qemu-e2k/migration/rdma.c
Dr. David Alan Gilbert 24b41d66c8 RDMA: Fix error exits
The error checks I added used 'break' after the error, but I'm
in a switch inside the while loop, so they need to be 'goto out'.

Spotted by coverity; entries 1311368 and 1311369

Fixes: afcddefd

Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Message-Id: <1436555332-19076-1-git-send-email-dgilbert@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-07-16 20:00:20 +02:00

3517 lines
108 KiB
C

/*
* RDMA protocol and interfaces
*
* Copyright IBM, Corp. 2010-2013
*
* Authors:
* Michael R. Hines <mrhines@us.ibm.com>
* Jiuxing Liu <jl@us.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or
* later. See the COPYING file in the top-level directory.
*
*/
#include "qemu-common.h"
#include "migration/migration.h"
#include "migration/qemu-file.h"
#include "exec/cpu-common.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "qemu/sockets.h"
#include "qemu/bitmap.h"
#include "block/coroutine.h"
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>
#include <arpa/inet.h>
#include <string.h>
#include <rdma/rdma_cma.h>
#include "trace.h"
/*
* Print and error on both the Monitor and the Log file.
*/
#define ERROR(errp, fmt, ...) \
do { \
fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
if (errp && (*(errp) == NULL)) { \
error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
} \
} while (0)
#define RDMA_RESOLVE_TIMEOUT_MS 10000
/* Do not merge data if larger than this. */
#define RDMA_MERGE_MAX (2 * 1024 * 1024)
#define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
#define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
/*
* This is only for non-live state being migrated.
* Instead of RDMA_WRITE messages, we use RDMA_SEND
* messages for that state, which requires a different
* delivery design than main memory.
*/
#define RDMA_SEND_INCREMENT 32768
/*
* Maximum size infiniband SEND message
*/
#define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
#define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
#define RDMA_CONTROL_VERSION_CURRENT 1
/*
* Capabilities for negotiation.
*/
#define RDMA_CAPABILITY_PIN_ALL 0x01
/*
* Add the other flags above to this list of known capabilities
* as they are introduced.
*/
static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
#define CHECK_ERROR_STATE() \
do { \
if (rdma->error_state) { \
if (!rdma->error_reported) { \
error_report("RDMA is in an error state waiting migration" \
" to abort!"); \
rdma->error_reported = 1; \
} \
return rdma->error_state; \
} \
} while (0);
/*
* A work request ID is 64-bits and we split up these bits
* into 3 parts:
*
* bits 0-15 : type of control message, 2^16
* bits 16-29: ram block index, 2^14
* bits 30-63: ram block chunk number, 2^34
*
* The last two bit ranges are only used for RDMA writes,
* in order to track their completion and potentially
* also track unregistration status of the message.
*/
#define RDMA_WRID_TYPE_SHIFT 0UL
#define RDMA_WRID_BLOCK_SHIFT 16UL
#define RDMA_WRID_CHUNK_SHIFT 30UL
#define RDMA_WRID_TYPE_MASK \
((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
#define RDMA_WRID_BLOCK_MASK \
(~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
#define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
/*
* RDMA migration protocol:
* 1. RDMA Writes (data messages, i.e. RAM)
* 2. IB Send/Recv (control channel messages)
*/
enum {
RDMA_WRID_NONE = 0,
RDMA_WRID_RDMA_WRITE = 1,
RDMA_WRID_SEND_CONTROL = 2000,
RDMA_WRID_RECV_CONTROL = 4000,
};
static const char *wrid_desc[] = {
[RDMA_WRID_NONE] = "NONE",
[RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
[RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
[RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
};
/*
* Work request IDs for IB SEND messages only (not RDMA writes).
* This is used by the migration protocol to transmit
* control messages (such as device state and registration commands)
*
* We could use more WRs, but we have enough for now.
*/
enum {
RDMA_WRID_READY = 0,
RDMA_WRID_DATA,
RDMA_WRID_CONTROL,
RDMA_WRID_MAX,
};
/*
* SEND/RECV IB Control Messages.
*/
enum {
RDMA_CONTROL_NONE = 0,
RDMA_CONTROL_ERROR,
RDMA_CONTROL_READY, /* ready to receive */
RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
RDMA_CONTROL_COMPRESS, /* page contains repeat values */
RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
};
static const char *control_desc[] = {
[RDMA_CONTROL_NONE] = "NONE",
[RDMA_CONTROL_ERROR] = "ERROR",
[RDMA_CONTROL_READY] = "READY",
[RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
[RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
[RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
[RDMA_CONTROL_COMPRESS] = "COMPRESS",
[RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
[RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
[RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
[RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
[RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
};
/*
* Memory and MR structures used to represent an IB Send/Recv work request.
* This is *not* used for RDMA writes, only IB Send/Recv.
*/
typedef struct {
uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
struct ibv_mr *control_mr; /* registration metadata */
size_t control_len; /* length of the message */
uint8_t *control_curr; /* start of unconsumed bytes */
} RDMAWorkRequestData;
/*
* Negotiate RDMA capabilities during connection-setup time.
*/
typedef struct {
uint32_t version;
uint32_t flags;
} RDMACapabilities;
static void caps_to_network(RDMACapabilities *cap)
{
cap->version = htonl(cap->version);
cap->flags = htonl(cap->flags);
}
static void network_to_caps(RDMACapabilities *cap)
{
cap->version = ntohl(cap->version);
cap->flags = ntohl(cap->flags);
}
/*
* Representation of a RAMBlock from an RDMA perspective.
* This is not transmitted, only local.
* This and subsequent structures cannot be linked lists
* because we're using a single IB message to transmit
* the information. It's small anyway, so a list is overkill.
*/
typedef struct RDMALocalBlock {
char *block_name;
uint8_t *local_host_addr; /* local virtual address */
uint64_t remote_host_addr; /* remote virtual address */
uint64_t offset;
uint64_t length;
struct ibv_mr **pmr; /* MRs for chunk-level registration */
struct ibv_mr *mr; /* MR for non-chunk-level registration */
uint32_t *remote_keys; /* rkeys for chunk-level registration */
uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
int index; /* which block are we */
unsigned int src_index; /* (Only used on dest) */
bool is_ram_block;
int nb_chunks;
unsigned long *transit_bitmap;
unsigned long *unregister_bitmap;
} RDMALocalBlock;
/*
* Also represents a RAMblock, but only on the dest.
* This gets transmitted by the dest during connection-time
* to the source VM and then is used to populate the
* corresponding RDMALocalBlock with
* the information needed to perform the actual RDMA.
*/
typedef struct QEMU_PACKED RDMADestBlock {
uint64_t remote_host_addr;
uint64_t offset;
uint64_t length;
uint32_t remote_rkey;
uint32_t padding;
} RDMADestBlock;
static uint64_t htonll(uint64_t v)
{
union { uint32_t lv[2]; uint64_t llv; } u;
u.lv[0] = htonl(v >> 32);
u.lv[1] = htonl(v & 0xFFFFFFFFULL);
return u.llv;
}
static uint64_t ntohll(uint64_t v) {
union { uint32_t lv[2]; uint64_t llv; } u;
u.llv = v;
return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
}
static void dest_block_to_network(RDMADestBlock *db)
{
db->remote_host_addr = htonll(db->remote_host_addr);
db->offset = htonll(db->offset);
db->length = htonll(db->length);
db->remote_rkey = htonl(db->remote_rkey);
}
static void network_to_dest_block(RDMADestBlock *db)
{
db->remote_host_addr = ntohll(db->remote_host_addr);
db->offset = ntohll(db->offset);
db->length = ntohll(db->length);
db->remote_rkey = ntohl(db->remote_rkey);
}
/*
* Virtual address of the above structures used for transmitting
* the RAMBlock descriptions at connection-time.
* This structure is *not* transmitted.
*/
typedef struct RDMALocalBlocks {
int nb_blocks;
bool init; /* main memory init complete */
RDMALocalBlock *block;
} RDMALocalBlocks;
/*
* Main data structure for RDMA state.
* While there is only one copy of this structure being allocated right now,
* this is the place where one would start if you wanted to consider
* having more than one RDMA connection open at the same time.
*/
typedef struct RDMAContext {
char *host;
int port;
RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
/*
* This is used by *_exchange_send() to figure out whether or not
* the initial "READY" message has already been received or not.
* This is because other functions may potentially poll() and detect
* the READY message before send() does, in which case we need to
* know if it completed.
*/
int control_ready_expected;
/* number of outstanding writes */
int nb_sent;
/* store info about current buffer so that we can
merge it with future sends */
uint64_t current_addr;
uint64_t current_length;
/* index of ram block the current buffer belongs to */
int current_index;
/* index of the chunk in the current ram block */
int current_chunk;
bool pin_all;
/*
* infiniband-specific variables for opening the device
* and maintaining connection state and so forth.
*
* cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
* cm_id->verbs, cm_id->channel, and cm_id->qp.
*/
struct rdma_cm_id *cm_id; /* connection manager ID */
struct rdma_cm_id *listen_id;
bool connected;
struct ibv_context *verbs;
struct rdma_event_channel *channel;
struct ibv_qp *qp; /* queue pair */
struct ibv_comp_channel *comp_channel; /* completion channel */
struct ibv_pd *pd; /* protection domain */
struct ibv_cq *cq; /* completion queue */
/*
* If a previous write failed (perhaps because of a failed
* memory registration, then do not attempt any future work
* and remember the error state.
