qemu-e2k/hw/intc/apic.c
Paolo Bonzini afd1af1c99 hw/intc/apic: fix memory leak
deliver_bitmask is allocated on the heap in apic_deliver(), but there
are many paths in the function that return before the corresponding
g_free() is reached.  Fix this by switching to g_autofree and, while at
it, also switch to g_new.  Do the same in apic_deliver_irq() as well
for consistency.

Fixes: b5ee0468e9 ("apic: add support for x2APIC mode", 2024-02-14)
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Bui Quang Minh <minhquangbui99@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-03-08 15:51:22 +01:00

1209 lines
32 KiB
C

/*
* APIC support
*
* Copyright (c) 2004-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>
*/
#include "qemu/osdep.h"
#include "qemu/thread.h"
#include "qemu/error-report.h"
#include "hw/i386/apic_internal.h"
#include "hw/i386/apic.h"
#include "hw/intc/ioapic.h"
#include "hw/intc/i8259.h"
#include "hw/intc/kvm_irqcount.h"
#include "hw/pci/msi.h"
#include "qemu/host-utils.h"
#include "sysemu/kvm.h"
#include "trace.h"
#include "hw/i386/apic-msidef.h"
#include "qapi/error.h"
#include "qom/object.h"
#define SYNC_FROM_VAPIC 0x1
#define SYNC_TO_VAPIC 0x2
#define SYNC_ISR_IRR_TO_VAPIC 0x4
static APICCommonState **local_apics;
static uint32_t max_apics;
static uint32_t max_apic_words;
#define TYPE_APIC "apic"
/*This is reusing the APICCommonState typedef from APIC_COMMON */
DECLARE_INSTANCE_CHECKER(APICCommonState, APIC,
TYPE_APIC)
static void apic_set_irq(APICCommonState *s, int vector_num, int trigger_mode);
static void apic_update_irq(APICCommonState *s);
static void apic_get_delivery_bitmask(uint32_t *deliver_bitmask,
uint32_t dest, uint8_t dest_mode);
void apic_set_max_apic_id(uint32_t max_apic_id)
{
int word_size = 32;
/* round up the max apic id to next multiple of words */
max_apics = (max_apic_id + word_size - 1) & ~(word_size - 1);
local_apics = g_malloc0(sizeof(*local_apics) * max_apics);
max_apic_words = max_apics >> 5;
}
/* Find first bit starting from msb */
static int apic_fls_bit(uint32_t value)
{
return 31 - clz32(value);
}
/* Find first bit starting from lsb */
static int apic_ffs_bit(uint32_t value)
{
return ctz32(value);
}
static inline void apic_reset_bit(uint32_t *tab, int index)
{
int i, mask;
i = index >> 5;
mask = 1 << (index & 0x1f);
tab[i] &= ~mask;
}
/* return -1 if no bit is set */
static int get_highest_priority_int(uint32_t *tab)
{
int i;
for (i = 7; i >= 0; i--) {
if (tab[i] != 0) {
return i * 32 + apic_fls_bit(tab[i]);
}
}
return -1;
}
static void apic_sync_vapic(APICCommonState *s, int sync_type)
{
VAPICState vapic_state;
size_t length;
off_t start;
int vector;
if (!s->vapic_paddr) {
return;
}
if (sync_type & SYNC_FROM_VAPIC) {
cpu_physical_memory_read(s->vapic_paddr, &vapic_state,
sizeof(vapic_state));
s->tpr = vapic_state.tpr;
}
if (sync_type & (SYNC_TO_VAPIC | SYNC_ISR_IRR_TO_VAPIC)) {
start = offsetof(VAPICState, isr);
length = offsetof(VAPICState, enabled) - offsetof(VAPICState, isr);
if (sync_type & SYNC_TO_VAPIC) {
assert(qemu_cpu_is_self(CPU(s->cpu)));
vapic_state.tpr = s->tpr;
vapic_state.enabled = 1;
start = 0;
length = sizeof(VAPICState);
}
vector = get_highest_priority_int(s->isr);
