi.ret[0] = -1;
}
ret = 0;
break;
default:
qemu_log_mask(LOG_UNIMP,
"%s: un-handled SBI EXIT, specific reasons is %lu\n",
__func__, run->riscv_sbi.extension_id);
ret = -1;
break;
}
return ret;
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
int ret = 0;
switch (run->exit_reason) {
case KVM_EXIT_RISCV_SBI:
ret = kvm_riscv_handle_sbi(cs, run);
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
__func__, run->exit_reason);
ret = -1;
break;
}
return ret;
}
void kvm_riscv_reset_vcpu(RISCVCPU *cpu)
{
CPURISCVState *env = &cpu->env;
int i;
if (!kvm_enabled()) {
return;
}
for (i = 0; i < 32; i++) {
env->gpr[i] = 0;
}
env->pc = cpu->env.kernel_addr;
env->gpr[10] = kvm_arch_vcpu_id(CPU(cpu)); /* a0 */
env->gpr[11] = cpu->env.fdt_addr; /* a1 */
env->satp = 0;
env->mie = 0;
env->stvec = 0;
env->sscratch = 0;
env->sepc = 0;
env->scause = 0;
env->stval = 0;
env->mip = 0;
}
void kvm_riscv_set_irq(RISCVCPU *cpu, int irq, int level)
{
int ret;
unsigned virq = level ? KVM_INTERRUPT_SET : KVM_INTERRUPT_UNSET;
if (irq != IRQ_S_EXT) {
perror("kvm riscv set irq != IRQ_S_EXT\n");
abort();
}
ret = kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
if (ret < 0) {
perror("Set irq failed");
abort();
}
}
bool kvm_arch_cpu_check_are_resettable(void)
{
return true;
}
static int aia_mode;
static const char *kvm_aia_mode_str(uint64_t mode)
{
switch (mode) {
case KVM_DEV_RISCV_AIA_MODE_EMUL:
return "emul";
case KVM_DEV_RISCV_AIA_MODE_HWACCEL:
return "hwaccel";
case KVM_DEV_RISCV_AIA_MODE_AUTO:
default:
return "auto";
};
}
static char *riscv_get_kvm_aia(Object *obj, Error **errp)
{
return g_strdup(kvm_aia_mode_str(aia_mode));
}
static void riscv_set_kvm_aia(Object *obj, const char *val, Error **errp)
{
if (!strcmp(val, "emul")) {
aia_mode = KVM_DEV_RISCV_AIA_MODE_EMUL;
} else if (!strcmp(val, "hwaccel")) {
aia_mode = KVM_DEV_RISCV_AIA_MODE_HWACCEL;
} else if (!strcmp(val, "auto")) {
aia_mode = KVM_DEV_RISCV_AIA_MODE_AUTO;
} else {
error_setg(errp, "Invalid KVM AIA mode");
error_append_hint(errp, "Valid values are emul, hwaccel, and auto.\n");
}
}
void kvm_arch_accel_class_init(ObjectClass *oc)
{
object_class_property_add_str(oc, "riscv-aia", riscv_get_kvm_aia,
riscv_set_kvm_aia);
object_class_property_set_description(oc, "riscv-aia",
"Set KVM AIA mode. Valid values are "
"emul, hwaccel, and auto. Default "
"is auto.");
object_property_set_default_str(object_class_property_find(oc, "riscv-aia"),
"auto");
}
void kvm_riscv_aia_create(MachineState *machine, uint64_t group_shift,
uint64_t aia_irq_num, uint64_t aia_msi_num,
uint64_t aplic_base, uint64_t imsic_base,
uint64_t guest_num)
{
int ret, i;
int aia_fd = -1;
uint64_t default_aia_mode;
uint64_t socket_count = riscv_socket_count(machine);
uint64_t max_hart_per_socket = 0;
uint64_t socket, base_hart, hart_count, socket_imsic_base, imsic_addr;
uint64_t socket_bits, hart_bits, guest_bits;
aia_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_RISCV_AIA, false);
if (aia_fd < 0) {
error_report("Unable to create in-kernel irqchip");
exit(1);
}
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_MODE,
&default_aia_mode, false, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to get current KVM AIA mode");
exit(1);
}
qemu_log("KVM AIA: default mode is %s\n",
kvm_aia_mode_str(default_aia_mode));
if (default_aia_mode != aia_mode) {
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_MODE,
&aia_mode, true, NULL);
if (ret < 0)
warn_report("KVM AIA: failed to set KVM AIA mode");
else
qemu_log("KVM AIA: set current mode to %s\n",
kvm_aia_mode_str(aia_mode));
}
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_SRCS,
&aia_irq_num, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set number of input irq lines");