*/
int error_state;
int error_reported;
/*
* Description of ram blocks used throughout the code.
*/
RDMALocalBlocks local_ram_blocks;
RDMADestBlock *dest_blocks;
/* Index of the next RAMBlock received during block registration */
unsigned int next_src_index;
/*
* Migration on *destination* started.
* Then use coroutine yield function.
* Source runs in a thread, so we don't care.
*/
int migration_started_on_destination;
int total_registrations;
int total_writes;
int unregister_current, unregister_next;
uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
GHashTable *blockmap;
} RDMAContext;
/*
* Interface to the rest of the migration call stack.
*/
typedef struct QEMUFileRDMA {
RDMAContext *rdma;
size_t len;
void *file;
} QEMUFileRDMA;
/*
* Main structure for IB Send/Recv control messages.
* This gets prepended at the beginning of every Send/Recv.
*/
typedef struct QEMU_PACKED {
uint32_t len; /* Total length of data portion */
uint32_t type; /* which control command to perform */
uint32_t repeat; /* number of commands in data portion of same type */
uint32_t padding;
} RDMAControlHeader;
static void control_to_network(RDMAControlHeader *control)
{
control->type = htonl(control->type);
control->len = htonl(control->len);
control->repeat = htonl(control->repeat);
}
static void network_to_control(RDMAControlHeader *control)
{
control->type = ntohl(control->type);
control->len = ntohl(control->len);
control->repeat = ntohl(control->repeat);
}
/*
* Register a single Chunk.
* Information sent by the source VM to inform the dest
* to register an single chunk of memory before we can perform
* the actual RDMA operation.
*/
typedef struct QEMU_PACKED {
union QEMU_PACKED {
uint64_t current_addr; /* offset into the ram_addr_t space */
uint64_t chunk; /* chunk to lookup if unregistering */
} key;
uint32_t current_index; /* which ramblock the chunk belongs to */
uint32_t padding;
uint64_t chunks; /* how many sequential chunks to register */
} RDMARegister;
static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
{
RDMALocalBlock *local_block;
local_block = &rdma->local_ram_blocks.block[reg->current_index];
if (local_block->is_ram_block) {
/*
* current_addr as passed in is an address in the local ram_addr_t
* space, we need to translate this for the destination
*/
reg->key.current_addr -= local_block->offset;
reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
}
reg->key.current_addr = htonll(reg->key.current_addr);
reg->current_index = htonl(reg->current_index);
reg->chunks = htonll(reg->chunks);
}
static void network_to_register(RDMARegister *reg)
{
reg->key.current_addr = ntohll(reg->key.current_addr);
reg->current_index = ntohl(reg->current_index);
reg->chunks = ntohll(reg->chunks);
}
typedef struct QEMU_PACKED {
uint32_t value; /* if zero, we will madvise() */
uint32_t block_idx; /* which ram block index */
uint64_t offset; /* Address in remote ram_addr_t space */
uint64_t length; /* length of the chunk */
} RDMACompress;
static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
{
comp->value = htonl(comp->value);
/*
* comp->offset as passed in is an address in the local ram_addr_t
* space, we need to translate this for the destination
*/
comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
comp->offset += rdma->dest_blocks[comp->block_idx].offset;
comp->block_idx = htonl(comp->block_idx);
comp->offset = htonll(comp->offset);
comp->length = htonll(comp->length);
}
static void network_to_compress(RDMACompress *comp)
{
comp->value = ntohl(comp->value);
comp->block_idx = ntohl(comp->block_idx);
comp->offset = ntohll(comp->offset);
comp->length = ntohll(comp->length);
}
/*
* The result of the dest's memory registration produces an "rkey"
* which the source VM must reference in order to perform
* the RDMA operation.
*/
typedef struct QEMU_PACKED {
uint32_t rkey;
uint32_t padding;
uint64_t host_addr;
} RDMARegisterResult;
static void result_to_network(RDMARegisterResult *result)
{
result->rkey = htonl(result->rkey);
result->host_addr = htonll(result->host_addr);
};
static void network_to_result(RDMARegisterResult *result)
{
result->rkey = ntohl(result->rkey);
result->host_addr = ntohll(result->host_addr);
};
const char *print_wrid(int wrid);
static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
uint8_t *data, RDMAControlHeader *resp,
int *resp_idx,
int (*callback)(RDMAContext *rdma));
static inline uint64_t ram_chunk_index(const uint8_t *start,
const uint8_t *host)
{
return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
}
static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
uint64_t i)
{
return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
(i << RDMA_REG_CHUNK_SHIFT));
}
static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
uint64_t i)
{
uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
(1UL << RDMA_REG_CHUNK_SHIFT);
if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
}
return result;
}
static int rdma_add_block(RDMAContext *rdma, const char *block_name,
void *host_addr,
ram_addr_t block_offset, uint64_t length)
{
RDMALocalBlocks *local = &rdma->local_ram_blocks;
RDMALocalBlock *block;
RDMALocalBlock *old = local->block;
local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
if (local->nb_blocks) {
int x;
if (rdma->blockmap) {
for (x = 0; x < local->nb_blocks; x++) {
g_hash_table_remove(rdma->blockmap,
(void *)(uintptr_t)old[x].offset);
g_hash_table_insert(rdma->blockmap,
(void *)(uintptr_t)old[x].offset,
&local->block[x]);
}
}
memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
g_free(old);
}
block = &local->block[local->nb_blocks];
block->block_name = g_strdup(block_name);
block->local_host_addr = host_addr;
block->offset = block_offset;
block->length = length;
block->index = local->nb_blocks;
block->src_index = ~0U; /* Filled in by the receipt of the block list */
block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
block->transit_bitmap = bitmap_new(block->nb_chunks);
bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
block->unregister_bitmap = bitmap_new(block->nb_chunks);
bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
block->is_ram_block = local->init ? false : true;
if (rdma->blockmap) {
g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
}
trace_rdma_add_block(block_name, local->nb_blocks,
(uintptr_t) block->local_host_addr,
block->offset, block->length,
(uintptr_t) (block->local_host_addr + block->length),
BITS_TO_LONGS(block->nb_chunks) *
sizeof(unsigned long) * 8,
block->nb_chunks);
local->nb_blocks++;
return 0;
}
/*
* Memory regions need to be registered with the device and queue pairs setup
* in advanced before the migration starts. This tells us where the RAM blocks
* are so that we can register them individually.
*/
static int qemu_rdma_init_one_block(const char *block_name, void *host_addr,
ram_addr_t block_offset, ram_addr_t length, void *opaque)
{
return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
}
/*
* Identify the RAMBlocks and their quantity. They will be references to
* identify chunk boundaries inside each RAMBlock and also be referenced
* during dynamic page registration.
*/
static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
{
RDMALocalBlocks *local = &rdma->local_ram_blocks;
assert(rdma->blockmap == NULL);
memset(local, 0, sizeof *local);
qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
rdma->dest_blocks = (RDMADestBlock *) g_malloc0(sizeof(RDMADestBlock) *
rdma->local_ram_blocks.nb_blocks);
local->init = true;
return 0;
}
/*
* Note: If used outside of cleanup, the caller must ensure that the destination
* block structures are also updated
*/
static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
{
RDMALocalBlocks *local = &rdma->local_ram_blocks;
RDMALocalBlock *old = local->block;
int x;
if (rdma->blockmap) {
g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
}
if (block->pmr) {
int j;
for (j = 0; j < block->nb_chunks; j++) {
if (!block->pmr[j]) {
continue;
}
ibv_dereg_mr(block->pmr[j]);
rdma->total_registrations--;
}
g_free(block->pmr);
block->pmr = NULL;
}
if (block->mr) {
ibv_dereg_mr(block->mr);
rdma->total_registrations--;
block->mr = NULL;
}
g_free(block->transit_bitmap);
block->transit_bitmap = NULL;
g_free(block->unregister_bitmap);
block->unregister_bitmap = NULL;
g_free(block->remote_keys);
block->remote_keys = NULL;
g_free(block->block_name);
block->block_name = NULL;
if (rdma->blockmap) {
for (x = 0; x < local->nb_blocks; x++) {
g_hash_table_remove(rdma->blockmap,
(void *)(uintptr_t)old[x].offset);
}
}
if (local->nb_blocks > 1) {
local->block = g_malloc0(sizeof(RDMALocalBlock) *
(local->nb_blocks - 1));
if (block->index) {
memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
}
if (block->index < (local->nb_blocks - 1)) {
memcpy(local->block + block->index, old + (block->index + 1),
sizeof(RDMALocalBlock) *
(local->nb_blocks - (block->index + 1)));
}
} else {
assert(block == local->block);
local->block = NULL;
}
trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
block->offset, block->length,
(uintptr_t)(block->local_host_addr + block->length),
BITS_TO_LONGS(block->nb_chunks) *
sizeof(unsigned long) * 8, block->nb_chunks);
g_free(old);
local->nb_blocks--;
if (local->nb_blocks && rdma->blockmap) {
for (x = 0; x < local->nb_blocks; x++) {
g_hash_table_insert(rdma->blockmap,
(void *)(uintptr_t)local->block[x].offset,
&local->block[x]);
}
}
return 0;
}
/*
* Put in the log file which RDMA device was opened and the details
* associated with that device.