if (vector < 0) {
vector = 0;
}
vapic_state.isr = vector & 0xf0;
vapic_state.zero = 0;
vector = get_highest_priority_int(s->irr);
if (vector < 0) {
vector = 0;
}
vapic_state.irr = vector & 0xff;
address_space_write_rom(&address_space_memory,
s->vapic_paddr + start,
MEMTXATTRS_UNSPECIFIED,
((void *)&vapic_state) + start, length);
}
}
static void apic_vapic_base_update(APICCommonState *s)
{
apic_sync_vapic(s, SYNC_TO_VAPIC);
}
static void apic_local_deliver(APICCommonState *s, int vector)
{
uint32_t lvt = s->lvt[vector];
int trigger_mode;
trace_apic_local_deliver(vector, (lvt >> 8) & 7);
if (lvt & APIC_LVT_MASKED)
return;
switch ((lvt >> 8) & 7) {
case APIC_DM_SMI:
cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_SMI);
break;
case APIC_DM_NMI:
cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_NMI);
break;
case APIC_DM_EXTINT:
cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HARD);
break;
case APIC_DM_FIXED:
trigger_mode = APIC_TRIGGER_EDGE;
if ((vector == APIC_LVT_LINT0 || vector == APIC_LVT_LINT1) &&
(lvt & APIC_LVT_LEVEL_TRIGGER))
trigger_mode = APIC_TRIGGER_LEVEL;
apic_set_irq(s, lvt & 0xff, trigger_mode);
}
}
void apic_deliver_pic_intr(DeviceState *dev, int level)
{
APICCommonState *s = APIC(dev);
if (level) {
apic_local_deliver(s, APIC_LVT_LINT0);
} else {
uint32_t lvt = s->lvt[APIC_LVT_LINT0];
switch ((lvt >> 8) & 7) {
case APIC_DM_FIXED:
if (!(lvt & APIC_LVT_LEVEL_TRIGGER))
break;
apic_reset_bit(s->irr, lvt & 0xff);
/* fall through */
case APIC_DM_EXTINT:
apic_update_irq(s);
break;
}
}
}
static void apic_external_nmi(APICCommonState *s)
{
apic_local_deliver(s, APIC_LVT_LINT1);
}
#define foreach_apic(apic, deliver_bitmask, code) \
{\
int __i, __j;\
for (__i = 0; __i < max_apic_words; __i++) {\
uint32_t __mask = deliver_bitmask[__i];\
if (__mask) {\
for (__j = 0; __j < 32; __j++) {\
if (__mask & (1U << __j)) {\
apic = local_apics[__i * 32 + __j];\
if (apic) {\
code;\
}\
}\
}\
}\
}\
}
static void apic_bus_deliver(const uint32_t *deliver_bitmask,
uint8_t delivery_mode, uint8_t vector_num,
uint8_t trigger_mode)
{
APICCommonState *apic_iter;
switch (delivery_mode) {
case APIC_DM_LOWPRI:
/* XXX: search for focus processor, arbitration */
{
int i, d;
d = -1;
for (i = 0; i < max_apic_words; i++) {
if (deliver_bitmask[i]) {
d = i * 32 + apic_ffs_bit(deliver_bitmask[i]);
break;
}
}
if (d >= 0) {
apic_iter = local_apics[d];
if (apic_iter) {
apic_set_irq(apic_iter, vector_num, trigger_mode);
}
}
}
return;
case APIC_DM_FIXED:
break;
case APIC_DM_SMI:
foreach_apic(apic_iter, deliver_bitmask,
cpu_interrupt(CPU(apic_iter->cpu), CPU_INTERRUPT_SMI)
);
return;
case APIC_DM_NMI:
foreach_apic(apic_iter, deliver_bitmask,
cpu_interrupt(CPU(apic_iter->cpu), CPU_INTERRUPT_NMI)
);
return;
case APIC_DM_INIT:
/* normal INIT IPI sent to processors */
foreach_apic(apic_iter, deliver_bitmask,
cpu_interrupt(CPU(apic_iter->cpu),
CPU_INTERRUPT_INIT)
);
return;
case APIC_DM_EXTINT:
/* handled in I/O APIC code */
break;
default:
return;
}
foreach_apic(apic_iter, deliver_bitmask,
apic_set_irq(apic_iter, vector_num, trigger_mode) );
}
static void apic_deliver_irq(uint32_t dest, uint8_t dest_mode,
uint8_t delivery_mode, uint8_t vector_num,
uint8_t trigger_mode)
{