exit(1);
}
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_IDS,
&aia_msi_num, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set number of msi");
exit(1);
}
socket_bits = find_last_bit(&socket_count, BITS_PER_LONG) + 1;
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_GROUP_BITS,
&socket_bits, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set group_bits");
exit(1);
}
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_GROUP_SHIFT,
&group_shift, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set group_shift");
exit(1);
}
guest_bits = guest_num == 0 ? 0 :
find_last_bit(&guest_num, BITS_PER_LONG) + 1;
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_GUEST_BITS,
&guest_bits, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set guest_bits");
exit(1);
}
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR,
KVM_DEV_RISCV_AIA_ADDR_APLIC,
&aplic_base, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set the base address of APLIC");
exit(1);
}
for (socket = 0; socket < socket_count; socket++) {
socket_imsic_base = imsic_base + socket * (1U << group_shift);
hart_count = riscv_socket_hart_count(machine, socket);
base_hart = riscv_socket_first_hartid(machine, socket);
if (max_hart_per_socket < hart_count) {
max_hart_per_socket = hart_count;
}
for (i = 0; i < hart_count; i++) {
imsic_addr = socket_imsic_base + i * IMSIC_HART_SIZE(guest_bits);
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR,
KVM_DEV_RISCV_AIA_ADDR_IMSIC(i + base_hart),
&imsic_addr, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set the IMSIC address for hart %d", i);
exit(1);
}
}
}
hart_bits = find_last_bit(&max_hart_per_socket, BITS_PER_LONG) + 1;
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
KVM_DEV_RISCV_AIA_CONFIG_HART_BITS,
&hart_bits, true, NULL);
if (ret < 0) {
error_report("KVM AIA: failed to set hart_bits");
exit(1);
}
if (kvm_has_gsi_routing()) {
for (uint64_t idx = 0; idx < aia_irq_num + 1; ++idx) {
/* KVM AIA only has one APLIC instance */
kvm_irqchip_add_irq_route(kvm_state, idx, 0, idx);
}
kvm_gsi_routing_allowed = true;
kvm_irqchip_commit_routes(kvm_state);
}
ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CTRL,
KVM_DEV_RISCV_AIA_CTRL_INIT,
NULL, true, NULL);
if (ret < 0) {
error_report("KVM AIA: initialized fail");
exit(1);
}
kvm_msi_via_irqfd_allowed = kvm_irqfds_enabled();
}
static void kvm_cpu_instance_init(CPUState *cs)
{
Object *obj = OBJECT(RISCV_CPU(cs));
DeviceState *dev = DEVICE(obj);
riscv_init_kvm_registers(obj);
kvm_riscv_add_cpu_user_properties(obj);
for (Property *prop = riscv_cpu_options; prop && prop->name; prop++) {
/* Check if we have a specific KVM handler for the option */
if (object_property_find(obj, prop->name)) {
continue;
}
qdev_property_add_static(dev, prop);
}
}
static void kvm_cpu_accel_class_init(ObjectClass *oc, void *data)
{
AccelCPUClass *acc = ACCEL_CPU_CLASS(oc);
acc->cpu_instance_init = kvm_cpu_instance_init;
}
static const TypeInfo kvm_cpu_accel_type_info = {
.name = ACCEL_CPU_NAME("kvm"),
.parent = TYPE_ACCEL_CPU,
.class_init = kvm_cpu_accel_class_init,
.abstract = true,
};
static void kvm_cpu_accel_register_types(void)
{
type_register_static(&kvm_cpu_accel_type_info);
}
type_init(kvm_cpu_accel_register_types);
static void riscv_host_cpu_init(Object *obj)
{
CPURISCVState *env = &RISCV_CPU(obj)->env;
#if defined(TARGET_RISCV32)
env->misa_mxl_max = env->misa_mxl = MXL_RV32;
#elif defined(TARGET_RISCV64)
env->misa_mxl_max = env->misa_mxl = MXL_RV64;
#endif
}
static const TypeInfo riscv_kvm_cpu_type_infos[] = {
{
.name = TYPE_RISCV_CPU_HOST,
.parent = TYPE_RISCV_CPU,
.instance_init = riscv_host_cpu_init,
}
};
DEFINE_TYPES(riscv_kvm_cpu_type_infos)