*/
static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
{
struct ibv_port_attr port;
if (ibv_query_port(verbs, 1, &port)) {
error_report("Failed to query port information");
return;
}
printf("%s RDMA Device opened: kernel name %s "
"uverbs device name %s, "
"infiniband_verbs class device path %s, "
"infiniband class device path %s, "
"transport: (%d) %s\n",
who,
verbs->device->name,
verbs->device->dev_name,
verbs->device->dev_path,
verbs->device->ibdev_path,
port.link_layer,
(port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
((port.link_layer == IBV_LINK_LAYER_ETHERNET)
? "Ethernet" : "Unknown"));
}
/*
* Put in the log file the RDMA gid addressing information,
* useful for folks who have trouble understanding the
* RDMA device hierarchy in the kernel.
*/
static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
{
char sgid[33];
char dgid[33];
inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
trace_qemu_rdma_dump_gid(who, sgid, dgid);
}
/*
* As of now, IPv6 over RoCE / iWARP is not supported by linux.
* We will try the next addrinfo struct, and fail if there are
* no other valid addresses to bind against.
*
* If user is listening on '[::]', then we will not have a opened a device
* yet and have no way of verifying if the device is RoCE or not.
*
* In this case, the source VM will throw an error for ALL types of
* connections (both IPv4 and IPv6) if the destination machine does not have
* a regular infiniband network available for use.
*
* The only way to guarantee that an error is thrown for broken kernels is
* for the management software to choose a *specific* interface at bind time
* and validate what time of hardware it is.
*
* Unfortunately, this puts the user in a fix:
*
* If the source VM connects with an IPv4 address without knowing that the
* destination has bound to '[::]' the migration will unconditionally fail
* unless the management software is explicitly listening on the the IPv4
* address while using a RoCE-based device.
*
* If the source VM connects with an IPv6 address, then we're OK because we can
* throw an error on the source (and similarly on the destination).
*
* But in mixed environments, this will be broken for a while until it is fixed
* inside linux.
*
* We do provide a *tiny* bit of help in this function: We can list all of the
* devices in the system and check to see if all the devices are RoCE or
* Infiniband.
*
* If we detect that we have a *pure* RoCE environment, then we can safely
* thrown an error even if the management software has specified '[::]' as the
* bind address.
*
* However, if there is are multiple hetergeneous devices, then we cannot make
* this assumption and the user just has to be sure they know what they are
* doing.
*
* Patches are being reviewed on linux-rdma.
*/
static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
{
struct ibv_port_attr port_attr;
/* This bug only exists in linux, to our knowledge. */
#ifdef CONFIG_LINUX
/*
* Verbs are only NULL if management has bound to '[::]'.
*
* Let's iterate through all the devices and see if there any pure IB
* devices (non-ethernet).
*
* If not, then we can safely proceed with the migration.
* Otherwise, there are no guarantees until the bug is fixed in linux.
*/
if (!verbs) {
int num_devices, x;
struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
bool roce_found = false;
bool ib_found = false;
for (x = 0; x < num_devices; x++) {
verbs = ibv_open_device(dev_list[x]);
if (!verbs) {
if (errno == EPERM) {
continue;
} else {
return -EINVAL;
}
}
if (ibv_query_port(verbs, 1, &port_attr)) {
ibv_close_device(verbs);
ERROR(errp, "Could not query initial IB port");
return -EINVAL;
}
if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
ib_found = true;
} else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
roce_found = true;
}
ibv_close_device(verbs);
}
if (roce_found) {
if (ib_found) {
fprintf(stderr, "WARN: migrations may fail:"
" IPv6 over RoCE / iWARP in linux"
" is broken. But since you appear to have a"
" mixed RoCE / IB environment, be sure to only"
" migrate over the IB fabric until the kernel "
" fixes the bug.\n");
} else {
ERROR(errp, "You only have RoCE / iWARP devices in your systems"
" and your management software has specified '[::]'"
", but IPv6 over RoCE / iWARP is not supported in Linux.");
return -ENONET;
}
}
return 0;
}
/*
* If we have a verbs context, that means that some other than '[::]' was
* used by the management software for binding. In which case we can
* actually warn the user about a potentially broken kernel.
*/
/* IB ports start with 1, not 0 */
if (ibv_query_port(verbs, 1, &port_attr)) {
ERROR(errp, "Could not query initial IB port");
return -EINVAL;
}
if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
"(but patches on linux-rdma in progress)");
return -ENONET;
}
#endif
return 0;
}
/*
* Figure out which RDMA device corresponds to the requested IP hostname
* Also create the initial connection manager identifiers for opening
* the connection.
*/
static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
{
int ret;
struct rdma_addrinfo *res;
char port_str[16];
struct rdma_cm_event *cm_event;
char ip[40] = "unknown";
struct rdma_addrinfo *e;
if (rdma->host == NULL || !strcmp(rdma->host, "")) {
ERROR(errp, "RDMA hostname has not been set");
return -EINVAL;
}
/* create CM channel */
rdma->channel = rdma_create_event_channel();
if (!rdma->channel) {
ERROR(errp, "could not create CM channel");
return -EINVAL;
}
/* create CM id */
ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
if (ret) {
ERROR(errp, "could not create channel id");
goto err_resolve_create_id;
}
snprintf(port_str, 16, "%d", rdma->port);
port_str[15] = '\0';
ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
if (ret < 0) {
ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
goto err_resolve_get_addr;
}
for (e = res; e != NULL; e = e->ai_next) {
inet_ntop(e->ai_family,
&((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
RDMA_RESOLVE_TIMEOUT_MS);
if (!ret) {
if (e->ai_family == AF_INET6) {
ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
if (ret) {
continue;
}
}
goto route;
}
}
ERROR(errp, "could not resolve address %s", rdma->host);
goto err_resolve_get_addr;
route:
qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
ret = rdma_get_cm_event(rdma->channel, &cm_event);
if (ret) {
ERROR(errp, "could not perform event_addr_resolved");
goto err_resolve_get_addr;
}
if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
ERROR(errp, "result not equal to event_addr_resolved %s",
rdma_event_str(cm_event->event));
perror("rdma_resolve_addr");
rdma_ack_cm_event(cm_event);
ret = -EINVAL;
goto err_resolve_get_addr;
}
rdma_ack_cm_event(cm_event);
/* resolve route */
ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
if (ret) {
ERROR(errp, "could not resolve rdma route");
goto err_resolve_get_addr;
}
ret = rdma_get_cm_event(rdma->channel, &cm_event);
if (ret) {
ERROR(errp, "could not perform event_route_resolved");
goto err_resolve_get_addr;
}
if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
ERROR(errp, "result not equal to event_route_resolved: %s",
rdma_event_str(cm_event->event));
rdma_ack_cm_event(cm_event);
ret = -EINVAL;
goto err_resolve_get_addr;
}
rdma_ack_cm_event(cm_event);
rdma->verbs = rdma->cm_id->verbs;
qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
return 0;
err_resolve_get_addr:
rdma_destroy_id(rdma->cm_id);
rdma->cm_id = NULL;
err_resolve_create_id:
rdma_destroy_event_channel(rdma->channel);
rdma->channel = NULL;
return ret;
}
/*
* Create protection domain and completion queues
*/
static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
{
/* allocate pd */
rdma->pd = ibv_alloc_pd(rdma->verbs);
if (!rdma->pd) {
error_report("failed to allocate protection domain");
return -1;
}
/* create completion channel */
rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
if (!rdma->comp_channel) {
error_report("failed to allocate completion channel");
goto err_alloc_pd_cq;
}
/*
* Completion queue can be filled by both read and write work requests,
* so must reflect the sum of both possible queue sizes.
*/
rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
NULL, rdma->comp_channel, 0);
if (!rdma->cq) {
error_report("failed to allocate completion queue");
goto err_alloc_pd_cq;
}
return 0;
err_alloc_pd_cq:
if (rdma->pd) {
ibv_dealloc_pd(rdma->pd);
}
if (rdma->comp_channel) {
ibv_destroy_comp_channel(rdma->comp_channel);
}
rdma->pd = NULL;
rdma->comp_channel = NULL;
return -1;
}
/*
* Create queue pairs.
*/
static int qemu_rdma_alloc_qp(RDMAContext *rdma)
{
struct ibv_qp_init_attr attr = { 0 };
int ret;
attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
attr.cap.max_recv_wr = 3;
attr.cap.max_send_sge = 1;
attr.cap.max_recv_sge = 1;
attr.send_cq = rdma->cq;
attr.recv_cq = rdma->cq;
attr.qp_type = IBV_QPT_RC;
ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
if (ret) {
return -1;
}
rdma->qp = rdma->cm_id->qp;
return 0;
}
static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
{
int i;
RDMALocalBlocks *local = &rdma->local_ram_blocks;
for (i = 0; i < local->nb_blocks; i++) {
local->block[i].mr =
ibv_reg_mr(rdma->pd,
local->block[i].local_host_addr,
local->block[i].length,
IBV_ACCESS_LOCAL_WRITE |
IBV_ACCESS_REMOTE_WRITE
);
if (!local->block[i].mr) {
perror("Failed to register local dest ram block!\n");
break;
}
rdma->total_registrations++;
}
if (i >= local->nb_blocks) {
return 0;
}
for (i--; i >= 0; i--) {
ibv_dereg_mr(local->block[i].mr);
rdma->total_registrations--;
}
return -1;
}
/*
* Find the ram block that corresponds to the page requested to be
* transmitted by QEMU.