g_autofree uint32_t *deliver_bitmask = g_new(uint32_t, max_apic_words);
trace_apic_deliver_irq(dest, dest_mode, delivery_mode, vector_num,
trigger_mode);
apic_get_delivery_bitmask(deliver_bitmask, dest, dest_mode);
apic_bus_deliver(deliver_bitmask, delivery_mode, vector_num, trigger_mode);
}
bool is_x2apic_mode(DeviceState *dev)
{
APICCommonState *s = APIC(dev);
return s->apicbase & MSR_IA32_APICBASE_EXTD;
}
static int apic_set_base_check(APICCommonState *s, uint64_t val)
{
/* Enable x2apic when x2apic is not supported by CPU */
if (!cpu_has_x2apic_feature(&s->cpu->env) &&
val & MSR_IA32_APICBASE_EXTD) {
return -1;
}
/*
* Transition into invalid state
* (s->apicbase & MSR_IA32_APICBASE_ENABLE == 0) &&
* (s->apicbase & MSR_IA32_APICBASE_EXTD) == 1
*/
if (!(val & MSR_IA32_APICBASE_ENABLE) &&
(val & MSR_IA32_APICBASE_EXTD)) {
return -1;
}
/* Invalid transition from disabled mode to x2APIC */
if (!(s->apicbase & MSR_IA32_APICBASE_ENABLE) &&
!(s->apicbase & MSR_IA32_APICBASE_EXTD) &&
(val & MSR_IA32_APICBASE_ENABLE) &&
(val & MSR_IA32_APICBASE_EXTD)) {
return -1;
}
/* Invalid transition from x2APIC to xAPIC */
if ((s->apicbase & MSR_IA32_APICBASE_ENABLE) &&
(s->apicbase & MSR_IA32_APICBASE_EXTD) &&
(val & MSR_IA32_APICBASE_ENABLE) &&
!(val & MSR_IA32_APICBASE_EXTD)) {
return -1;
}
return 0;
}
static int apic_set_base(APICCommonState *s, uint64_t val)
{
if (apic_set_base_check(s, val) < 0) {
return -1;
}
s->apicbase = (val & 0xfffff000) |
(s->apicbase & (MSR_IA32_APICBASE_BSP | MSR_IA32_APICBASE_ENABLE));
/* if disabled, cannot be enabled again */
if (!(val & MSR_IA32_APICBASE_ENABLE)) {
s->apicbase &= ~MSR_IA32_APICBASE_ENABLE;
cpu_clear_apic_feature(&s->cpu->env);
s->spurious_vec &= ~APIC_SV_ENABLE;
}
/* Transition from disabled mode to xAPIC */
if (!(s->apicbase & MSR_IA32_APICBASE_ENABLE) &&
(val & MSR_IA32_APICBASE_ENABLE)) {
s->apicbase |= MSR_IA32_APICBASE_ENABLE;
cpu_set_apic_feature(&s->cpu->env);
}
/* Transition from xAPIC to x2APIC */
if (cpu_has_x2apic_feature(&s->cpu->env) &&
!(s->apicbase & MSR_IA32_APICBASE_EXTD) &&
(val & MSR_IA32_APICBASE_EXTD)) {
s->apicbase |= MSR_IA32_APICBASE_EXTD;
s->log_dest = ((s->initial_apic_id & 0xffff0) << 16) |
(1 << (s->initial_apic_id & 0xf));
}
return 0;
}
static void apic_set_tpr(APICCommonState *s, uint8_t val)
{
/* Updates from cr8 are ignored while the VAPIC is active */
if (!s->vapic_paddr) {
s->tpr = val << 4;
apic_update_irq(s);
}
}
int apic_get_highest_priority_irr(DeviceState *dev)
{
APICCommonState *s;
if (!dev) {
/* no interrupts */
return -1;
}
s = APIC_COMMON(dev);
return get_highest_priority_int(s->irr);
}
static uint8_t apic_get_tpr(APICCommonState *s)
{
apic_sync_vapic(s, SYNC_FROM_VAPIC);
return s->tpr >> 4;
}
int apic_get_ppr(APICCommonState *s)
{
int tpr, isrv, ppr;
tpr = (s->tpr >> 4);
isrv = get_highest_priority_int(s->isr);
if (isrv < 0)
isrv = 0;
isrv >>= 4;
if (tpr >= isrv)
ppr = s->tpr;
else
ppr = isrv << 4;
return ppr;
}
static int apic_get_arb_pri(APICCommonState *s)
{
/* XXX: arbitration */
return 0;
}
/*
* <0 - low prio interrupt,
* 0 - no interrupt,
* >0 - interrupt number
*/
static int apic_irq_pending(APICCommonState *s)
{
int irrv, ppr;
if (!(s->spurious_vec & APIC_SV_ENABLE)) {