*
* Once the block is found, also identify which 'chunk' within that
* block that the page belongs to.
*
* This search cannot fail or the migration will fail.
*/
static int qemu_rdma_search_ram_block(RDMAContext *rdma,
uintptr_t block_offset,
uint64_t offset,
uint64_t length,
uint64_t *block_index,
uint64_t *chunk_index)
{
uint64_t current_addr = block_offset + offset;
RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
(void *) block_offset);
assert(block);
assert(current_addr >= block->offset);
assert((current_addr + length) <= (block->offset + block->length));
*block_index = block->index;
*chunk_index = ram_chunk_index(block->local_host_addr,
block->local_host_addr + (current_addr - block->offset));
return 0;
}
/*
* Register a chunk with IB. If the chunk was already registered
* previously, then skip.
*
* Also return the keys associated with the registration needed
* to perform the actual RDMA operation.
*/
static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
RDMALocalBlock *block, uintptr_t host_addr,
uint32_t *lkey, uint32_t *rkey, int chunk,
uint8_t *chunk_start, uint8_t *chunk_end)
{
if (block->mr) {
if (lkey) {
*lkey = block->mr->lkey;
}
if (rkey) {
*rkey = block->mr->rkey;
}
return 0;
}
/* allocate memory to store chunk MRs */
if (!block->pmr) {
block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
}
/*
* If 'rkey', then we're the destination, so grant access to the source.
*
* If 'lkey', then we're the source VM, so grant access only to ourselves.
*/
if (!block->pmr[chunk]) {
uint64_t len = chunk_end - chunk_start;
trace_qemu_rdma_register_and_get_keys(len, chunk_start);
block->pmr[chunk] = ibv_reg_mr(rdma->pd,
chunk_start, len,
(rkey ? (IBV_ACCESS_LOCAL_WRITE |
IBV_ACCESS_REMOTE_WRITE) : 0));
if (!block->pmr[chunk]) {
perror("Failed to register chunk!");
fprintf(stderr, "Chunk details: block: %d chunk index %d"
" start %" PRIuPTR " end %" PRIuPTR
" host %" PRIuPTR
" local %" PRIuPTR " registrations: %d\n",
block->index, chunk, (uintptr_t)chunk_start,
(uintptr_t)chunk_end, host_addr,
(uintptr_t)block->local_host_addr,
rdma->total_registrations);
return -1;
}
rdma->total_registrations++;
}
if (lkey) {
*lkey = block->pmr[chunk]->lkey;
}
if (rkey) {
*rkey = block->pmr[chunk]->rkey;
}
return 0;
}
/*
* Register (at connection time) the memory used for control
* channel messages.
*/
static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
{
rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
if (rdma->wr_data[idx].control_mr) {
rdma->total_registrations++;
return 0;
}
error_report("qemu_rdma_reg_control failed");
return -1;
}
const char *print_wrid(int wrid)
{
if (wrid >= RDMA_WRID_RECV_CONTROL) {
return wrid_desc[RDMA_WRID_RECV_CONTROL];
}
return wrid_desc[wrid];
}
/*
* RDMA requires memory registration (mlock/pinning), but this is not good for
* overcommitment.
*
* In preparation for the future where LRU information or workload-specific
* writable writable working set memory access behavior is available to QEMU
* it would be nice to have in place the ability to UN-register/UN-pin
* particular memory regions from the RDMA hardware when it is determine that
* those regions of memory will likely not be accessed again in the near future.
*
* While we do not yet have such information right now, the following
* compile-time option allows us to perform a non-optimized version of this
* behavior.
*
* By uncommenting this option, you will cause *all* RDMA transfers to be
* unregistered immediately after the transfer completes on both sides of the
* connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
*
* This will have a terrible impact on migration performance, so until future
* workload information or LRU information is available, do not attempt to use
* this feature except for basic testing.
*/
//#define RDMA_UNREGISTRATION_EXAMPLE
/*
* Perform a non-optimized memory unregistration after every transfer
* for demonstration purposes, only if pin-all is not requested.
*
* Potential optimizations:
* 1. Start a new thread to run this function continuously
- for bit clearing
- and for receipt of unregister messages
* 2. Use an LRU.
* 3. Use workload hints.
*/
static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
{
while (rdma->unregistrations[rdma->unregister_current]) {
int ret;
uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
uint64_t chunk =
(wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
uint64_t index =
(wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
RDMALocalBlock *block =
&(rdma->local_ram_blocks.block[index]);
RDMARegister reg = { .current_index = index };
RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
};
RDMAControlHeader head = { .len = sizeof(RDMARegister),
.type = RDMA_CONTROL_UNREGISTER_REQUEST,
.repeat = 1,
};
trace_qemu_rdma_unregister_waiting_proc(chunk,
rdma->unregister_current);
rdma->unregistrations[rdma->unregister_current] = 0;
rdma->unregister_current++;
if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
rdma->unregister_current = 0;
}
/*
* Unregistration is speculative (because migration is single-threaded
* and we cannot break the protocol's inifinband message ordering).
* Thus, if the memory is currently being used for transmission,
* then abort the attempt to unregister and try again
* later the next time a completion is received for this memory.
*/
clear_bit(chunk, block->unregister_bitmap);
if (test_bit(chunk, block->transit_bitmap)) {
trace_qemu_rdma_unregister_waiting_inflight(chunk);
continue;
}
trace_qemu_rdma_unregister_waiting_send(chunk);
ret = ibv_dereg_mr(block->pmr[chunk]);
block->pmr[chunk] = NULL;
block->remote_keys[chunk] = 0;
if (ret != 0) {
perror("unregistration chunk failed");
return -ret;
}
rdma->total_registrations--;
reg.key.chunk = chunk;
register_to_network(rdma, &reg);
ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
&resp, NULL, NULL);
if (ret < 0) {
return ret;
}
trace_qemu_rdma_unregister_waiting_complete(chunk);
}
return 0;
}
static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
uint64_t chunk)
{
uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
result |= (index << RDMA_WRID_BLOCK_SHIFT);
result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
return result;
}
/*
* Set bit for unregistration in the next iteration.
* We cannot transmit right here, but will unpin later.
*/
static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
uint64_t chunk, uint64_t wr_id)
{
if (rdma->unregistrations[rdma->unregister_next] != 0) {
error_report("rdma migration: queue is full");
} else {
RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
trace_qemu_rdma_signal_unregister_append(chunk,
rdma->unregister_next);
rdma->unregistrations[rdma->unregister_next++] =
qemu_rdma_make_wrid(wr_id, index, chunk);
if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
rdma->unregister_next = 0;
}
} else {
trace_qemu_rdma_signal_unregister_already(chunk);
}
}
}
/*
* Consult the connection manager to see a work request
* (of any kind) has completed.
* Return the work request ID that completed.
*/
static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
uint32_t *byte_len)
{
int ret;
struct ibv_wc wc;
uint64_t wr_id;
ret = ibv_poll_cq(rdma->cq, 1, &wc);
if (!ret) {
*wr_id_out = RDMA_WRID_NONE;
return 0;
}
if (ret < 0) {
error_report("ibv_poll_cq return %d", ret);
return ret;
}
wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
if (wc.status != IBV_WC_SUCCESS) {
fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
wc.status, ibv_wc_status_str(wc.status));
fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
return -1;
}
if (rdma->control_ready_expected &&
(wr_id >= RDMA_WRID_RECV_CONTROL)) {
trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
rdma->control_ready_expected = 0;
}
if (wr_id == RDMA_WRID_RDMA_WRITE) {
uint64_t chunk =
(wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
uint64_t index =
(wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
index, chunk, block->local_host_addr,
(void *)(uintptr_t)block->remote_host_addr);
clear_bit(chunk, block->transit_bitmap);
if (rdma->nb_sent > 0) {
rdma->nb_sent--;
}
if (!rdma->pin_all) {
/*
* FYI: If one wanted to signal a specific chunk to be unregistered
* using LRU or workload-specific information, this is the function
* you would call to do so. That chunk would then get asynchronously
* unregistered later.
*/
#ifdef RDMA_UNREGISTRATION_EXAMPLE
qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
#endif
}
} else {
trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
}
*wr_id_out = wc.wr_id;
if (byte_len) {
*byte_len = wc.byte_len;
}
return 0;
}
/*
* Block until the next work request has completed.
*
* First poll to see if a work request has already completed,
* otherwise block.
*
* If we encounter completed work requests for IDs other than
* the one we're interested in, then that's generally an error.
*
* The only exception is actual RDMA Write completions. These
* completions only need to be recorded, but do not actually
* need further processing.