return 0;
}
irrv = get_highest_priority_int(s->irr);
if (irrv < 0) {
return 0;
}
ppr = apic_get_ppr(s);
if (ppr && (irrv & 0xf0) <= (ppr & 0xf0)) {
return -1;
}
return irrv;
}
/* signal the CPU if an irq is pending */
static void apic_update_irq(APICCommonState *s)
{
CPUState *cpu;
DeviceState *dev = (DeviceState *)s;
cpu = CPU(s->cpu);
if (!qemu_cpu_is_self(cpu)) {
cpu_interrupt(cpu, CPU_INTERRUPT_POLL);
} else if (apic_irq_pending(s) > 0) {
cpu_interrupt(cpu, CPU_INTERRUPT_HARD);
} else if (!apic_accept_pic_intr(dev) || !pic_get_output(isa_pic)) {
cpu_reset_interrupt(cpu, CPU_INTERRUPT_HARD);
}
}
void apic_poll_irq(DeviceState *dev)
{
APICCommonState *s = APIC(dev);
apic_sync_vapic(s, SYNC_FROM_VAPIC);
apic_update_irq(s);
}
static void apic_set_irq(APICCommonState *s, int vector_num, int trigger_mode)
{
kvm_report_irq_delivered(!apic_get_bit(s->irr, vector_num));
apic_set_bit(s->irr, vector_num);
if (trigger_mode)
apic_set_bit(s->tmr, vector_num);
else
apic_reset_bit(s->tmr, vector_num);
if (s->vapic_paddr) {
apic_sync_vapic(s, SYNC_ISR_IRR_TO_VAPIC);
/*
* The vcpu thread needs to see the new IRR before we pull its current
* TPR value. That way, if we miss a lowering of the TRP, the guest
* has the chance to notice the new IRR and poll for IRQs on its own.
*/
smp_wmb();
apic_sync_vapic(s, SYNC_FROM_VAPIC);
}
apic_update_irq(s);
}
static void apic_eoi(APICCommonState *s)
{
int isrv;
isrv = get_highest_priority_int(s->isr);
if (isrv < 0)
return;
apic_reset_bit(s->isr, isrv);
if (!(s->spurious_vec & APIC_SV_DIRECTED_IO) && apic_get_bit(s->tmr, isrv)) {
ioapic_eoi_broadcast(isrv);
}
apic_sync_vapic(s, SYNC_FROM_VAPIC | SYNC_TO_VAPIC);
apic_update_irq(s);
}
static bool apic_match_dest(APICCommonState *apic, uint32_t dest)
{
if (is_x2apic_mode(&apic->parent_obj)) {
return apic->initial_apic_id == dest;
} else {
return apic->id == (uint8_t)dest;
}
}
static void apic_find_dest(uint32_t *deliver_bitmask, uint32_t dest)
{
APICCommonState *apic = NULL;
int i;
for (i = 0; i < max_apics; i++) {
apic = local_apics[i];
if (apic && apic_match_dest(apic, dest)) {
apic_set_bit(deliver_bitmask, i);
}
}
}
/*
* Deliver interrupt to x2APIC CPUs if it is x2APIC broadcast.
* Otherwise, deliver interrupt to xAPIC CPUs if it is xAPIC
* broadcast.
*/
static void apic_get_broadcast_bitmask(uint32_t *deliver_bitmask,
bool is_x2apic_broadcast)
{
int i;
APICCommonState *apic_iter;
for (i = 0; i < max_apics; i++) {
apic_iter = local_apics[i];
if (apic_iter) {
bool apic_in_x2apic = is_x2apic_mode(&apic_iter->parent_obj);
if (is_x2apic_broadcast && apic_in_x2apic) {
apic_set_bit(deliver_bitmask, i);
} else if (!is_x2apic_broadcast && !apic_in_x2apic) {
apic_set_bit(deliver_bitmask, i);
}
}
}
}
static void apic_get_delivery_bitmask(uint32_t *deliver_bitmask,
uint32_t dest, uint8_t dest_mode)
{
APICCommonState *apic;
int i;
memset(deliver_bitmask, 0x00, max_apic_words * sizeof(uint32_t));
/*
* x2APIC broadcast is delivered to all x2APIC CPUs regardless of
* destination mode. In case the destination mode is physical, it is
* broadcasted to all xAPIC CPUs too. Otherwise, if the destination
* mode is logical, we need to continue checking if xAPIC CPUs accepts
* the interrupt.
*/
if (dest == 0xffffffff) {
if (dest_mode == APIC_DESTMODE_PHYSICAL) {
memset(deliver_bitmask, 0xff, max_apic_words * sizeof(uint32_t));
return;
} else {
apic_get_broadcast_bitmask(deliver_bitmask, true);
}
}
if (dest_mode == APIC_DESTMODE_PHYSICAL) {
apic_find_dest(deliver_bitmask, dest);
/* Any APIC in xAPIC mode will interpret 0xFF as broadcast */
if (dest == 0xff) {
apic_get_broadcast_bitmask(deliver_bitmask, false);
}
} else {
/* XXX: logical mode */
for (i = 0; i < max_apics; i++) {
apic = local_apics[i];
if (apic) {
/* x2APIC logical mode */
if (apic->apicbase & MSR_IA32_APICBASE_EXTD) {
if ((dest >> 16) == (apic->extended_log_dest >> 16) &&
(dest & apic->extended_log_dest & 0xffff)) {
apic_set_bit(deliver_bitmask, i);
}
continue;
}
/* xAPIC logical mode */
dest = (uint8_t)dest;
if (apic->dest_mode == APIC_DESTMODE_LOGICAL_FLAT) {
if (dest & apic->log_dest) {
apic_set_bit(deliver_bitmask, i);
}
} else if (apic->dest_mode == APIC_DESTMODE_LOGICAL_CLUSTER) {
/*
* In cluster model of xAPIC logical mode IPI, 4 higher
* bits are used as cluster address, 4 lower bits are
* the bitmask for local APICs in the cluster. The IPI
* is delivered to an APIC if the cluster address
* matches and the APIC's address bit in the cluster is
* set in bitmask of destination ID in IPI.
*
* The cluster address ranges from 0 - 14, the cluster
* address 15 (0xf) is the broadcast address to all
* clusters.
*/
if ((dest & 0xf0) == 0xf0 ||
(dest & 0xf0) == (apic->log_dest & 0xf0)) {
if (dest & apic->log_dest & 0x0f) {
apic_set_bit(deliver_bitmask, i);
}
}
}
}
}
}
}
static void apic_startup(APICCommonState *s, int vector_num)
{
s->sipi_vector = vector_num;
cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_SIPI);
}
void apic_sipi(DeviceState *dev)
{
APICCommonState *s = APIC(dev);
cpu_reset_interrupt(CPU(s->cpu), CPU_INTERRUPT_SIPI);
if (!s->wait_for_sipi)
return;
cpu_x86_load_seg_cache_sipi(s->cpu, s->sipi_vector);
s->wait_for_sipi = 0;
}
static void apic_deliver(DeviceState *dev, uint32_t dest, uint8_t dest_mode,
uint8_t delivery_mode, uint8_t vector_num,
uint8_t trigger_mode, uint8_t dest_shorthand)
{
APICCommonState *s = APIC(dev);
APICCommonState *apic_iter;
uint32_t deliver_bitmask_size = max_apic_words * sizeof(uint32_t);
g_autofree uint32_t *deliver_bitmask = g_new(uint32_t, max_apic_words);
uint32_t current_apic_id;
if (is_x2apic_mode(dev)) {
current_apic_id = s->initial_apic_id;
} else {
current_apic_id = s->id;
}
switch (dest_shorthand) {
case 0:
apic_get_delivery_bitmask(deliver_bitmask, dest, dest_mode);
break;
case 1:
memset(deliver_bitmask, 0x00, deliver_bitmask_size);
apic_set_bit(deliver_bitmask, current_apic_id);
break;
case 2:
memset(deliver_bitmask, 0xff, deliver_bitmask_size);
break;
case 3:
memset(deliver_bitmask, 0xff, deliver_bitmask_size);
apic_reset_bit(deliver_bitmask, current_apic_id);
break;
}
switch (delivery_mode) {
case APIC_DM_INIT:
{
int trig_mode = (s->icr[0] >> 15) & 1;
int level = (s->icr[0] >> 14) & 1;
if (level == 0 && trig_mode == 1) {
foreach_apic(apic_iter, deliver_bitmask,
apic_iter->arb_id = apic_iter->id );
return;
}
}
break;
case APIC_DM_SIPI:
foreach_apic(apic_iter, deliver_bitmask,
apic_startup(apic_iter, vector_num) );
return;
}
apic_bus_deliver(deliver_bitmask, delivery_mode, vector_num, trigger_mode);
}