*/
static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
uint32_t *byte_len)
{
int num_cq_events = 0, ret = 0;
struct ibv_cq *cq;
void *cq_ctx;
uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
if (ibv_req_notify_cq(rdma->cq, 0)) {
return -1;
}
/* poll cq first */
while (wr_id != wrid_requested) {
ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
if (ret < 0) {
return ret;
}
wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
if (wr_id == RDMA_WRID_NONE) {
break;
}
if (wr_id != wrid_requested) {
trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
wrid_requested, print_wrid(wr_id), wr_id);
}
}
if (wr_id == wrid_requested) {
return 0;
}
while (1) {
/*
* Coroutine doesn't start until process_incoming_migration()
* so don't yield unless we know we're running inside of a coroutine.
*/
if (rdma->migration_started_on_destination) {
yield_until_fd_readable(rdma->comp_channel->fd);
}
if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
perror("ibv_get_cq_event");
goto err_block_for_wrid;
}
num_cq_events++;
if (ibv_req_notify_cq(cq, 0)) {
goto err_block_for_wrid;
}
while (wr_id != wrid_requested) {
ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
if (ret < 0) {
goto err_block_for_wrid;
}
wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
if (wr_id == RDMA_WRID_NONE) {
break;
}
if (wr_id != wrid_requested) {
trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
wrid_requested, print_wrid(wr_id), wr_id);
}
}
if (wr_id == wrid_requested) {
goto success_block_for_wrid;
}
}
success_block_for_wrid:
if (num_cq_events) {
ibv_ack_cq_events(cq, num_cq_events);
}
return 0;
err_block_for_wrid:
if (num_cq_events) {
ibv_ack_cq_events(cq, num_cq_events);
}
return ret;
}
/*
* Post a SEND message work request for the control channel
* containing some data and block until the post completes.
*/
static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
RDMAControlHeader *head)
{
int ret = 0;
RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
struct ibv_send_wr *bad_wr;
struct ibv_sge sge = {
.addr = (uintptr_t)(wr->control),
.length = head->len + sizeof(RDMAControlHeader),
.lkey = wr->control_mr->lkey,
};
struct ibv_send_wr send_wr = {
.wr_id = RDMA_WRID_SEND_CONTROL,
.opcode = IBV_WR_SEND,
.send_flags = IBV_SEND_SIGNALED,
.sg_list = &sge,
.num_sge = 1,
};
trace_qemu_rdma_post_send_control(control_desc[head->type]);
/*
* We don't actually need to do a memcpy() in here if we used
* the "sge" properly, but since we're only sending control messages
* (not RAM in a performance-critical path), then its OK for now.
*
* The copy makes the RDMAControlHeader simpler to manipulate
* for the time being.
*/
assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
memcpy(wr->control, head, sizeof(RDMAControlHeader));
control_to_network((void *) wr->control);
if (buf) {
memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
}
ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
if (ret > 0) {
error_report("Failed to use post IB SEND for control");
return -ret;
}
ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
if (ret < 0) {
error_report("rdma migration: send polling control error");
}
return ret;
}
/*
* Post a RECV work request in anticipation of some future receipt
* of data on the control channel.
*/
static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
{
struct ibv_recv_wr *bad_wr;
struct ibv_sge sge = {
.addr = (uintptr_t)(rdma->wr_data[idx].control),
.length = RDMA_CONTROL_MAX_BUFFER,
.lkey = rdma->wr_data[idx].control_mr->lkey,
};
struct ibv_recv_wr recv_wr = {
.wr_id = RDMA_WRID_RECV_CONTROL + idx,
.sg_list = &sge,
.num_sge = 1,
};
if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
return -1;
}
return 0;
}
/*
* Block and wait for a RECV control channel message to arrive.
*/
static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
RDMAControlHeader *head, int expecting, int idx)
{
uint32_t byte_len;
int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
&byte_len);
if (ret < 0) {
error_report("rdma migration: recv polling control error!");
return ret;
}
network_to_control((void *) rdma->wr_data[idx].control);
memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
trace_qemu_rdma_exchange_get_response_start(control_desc[expecting]);
if (expecting == RDMA_CONTROL_NONE) {
trace_qemu_rdma_exchange_get_response_none(control_desc[head->type],
head->type);
} else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
error_report("Was expecting a %s (%d) control message"
", but got: %s (%d), length: %d",
control_desc[expecting], expecting,
control_desc[head->type], head->type, head->len);
return -EIO;
}
if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
error_report("too long length: %d", head->len);
return -EINVAL;
}
if (sizeof(*head) + head->len != byte_len) {
error_report("Malformed length: %d byte_len %d", head->len, byte_len);
return -EINVAL;
}
return 0;
}
/*
* When a RECV work request has completed, the work request's
* buffer is pointed at the header.
*
* This will advance the pointer to the data portion
* of the control message of the work request's buffer that
* was populated after the work request finished.
*/
static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
RDMAControlHeader *head)
{
rdma->wr_data[idx].control_len = head->len;
rdma->wr_data[idx].control_curr =
rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
}
/*
* This is an 'atomic' high-level operation to deliver a single, unified
* control-channel message.
*
* Additionally, if the user is expecting some kind of reply to this message,
* they can request a 'resp' response message be filled in by posting an
* additional work request on behalf of the user and waiting for an additional
* completion.
*
* The extra (optional) response is used during registration to us from having
* to perform an *additional* exchange of message just to provide a response by
* instead piggy-backing on the acknowledgement.
*/
static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
uint8_t *data, RDMAControlHeader *resp,
int *resp_idx,
int (*callback)(RDMAContext *rdma))
{
int ret = 0;
/*
* Wait until the dest is ready before attempting to deliver the message
* by waiting for a READY message.
*/
if (rdma->control_ready_expected) {
RDMAControlHeader resp;
ret = qemu_rdma_exchange_get_response(rdma,
&resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
if (ret < 0) {
return ret;
}
}
/*
* If the user is expecting a response, post a WR in anticipation of it.
*/
if (resp) {
ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
if (ret) {
error_report("rdma migration: error posting"
" extra control recv for anticipated result!");
return ret;
}
}
/*
* Post a WR to replace the one we just consumed for the READY message.
*/
ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
if (ret) {
error_report("rdma migration: error posting first control recv!");
return ret;
}
/*
* Deliver the control message that was requested.
*/
ret = qemu_rdma_post_send_control(rdma, data, head);
if (ret < 0) {
error_report("Failed to send control buffer!");
return ret;
}
/*
* If we're expecting a response, block and wait for it.
*/
if (resp) {
if (callback) {
trace_qemu_rdma_exchange_send_issue_callback();
ret = callback(rdma);
if (ret < 0) {
return ret;
}
}
trace_qemu_rdma_exchange_send_waiting(control_desc[resp->type]);
ret = qemu_rdma_exchange_get_response(rdma, resp,
resp->type, RDMA_WRID_DATA);
if (ret < 0) {
return ret;
}
qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
if (resp_idx) {
*resp_idx = RDMA_WRID_DATA;
}
trace_qemu_rdma_exchange_send_received(control_desc[resp->type]);
}
rdma->control_ready_expected = 1;
return 0;
}
/*
* This is an 'atomic' high-level operation to receive a single, unified
* control-channel message.
*/
static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
int expecting)
{
RDMAControlHeader ready = {
.len = 0,
.type = RDMA_CONTROL_READY,
.repeat = 1,
};
int ret;
/*
* Inform the source that we're ready to receive a message.
*/
ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
if (ret < 0) {
error_report("Failed to send control buffer!");
return ret;
}
/*
* Block and wait for the message.
*/
ret = qemu_rdma_exchange_get_response(rdma, head,
expecting, RDMA_WRID_READY);
if (ret < 0) {
return ret;
}
qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
/*
* Post a new RECV work request to replace the one we just consumed.
*/
ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
if (ret) {
error_report("rdma migration: error posting second control recv!");
return ret;
}
return 0;
}
/*
* Write an actual chunk of memory using RDMA.
*
* If we're using dynamic registration on the dest-side, we have to
* send a registration command first.
*/
static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
int current_index, uint64_t current_addr,
uint64_t length)
{
struct ibv_sge sge;
struct ibv_send_wr send_wr = { 0 };
struct ibv_send_wr *bad_wr;
int reg_result_idx, ret, count = 0;
uint64_t chunk, chunks;
uint8_t *chunk_start, *chunk_end;
RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
RDMARegister reg;
RDMARegisterResult *reg_result;
RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
RDMAControlHeader head = { .len = sizeof(RDMARegister),
.type = RDMA_CONTROL_REGISTER_REQUEST,
.repeat = 1,
};
retry:
sge.addr = (uintptr_t)(block->local_host_addr +
(current_addr - block->offset));
sge.length = length;
chunk = ram_chunk_index(block->local_host_addr,
(uint8_t *)(uintptr_t)sge.addr);
chunk_start = ram_chunk_start(block, chunk);
if (block->is_ram_block) {
chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
chunks--;
}
} else {
chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
chunks--;
}
}
trace_qemu_rdma_write_one_top(chunks + 1,
(chunks + 1) *
(1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
chunk_end = ram_chunk_end(block, chunk + chunks);
if (!rdma->pin_all) {
#ifdef RDMA_UNREGISTRATION_EXAMPLE
qemu_rdma_unregister_waiting(rdma);
#endif
}
while (test_bit(chunk, block->transit_bitmap)) {
(void)count;
trace_qemu_rdma_write_one_block(count++, current_index, chunk,
sge.addr, length, rdma->nb_sent, block->nb_chunks);
ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
if (ret < 0) {
error_report("Failed to Wait for previous write to complete "
"block %d chunk %" PRIu64
" current %" PRIu64 " len %" PRIu64 " %d",
current_index, chunk, sge.addr, length, rdma->nb_sent);
return ret;
}
}
if (!rdma->pin_all || !block->is_ram_block) {
if (!block->remote_keys[chunk]) {
/*
* This chunk has not yet been registered, so first check to see
* if the entire chunk is zero. If so, tell the other size to
* memset() + madvise() the entire chunk without RDMA.