static bool apic_check_pic(APICCommonState *s)
{
DeviceState *dev = (DeviceState *)s;
if (!apic_accept_pic_intr(dev) || !pic_get_output(isa_pic)) {
return false;
}
apic_deliver_pic_intr(dev, 1);
return true;
}
int apic_get_interrupt(DeviceState *dev)
{
APICCommonState *s = APIC(dev);
int intno;
/* if the APIC is installed or enabled, we let the 8259 handle the
IRQs */
if (!s)
return -1;
if (!(s->spurious_vec & APIC_SV_ENABLE))
return -1;
apic_sync_vapic(s, SYNC_FROM_VAPIC);
intno = apic_irq_pending(s);
/* if there is an interrupt from the 8259, let the caller handle
* that first since ExtINT interrupts ignore the priority.
*/
if (intno == 0 || apic_check_pic(s)) {
apic_sync_vapic(s, SYNC_TO_VAPIC);
return -1;
} else if (intno < 0) {
apic_sync_vapic(s, SYNC_TO_VAPIC);
return s->spurious_vec & 0xff;
}
apic_reset_bit(s->irr, intno);
apic_set_bit(s->isr, intno);
apic_sync_vapic(s, SYNC_TO_VAPIC);
apic_update_irq(s);
return intno;
}
int apic_accept_pic_intr(DeviceState *dev)
{
APICCommonState *s = APIC(dev);
uint32_t lvt0;
if (!s)
return -1;
lvt0 = s->lvt[APIC_LVT_LINT0];
if ((s->apicbase & MSR_IA32_APICBASE_ENABLE) == 0 ||
(lvt0 & APIC_LVT_MASKED) == 0)
return isa_pic != NULL;
return 0;
}
static void apic_timer_update(APICCommonState *s, int64_t current_time)
{
if (apic_next_timer(s, current_time)) {
timer_mod(s->timer, s->next_time);
} else {
timer_del(s->timer);
}
}
static void apic_timer(void *opaque)
{
APICCommonState *s = opaque;
apic_local_deliver(s, APIC_LVT_TIMER);
apic_timer_update(s, s->next_time);
}
static int apic_register_read(int index, uint64_t *value)
{
DeviceState *dev;
APICCommonState *s;
uint32_t val;
int ret = 0;
dev = cpu_get_current_apic();
if (!dev) {
return -1;
}
s = APIC(dev);
switch(index) {
case 0x02: /* id */
if (is_x2apic_mode(dev)) {
val = s->initial_apic_id;
} else {
val = s->id << 24;
}
break;
case 0x03: /* version */
val = s->version | ((APIC_LVT_NB - 1) << 16);
break;
case 0x08:
apic_sync_vapic(s, SYNC_FROM_VAPIC);
if (apic_report_tpr_access) {
cpu_report_tpr_access(&s->cpu->env, TPR_ACCESS_READ);
}
val = s->tpr;
break;
case 0x09:
val = apic_get_arb_pri(s);
break;
case 0x0a:
/* ppr */
val = apic_get_ppr(s);
break;
case 0x0b:
val = 0;
break;
case 0x0d:
if (is_x2apic_mode(dev)) {
val = s->extended_log_dest;
} else {
val = s->log_dest << 24;
}
break;
case 0x0e:
if (is_x2apic_mode(dev)) {
val = 0;
ret = -1;
} else {
val = (s->dest_mode << 28) | 0xfffffff;
}
break;
case 0x0f:
val = s->spurious_vec;
break;
case 0x10 ... 0x17:
val = s->isr[index & 7];
break;
case 0x18 ... 0x1f:
val = s->tmr[index & 7];
break;
case 0x20 ... 0x27:
val = s->irr[index & 7];
break;
case 0x28:
val = s->esr;
break;
case 0x30:
case 0x31:
val = s->icr[index & 1];
break;
case 0x32 ... 0x37:
val = s->lvt[index - 0x32];
break;
case 0x38:
val = s->initial_count;
break;
case 0x39:
val = apic_get_current_count(s);
break;
case 0x3e:
val = s->divide_conf;
break;
default:
s->esr |= APIC_ESR_ILLEGAL_ADDRESS;
val = 0;
ret = -1;
break;
}
trace_apic_register_read(index, val);
*value = val;
return ret;
}
static uint64_t apic_mem_read(void *opaque, hwaddr addr, unsigned size)
{
uint64_t val;
int index;
if (size < 4) {
return 0;
}
index = (addr >> 4) & 0xff;
apic_register_read(index, &val);
return val;
}
int apic_msr_read(int index, uint64_t *val)
{
DeviceState *dev;
dev = cpu_get_current_apic();