*/
if (can_use_buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
length)
&& buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
length) == length) {
RDMACompress comp = {
.offset = current_addr,
.value = 0,
.block_idx = current_index,
.length = length,
};
head.len = sizeof(comp);
head.type = RDMA_CONTROL_COMPRESS;
trace_qemu_rdma_write_one_zero(chunk, sge.length,
current_index, current_addr);
compress_to_network(rdma, &comp);
ret = qemu_rdma_exchange_send(rdma, &head,
(uint8_t *) &comp, NULL, NULL, NULL);
if (ret < 0) {
return -EIO;
}
acct_update_position(f, sge.length, true);
return 1;
}
/*
* Otherwise, tell other side to register.
*/
reg.current_index = current_index;
if (block->is_ram_block) {
reg.key.current_addr = current_addr;
} else {
reg.key.chunk = chunk;
}
reg.chunks = chunks;
trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
current_addr);
register_to_network(rdma, &reg);
ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
&resp, &reg_result_idx, NULL);
if (ret < 0) {
return ret;
}
/* try to overlap this single registration with the one we sent. */
if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
&sge.lkey, NULL, chunk,
chunk_start, chunk_end)) {
error_report("cannot get lkey");
return -EINVAL;
}
reg_result = (RDMARegisterResult *)
rdma->wr_data[reg_result_idx].control_curr;
network_to_result(reg_result);
trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
reg_result->rkey, chunk);
block->remote_keys[chunk] = reg_result->rkey;
block->remote_host_addr = reg_result->host_addr;
} else {
/* already registered before */
if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
&sge.lkey, NULL, chunk,
chunk_start, chunk_end)) {
error_report("cannot get lkey!");
return -EINVAL;
}
}
send_wr.wr.rdma.rkey = block->remote_keys[chunk];
} else {
send_wr.wr.rdma.rkey = block->remote_rkey;
if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
&sge.lkey, NULL, chunk,
chunk_start, chunk_end)) {
error_report("cannot get lkey!");
return -EINVAL;
}
}
/*
* Encode the ram block index and chunk within this wrid.
* We will use this information at the time of completion
* to figure out which bitmap to check against and then which
* chunk in the bitmap to look for.
*/
send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
current_index, chunk);
send_wr.opcode = IBV_WR_RDMA_WRITE;
send_wr.send_flags = IBV_SEND_SIGNALED;
send_wr.sg_list = &sge;
send_wr.num_sge = 1;
send_wr.wr.rdma.remote_addr = block->remote_host_addr +
(current_addr - block->offset);
trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
sge.length);
/*
* ibv_post_send() does not return negative error numbers,
* per the specification they are positive - no idea why.
*/
ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
if (ret == ENOMEM) {
trace_qemu_rdma_write_one_queue_full();
ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
if (ret < 0) {
error_report("rdma migration: failed to make "
"room in full send queue! %d", ret);
return ret;
}
goto retry;
} else if (ret > 0) {
perror("rdma migration: post rdma write failed");
return -ret;
}
set_bit(chunk, block->transit_bitmap);
acct_update_position(f, sge.length, false);
rdma->total_writes++;
return 0;
}
/*
* Push out any unwritten RDMA operations.
*
* We support sending out multiple chunks at the same time.
* Not all of them need to get signaled in the completion queue.
*/
static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
{
int ret;
if (!rdma->current_length) {
return 0;
}
ret = qemu_rdma_write_one(f, rdma,
rdma->current_index, rdma->current_addr, rdma->current_length);
if (ret < 0) {
return ret;
}
if (ret == 0) {
rdma->nb_sent++;
trace_qemu_rdma_write_flush(rdma->nb_sent);
}
rdma->current_length = 0;
rdma->current_addr = 0;
return 0;
}
static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
uint64_t offset, uint64_t len)
{
RDMALocalBlock *block;
uint8_t *host_addr;
uint8_t *chunk_end;
if (rdma->current_index < 0) {
return 0;
}
if (rdma->current_chunk < 0) {
return 0;
}
block = &(rdma->local_ram_blocks.block[rdma->current_index]);
host_addr = block->local_host_addr + (offset - block->offset);
chunk_end = ram_chunk_end(block, rdma->current_chunk);
if (rdma->current_length == 0) {
return 0;
}
/*
* Only merge into chunk sequentially.
*/
if (offset != (rdma->current_addr + rdma->current_length)) {
return 0;
}
if (offset < block->offset) {
return 0;
}
if ((offset + len) > (block->offset + block->length)) {
return 0;
}
if ((host_addr + len) > chunk_end) {
return 0;
}
return 1;
}
/*
* We're not actually writing here, but doing three things:
*
* 1. Identify the chunk the buffer belongs to.
* 2. If the chunk is full or the buffer doesn't belong to the current
* chunk, then start a new chunk and flush() the old chunk.
* 3. To keep the hardware busy, we also group chunks into batches
* and only require that a batch gets acknowledged in the completion
* qeueue instead of each individual chunk.
*/
static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
uint64_t block_offset, uint64_t offset,
uint64_t len)
{
uint64_t current_addr = block_offset + offset;
uint64_t index = rdma->current_index;
uint64_t chunk = rdma->current_chunk;
int ret;
/* If we cannot merge it, we flush the current buffer first. */
if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
ret = qemu_rdma_write_flush(f, rdma);
if (ret) {
return ret;
}
rdma->current_length = 0;
rdma->current_addr = current_addr;
ret = qemu_rdma_search_ram_block(rdma, block_offset,
offset, len, &index, &chunk);
if (ret) {
error_report("ram block search failed");
return ret;
}
rdma->current_index = index;
rdma->current_chunk = chunk;
}
/* merge it */
rdma->current_length += len;
/* flush it if buffer is too large */
if (rdma->current_length >= RDMA_MERGE_MAX) {
return qemu_rdma_write_flush(f, rdma);
}
return 0;
}
static void qemu_rdma_cleanup(RDMAContext *rdma)
{
struct rdma_cm_event *cm_event;
int ret, idx;
if (rdma->cm_id && rdma->connected) {
if (rdma->error_state) {
RDMAControlHeader head = { .len = 0,
.type = RDMA_CONTROL_ERROR,
.repeat = 1,
};
error_report("Early error. Sending error.");
qemu_rdma_post_send_control(rdma, NULL, &head);
}
ret = rdma_disconnect(rdma->cm_id);
if (!ret) {
trace_qemu_rdma_cleanup_waiting_for_disconnect();
ret = rdma_get_cm_event(rdma->channel, &cm_event);
if (!ret) {
rdma_ack_cm_event(cm_event);
}
}
trace_qemu_rdma_cleanup_disconnect();
rdma->connected = false;
}
g_free(rdma->dest_blocks);
rdma->dest_blocks = NULL;
for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
if (rdma->wr_data[idx].control_mr) {
rdma->total_registrations--;
ibv_dereg_mr(rdma->wr_data[idx].control_mr);
}
rdma->wr_data[idx].control_mr = NULL;
}
if (rdma->local_ram_blocks.block) {
while (rdma->local_ram_blocks.nb_blocks) {
rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
}
}
if (rdma->qp) {
rdma_destroy_qp(rdma->cm_id);
rdma->qp = NULL;
}
if (rdma->cq) {
ibv_destroy_cq(rdma->cq);
rdma->cq = NULL;
}
if (rdma->comp_channel) {
ibv_destroy_comp_channel(rdma->comp_channel);
rdma->comp_channel = NULL;
}
if (rdma->pd) {
ibv_dealloc_pd(rdma->pd);
rdma->pd = NULL;
}
if (rdma->cm_id) {
rdma_destroy_id(rdma->cm_id);
rdma->cm_id = NULL;
}
if (rdma->listen_id) {
rdma_destroy_id(rdma->listen_id);
rdma->listen_id = NULL;
}
if (rdma->channel) {
rdma_destroy_event_channel(rdma->channel);
rdma->channel = NULL;
}
g_free(rdma->host);
rdma->host = NULL;
}
static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
{
int ret, idx;
Error *local_err = NULL, **temp = &local_err;
/*
* Will be validated against destination's actual capabilities
* after the connect() completes.
*/
rdma->pin_all = pin_all;
ret = qemu_rdma_resolve_host(rdma, temp);
if (ret) {
goto err_rdma_source_init;
}
ret = qemu_rdma_alloc_pd_cq(rdma);
if (ret) {
ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
" limits may be too low. Please check $ ulimit -a # and "
"search for 'ulimit -l' in the output");
goto err_rdma_source_init;
}
ret = qemu_rdma_alloc_qp(rdma);
if (ret) {
ERROR(temp, "rdma migration: error allocating qp!");
goto err_rdma_source_init;
}
ret = qemu_rdma_init_ram_blocks(rdma);
if (ret) {
ERROR(temp, "rdma migration: error initializing ram blocks!");
goto err_rdma_source_init;
}
/* Build the hash that maps from offset to RAMBlock */
rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
g_hash_table_insert(rdma->blockmap,
(void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
&rdma->local_ram_blocks.block[idx]);
}
for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
ret = qemu_rdma_reg_control(rdma, idx);
if (ret) {
ERROR(temp, "rdma migration: error registering %d control!",
idx);
goto err_rdma_source_init;
}
}
return 0;
err_rdma_source_init:
error_propagate(errp, local_err);
qemu_rdma_cleanup(rdma);
return -1;
}
static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
{
RDMACapabilities cap = {
.version = RDMA_CONTROL_VERSION_CURRENT,
.flags = 0,
};
struct rdma_conn_param conn_param = { .initiator_depth = 2,
.retry_count = 5,
.private_data = &cap,
.private_data_len = sizeof(cap),
};
struct rdma_cm_event *cm_event;
int ret;
/*
* Only negotiate the capability with destination if the user
* on the source first requested the capability.
*/
if (rdma->pin_all) {
trace_qemu_rdma_connect_pin_all_requested();
cap.flags |= RDMA_CAPABILITY_PIN_ALL;
}
caps_to_network(&cap);
ret = rdma_connect(rdma->cm_id, &conn_param);
if (ret) {
perror("rdma_connect");
ERROR(errp, "connecting to destination!");
goto err_rdma_source_connect;
}
ret = rdma_get_cm_event(rdma->channel, &cm_event);
if (ret) {
perror("rdma_get_cm_event after rdma_connect");
ERROR(errp, "connecting to destination!");
rdma_ack_cm_event(cm_event);
goto err_rdma_source_connect;
}
if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
ERROR(errp, "connecting to destination!");
rdma_ack_cm_event(cm_event);
goto err_rdma_source_connect;
}
rdma->connected = true;
memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
network_to_caps(&cap);
/*
* Verify that the *requested* capabilities are supported by the destination
* and disable them otherwise.
*/
if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
ERROR(errp, "Server cannot support pinning all memory. "
"Will register memory dynamically.");
rdma->pin_all = false;
}
trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
rdma_ack_cm_event(cm_event);
ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
if (ret) {
ERROR(errp, "posting second control recv!");
goto err_rdma_source_connect;
}
rdma->control_ready_expected = 1;
rdma->nb_sent = 0;
return 0;
err_rdma_source_connect:
qemu_rdma_cleanup(rdma);
return -1;
}
static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
{
int ret, idx;
struct rdma_cm_id *listen_id;
char ip[40] = "unknown";
struct rdma_addrinfo *res, *e;
char port_str[16];
for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
rdma->wr_data[idx].control_len = 0;
rdma->wr_data[idx].control_curr = NULL;
}
if (!rdma->host || !rdma->host[0]) {
ERROR(errp, "RDMA host is not set!");
rdma->error_state = -EINVAL;
return -1;
}
/* create CM channel */
rdma->channel = rdma_create_event_channel();
if (!rdma->channel) {
ERROR(errp, "could not create rdma event channel");
rdma->error_state = -EINVAL;
return -1;
}
/* create CM id */
ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
if (ret) {
ERROR(errp, "could not create cm_id!");
goto err_dest_init_create_listen_id;
}
snprintf(port_str, 16, "%d", rdma->port);
port_str[15] = '\0';
ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
if (ret < 0) {
ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
goto err_dest_init_bind_addr;
}
for (e = res; e != NULL; e = e->ai_next) {
inet_ntop(e->ai_family,
&((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
trace_qemu_rdma_dest_init_trying(rdma->host, ip);
ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
if (ret) {
continue;
}
if (e->ai_family == AF_INET6) {
ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
if (ret) {
continue;
}
}
break;
}
if (!e) {
ERROR(errp, "Error: could not rdma_bind_addr!");
goto err_dest_init_bind_addr;
}
rdma->listen_id = listen_id;
qemu_rdma_dump_gid("dest_init", listen_id);
return 0;
err_dest_init_bind_addr:
rdma_destroy_id(listen_id);
err_dest_init_create_listen_id:
rdma_destroy_event_channel(rdma->channel);
rdma->channel = NULL;
rdma->error_state = ret;
return ret;
}
static void *qemu_rdma_data_init(const char *host_port, Error **errp)
{
RDMAContext *rdma = NULL;
InetSocketAddress *addr;
if (host_port) {
rdma = g_malloc0(sizeof(RDMAContext));
rdma->current_index = -1;
rdma->current_chunk = -1;
addr = inet_parse(host_port, NULL);
if (addr != NULL) {
rdma->port = atoi(addr->port);
rdma->host = g_strdup(addr->host);
} else {
ERROR(errp, "bad RDMA migration address '%s'", host_port);
g_free(rdma);
rdma = NULL;
}
qapi_free_InetSocketAddress(addr);
}
return rdma;
}
/*
* QEMUFile interface to the control channel.
* SEND messages for control only.
* VM's ram is handled with regular RDMA messages.
*/
static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
int64_t pos, int size)
{
QEMUFileRDMA *r = opaque;
QEMUFile *f = r->file;
RDMAContext *rdma = r->rdma;
size_t remaining = size;
uint8_t * data = (void *) buf;
int ret;
CHECK_ERROR_STATE();
/*
* Push out any writes that
* we're queued up for VM's ram.
*/
ret = qemu_rdma_write_flush(f, rdma);
if (ret < 0) {
rdma->error_state = ret;
return ret;
}
while (remaining) {
RDMAControlHeader head;
r->len = MIN(remaining, RDMA_SEND_INCREMENT);
remaining -= r->len;
head.len = r->len;
head.type = RDMA_CONTROL_QEMU_FILE;
ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
if (ret < 0) {
rdma->error_state = ret;
return ret;
}
data += r->len;
}
return size;
}
static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
int size, int idx)
{
size_t len = 0;
if (rdma->wr_data[idx].control_len) {
trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
len = MIN(size, rdma->wr_data[idx].control_len);
memcpy(buf, rdma->wr_data[idx].control_curr, len);
rdma->wr_data[idx].control_curr += len;
rdma->wr_data[idx].control_len -= len;
}
return len;
}
/*
* QEMUFile interface to the control channel.
* RDMA links don't use bytestreams, so we have to
* return bytes to QEMUFile opportunistically.
*/
static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
int64_t pos, int size)
{
QEMUFileRDMA *r = opaque;
RDMAContext *rdma = r->rdma;
RDMAControlHeader head;
int ret = 0;
CHECK_ERROR_STATE();
/*
* First, we hold on to the last SEND message we
* were given and dish out the bytes until we run
* out of bytes.
*/
r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
if (r->len) {
return r->len;
}
/*
* Once we run out, we block and wait for another
* SEND message to arrive.
*/
ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
if (ret < 0) {
rdma->error_state = ret;
return ret;
}
/*
* SEND was received with new bytes, now try again.
*/
return qemu_rdma_fill(r->rdma, buf, size, 0);
}
/*
* Block until all the outstanding chunks have been delivered by the hardware.
*/
static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
{
int ret;
if (qemu_rdma_write_flush(f, rdma) < 0) {
return -EIO;
}
while (rdma->nb_sent) {
ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
if (ret < 0) {
error_report("rdma migration: complete polling error!");
return -EIO;
}
}
qemu_rdma_unregister_waiting(rdma);
return 0;
}
static int qemu_rdma_close(void *opaque)
{
trace_qemu_rdma_close();
QEMUFileRDMA *r = opaque;
if (r->rdma) {
qemu_rdma_cleanup(r->rdma);
g_free(r->rdma);
}
g_free(r);
return 0;
}
/*
* Parameters:
* @offset == 0 :
* This means that 'block_offset' is a full virtual address that does not
* belong to a RAMBlock of the virtual machine and instead
* represents a private malloc'd memory area that the caller wishes to
* transfer.
*
* @offset != 0 :
* Offset is an offset to be added to block_offset and used
* to also lookup the corresponding RAMBlock.
*
* @size > 0 :
* Initiate an transfer this size.
*
* @size == 0 :
* A 'hint' or 'advice' that means that we wish to speculatively
* and asynchronously unregister this memory. In this case, there is no
* guarantee that the unregister will actually happen, for example,
* if the memory is being actively transmitted. Additionally, the memory
* may be re-registered at any future time if a write within the same
* chunk was requested again, even if you attempted to unregister it
* here.
*
* @size < 0 : TODO, not yet supported
* Unregister the memory NOW. This means that the caller does not
* expect there to be any future RDMA transfers and we just want to clean
* things up. This is used in case the upper layer owns the memory and
* cannot wait for qemu_fclose() to occur.
*
* @bytes_sent : User-specificed pointer to indicate how many bytes were
* sent. Usually, this will not be more than a few bytes of
* the protocol because most transfers are sent asynchronously.