if (!dev) {
return -1;
}
if (!is_x2apic_mode(dev)) {
return -1;
}
return apic_register_read(index, val);
}
static void apic_send_msi(MSIMessage *msi)
{
uint64_t addr = msi->address;
uint32_t data = msi->data;
uint32_t dest = (addr & MSI_ADDR_DEST_ID_MASK) >> MSI_ADDR_DEST_ID_SHIFT;
/*
* The higher 3 bytes of destination id is stored in higher word of
* msi address. See x86_iommu_irq_to_msi_message()
*/
dest = dest | (addr >> 32);
uint8_t vector = (data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT;
uint8_t dest_mode = (addr >> MSI_ADDR_DEST_MODE_SHIFT) & 0x1;
uint8_t trigger_mode = (data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
uint8_t delivery = (data >> MSI_DATA_DELIVERY_MODE_SHIFT) & 0x7;
/* XXX: Ignore redirection hint. */
apic_deliver_irq(dest, dest_mode, delivery, vector, trigger_mode);
}
static int apic_register_write(int index, uint64_t val)
{
DeviceState *dev;
APICCommonState *s;
dev = cpu_get_current_apic();
if (!dev) {
return -1;
}
s = APIC(dev);
trace_apic_register_write(index, val);
switch(index) {
case 0x02:
if (is_x2apic_mode(dev)) {
return -1;
}
s->id = (val >> 24);
break;
case 0x03:
break;
case 0x08:
if (apic_report_tpr_access) {
cpu_report_tpr_access(&s->cpu->env, TPR_ACCESS_WRITE);
}
s->tpr = val;
apic_sync_vapic(s, SYNC_TO_VAPIC);
apic_update_irq(s);
break;
case 0x09:
case 0x0a:
break;
case 0x0b: /* EOI */
apic_eoi(s);
break;
case 0x0d:
if (is_x2apic_mode(dev)) {
return -1;
}
s->log_dest = val >> 24;
break;
case 0x0e:
if (is_x2apic_mode(dev)) {
return -1;
}
s->dest_mode = val >> 28;
break;
case 0x0f:
s->spurious_vec = val & 0x1ff;
apic_update_irq(s);
break;
case 0x10 ... 0x17:
case 0x18 ... 0x1f:
case 0x20 ... 0x27:
case 0x28:
break;
case 0x30: {
uint32_t dest;
s->icr[0] = val;
if (is_x2apic_mode(dev)) {
s->icr[1] = val >> 32;
dest = s->icr[1];
} else {
dest = (s->icr[1] >> 24) & 0xff;
}
apic_deliver(dev, dest, (s->icr[0] >> 11) & 1,
(s->icr[0] >> 8) & 7, (s->icr[0] & 0xff),
(s->icr[0] >> 15) & 1, (s->icr[0] >> 18) & 3);
break;
}
case 0x31:
if (is_x2apic_mode(dev)) {
return -1;
}
s->icr[1] = val;
break;
case 0x32 ... 0x37:
{
int n = index - 0x32;
s->lvt[n] = val;
if (n == APIC_LVT_TIMER) {
apic_timer_update(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
} else if (n == APIC_LVT_LINT0 && apic_check_pic(s)) {
apic_update_irq(s);
}
}
break;
case 0x38:
s->initial_count = val;
s->initial_count_load_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
apic_timer_update(s, s->initial_count_load_time);
break;
case 0x39:
break;
case 0x3e:
{
int v;
s->divide_conf = val & 0xb;
v = (s->divide_conf & 3) | ((s->divide_conf >> 1) & 4);
s->count_shift = (v + 1) & 7;
}
break;
case 0x3f: {
int vector = val & 0xff;
if (!is_x2apic_mode(dev)) {
return -1;
}
/*
* Self IPI is identical to IPI with
* - Destination shorthand: 1 (Self)
* - Trigger mode: 0 (Edge)
* - Delivery mode: 0 (Fixed)
*/
apic_deliver(dev, 0, 0, APIC_DM_FIXED, vector, 0, 1);
break;
}
default:
s->esr |= APIC_ESR_ILLEGAL_ADDRESS;
return -1;
}
return 0;
}
static void apic_mem_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
int index = (addr >> 4) & 0xff;
if (size < 4) {
return;
}
if (addr > 0xfff || !index) {
/*
* MSI and MMIO APIC are at the same memory location,
* but actually not on the global bus: MSI is on PCI bus
* APIC is connected directly to the CPU.
* Mapping them on the global bus happens to work because
* MSI registers are reserved in APIC MMIO and vice versa.
*/
MSIMessage msi = { .address = addr, .data = val };
apic_send_msi(&msi);
return;
}
apic_register_write(index, val);
}
int apic_msr_write(int index, uint64_t val)
{
DeviceState *dev;
dev = cpu_get_current_apic();
if (!dev) {
return -1;
}
if (!is_x2apic_mode(dev)) {
return -1;
}
return apic_register_write(index, val);
}
static void apic_pre_save(APICCommonState *s)
{
apic_sync_vapic(s, SYNC_FROM_VAPIC);
}
static void apic_post_load(APICCommonState *s)
{
if (s->timer_expiry != -1) {
timer_mod(s->timer, s->timer_expiry);
} else {
timer_del(s->timer);
}
}
static const MemoryRegionOps apic_io_ops = {
.read = apic_mem_read,
.write = apic_mem_write,
.impl.min_access_size = 1,
.impl.max_access_size = 4,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void apic_realize(DeviceState *dev, Error **errp)
{
APICCommonState *s = APIC(dev);
if (kvm_enabled()) {
warn_report("Userspace local APIC is deprecated for KVM.");
warn_report("Do not use kernel-irqchip except for the -M isapc machine type.");
}
memory_region_init_io(&s->io_memory, OBJECT(s), &apic_io_ops, s, "apic-msi",
APIC_SPACE_SIZE);
/*
* apic-msi's apic_mem_write can call into ioapic_eoi_broadcast, which can
* write back to apic-msi. As such mark the apic-msi region re-entrancy
* safe.
*/
s->io_memory.disable_reentrancy_guard = true;
s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, apic_timer, s);
/*
* The --machine none does not call apic_set_max_apic_id before creating
* apic, so we need to call it here and set it to 1 which is the max cpus
* in machine none.
*/
if (!local_apics) {
apic_set_max_apic_id(1);
}
local_apics[s->initial_apic_id] = s;
msi_nonbroken = true;
}
static void apic_unrealize(DeviceState *dev)
{
APICCommonState *s = APIC(dev);
timer_free(s->timer);
local_apics[s->initial_apic_id] = NULL;
}
static void apic_class_init(ObjectClass *klass, void *data)
{
APICCommonClass *k = APIC_COMMON_CLASS(klass);
k->realize = apic_realize;
k->unrealize = apic_unrealize;
k->set_base = apic_set_base;
k->set_tpr = apic_set_tpr;
k->get_tpr = apic_get_tpr;
k->vapic_base_update = apic_vapic_base_update;
k->external_nmi = apic_external_nmi;
k->pre_save = apic_pre_save;
k->post_load = apic_post_load;
k->send_msi = apic_send_msi;
}
static const TypeInfo apic_info = {
.name = TYPE_APIC,
.instance_size = sizeof(APICCommonState),
.parent = TYPE_APIC_COMMON,
.class_init = apic_class_init,
};
static void apic_register_types(void)
{
type_register_static(&apic_info);
}
type_init(apic_register_types)