*/
static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
ram_addr_t block_offset, ram_addr_t offset,
size_t size, uint64_t *bytes_sent)
{
QEMUFileRDMA *rfile = opaque;
RDMAContext *rdma = rfile->rdma;
int ret;
CHECK_ERROR_STATE();
qemu_fflush(f);
if (size > 0) {
/*
* Add this page to the current 'chunk'. If the chunk
* is full, or the page doen't belong to the current chunk,
* an actual RDMA write will occur and a new chunk will be formed.
*/
ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
if (ret < 0) {
error_report("rdma migration: write error! %d", ret);
goto err;
}
/*
* We always return 1 bytes because the RDMA
* protocol is completely asynchronous. We do not yet know
* whether an identified chunk is zero or not because we're
* waiting for other pages to potentially be merged with
* the current chunk. So, we have to call qemu_update_position()
* later on when the actual write occurs.
*/
if (bytes_sent) {
*bytes_sent = 1;
}
} else {
uint64_t index, chunk;
/* TODO: Change QEMUFileOps prototype to be signed: size_t => long
if (size < 0) {
ret = qemu_rdma_drain_cq(f, rdma);
if (ret < 0) {
fprintf(stderr, "rdma: failed to synchronously drain"
" completion queue before unregistration.\n");
goto err;
}
}
*/
ret = qemu_rdma_search_ram_block(rdma, block_offset,
offset, size, &index, &chunk);
if (ret) {
error_report("ram block search failed");
goto err;
}
qemu_rdma_signal_unregister(rdma, index, chunk, 0);
/*
* TODO: Synchronous, guaranteed unregistration (should not occur during
* fast-path). Otherwise, unregisters will process on the next call to
* qemu_rdma_drain_cq()
if (size < 0) {
qemu_rdma_unregister_waiting(rdma);
}
*/
}
/*
* Drain the Completion Queue if possible, but do not block,
* just poll.
*
* If nothing to poll, the end of the iteration will do this
* again to make sure we don't overflow the request queue.
*/
while (1) {
uint64_t wr_id, wr_id_in;
int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
if (ret < 0) {
error_report("rdma migration: polling error! %d", ret);
goto err;
}
wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
if (wr_id == RDMA_WRID_NONE) {
break;
}
}
return RAM_SAVE_CONTROL_DELAYED;
err:
rdma->error_state = ret;
return ret;
}
static int qemu_rdma_accept(RDMAContext *rdma)
{
RDMACapabilities cap;
struct rdma_conn_param conn_param = {
.responder_resources = 2,
.private_data = &cap,
.private_data_len = sizeof(cap),
};
struct rdma_cm_event *cm_event;
struct ibv_context *verbs;
int ret = -EINVAL;
int idx;
ret = rdma_get_cm_event(rdma->channel, &cm_event);
if (ret) {
goto err_rdma_dest_wait;
}
if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
rdma_ack_cm_event(cm_event);
goto err_rdma_dest_wait;
}
memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
network_to_caps(&cap);
if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
error_report("Unknown source RDMA version: %d, bailing...",
cap.version);
rdma_ack_cm_event(cm_event);
goto err_rdma_dest_wait;
}
/*
* Respond with only the capabilities this version of QEMU knows about.
*/
cap.flags &= known_capabilities;
/*
* Enable the ones that we do know about.
* Add other checks here as new ones are introduced.
*/
if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
rdma->pin_all = true;
}
rdma->cm_id = cm_event->id;
verbs = cm_event->id->verbs;
rdma_ack_cm_event(cm_event);
trace_qemu_rdma_accept_pin_state(rdma->pin_all);
caps_to_network(&cap);
trace_qemu_rdma_accept_pin_verbsc(verbs);
if (!rdma->verbs) {
rdma->verbs = verbs;
} else if (rdma->verbs != verbs) {
error_report("ibv context not matching %p, %p!", rdma->verbs,
verbs);
goto err_rdma_dest_wait;
}
qemu_rdma_dump_id("dest_init", verbs);
ret = qemu_rdma_alloc_pd_cq(rdma);
if (ret) {
error_report("rdma migration: error allocating pd and cq!");
goto err_rdma_dest_wait;
}
ret = qemu_rdma_alloc_qp(rdma);
if (ret) {
error_report("rdma migration: error allocating qp!");
goto err_rdma_dest_wait;
}
ret = qemu_rdma_init_ram_blocks(rdma);
if (ret) {
error_report("rdma migration: error initializing ram blocks!");
goto err_rdma_dest_wait;
}
for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
ret = qemu_rdma_reg_control(rdma, idx);
if (ret) {
error_report("rdma: error registering %d control", idx);
goto err_rdma_dest_wait;
}
}
qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
ret = rdma_accept(rdma->cm_id, &conn_param);
if (ret) {
error_report("rdma_accept returns %d", ret);
goto err_rdma_dest_wait;
}
ret = rdma_get_cm_event(rdma->channel, &cm_event);
if (ret) {
error_report("rdma_accept get_cm_event failed %d", ret);
goto err_rdma_dest_wait;
}
if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
error_report("rdma_accept not event established");
rdma_ack_cm_event(cm_event);
goto err_rdma_dest_wait;
}
rdma_ack_cm_event(cm_event);
rdma->connected = true;
ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
if (ret) {
error_report("rdma migration: error posting second control recv");
goto err_rdma_dest_wait;
}
qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
return 0;
err_rdma_dest_wait:
rdma->error_state = ret;
qemu_rdma_cleanup(rdma);
return ret;
}
static int dest_ram_sort_func(const void *a, const void *b)
{
unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
return (a_index < b_index) ? -1 : (a_index != b_index);
}
/*
* During each iteration of the migration, we listen for instructions
* by the source VM to perform dynamic page registrations before they
* can perform RDMA operations.
*
* We respond with the 'rkey'.
*
* Keep doing this until the source tells us to stop.
*/
static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
{
RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
.type = RDMA_CONTROL_REGISTER_RESULT,
.repeat = 0,
};
RDMAControlHeader unreg_resp = { .len = 0,
.type = RDMA_CONTROL_UNREGISTER_FINISHED,
.repeat = 0,
};
RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
.repeat = 1 };
QEMUFileRDMA *rfile = opaque;
RDMAContext *rdma = rfile->rdma;
RDMALocalBlocks *local = &rdma->local_ram_blocks;
RDMAControlHeader head;
RDMARegister *reg, *registers;
RDMACompress *comp;
RDMARegisterResult *reg_result;
static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
RDMALocalBlock *block;
void *host_addr;
int ret = 0;
int idx = 0;
int count = 0;
int i = 0;
CHECK_ERROR_STATE();
do {
trace_qemu_rdma_registration_handle_wait();
ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
if (ret < 0) {
break;
}
if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
error_report("rdma: Too many requests in this message (%d)."
"Bailing.", head.repeat);
ret = -EIO;
break;
}
switch (head.type) {
case RDMA_CONTROL_COMPRESS:
comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
network_to_compress(comp);
trace_qemu_rdma_registration_handle_compress(comp->length,
comp->block_idx,
comp->offset);
if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
error_report("rdma: 'compress' bad block index %u (vs %d)",
(unsigned int)comp->block_idx,
rdma->local_ram_blocks.nb_blocks);
ret = -EIO;
goto out;
}
block = &(rdma->local_ram_blocks.block[comp->block_idx]);
host_addr = block->local_host_addr +
(comp->offset - block->offset);
ram_handle_compressed(host_addr, comp->value, comp->length);
break;
case RDMA_CONTROL_REGISTER_FINISHED:
trace_qemu_rdma_registration_handle_finished();
goto out;
case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
trace_qemu_rdma_registration_handle_ram_blocks();
/* Sort our local RAM Block list so it's the same as the source,
* we can do this since we've filled in a src_index in the list
* as we received the RAMBlock list earlier.
*/
qsort(rdma->local_ram_blocks.block,
rdma->local_ram_blocks.nb_blocks,
sizeof(RDMALocalBlock), dest_ram_sort_func);
if (rdma->pin_all) {
ret = qemu_rdma_reg_whole_ram_blocks(rdma);
if (ret) {
error_report("rdma migration: error dest "
"registering ram blocks");
goto out;
}
}
/*
* Dest uses this to prepare to transmit the RAMBlock descriptions
* to the source VM after connection setup.
* Both sides use the "remote" structure to communicate and update
* their "local" descriptions with what was sent.
*/
for (i = 0; i < local->nb_blocks; i++) {
rdma->dest_blocks[i].remote_host_addr =
(uintptr_t)(local->block[i].local_host_addr);
if (rdma->pin_all) {
rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
}
rdma->dest_blocks[i].offset = local->block[i].offset;
rdma->dest_blocks[i].length = local->block[i].length;
dest_block_to_network(&rdma->dest_blocks[i]);
trace_qemu_rdma_registration_handle_ram_blocks_loop(
local->block[i].block_name,
local->block[i].offset,
local->block[i].length,
local->block[i].local_host_addr,
local->block[i].src_index);
}
blocks.len = rdma->local_ram_blocks.nb_blocks
* sizeof(RDMADestBlock);
ret = qemu_rdma_post_send_control(rdma,
(uint8_t *) rdma->dest_blocks, &blocks);
if (ret < 0) {
error_report("rdma migration: error sending remote info");
goto out;
}
break;
case RDMA_CONTROL_REGISTER_REQUEST:
trace_qemu_rdma_registration_handle_register(head.repeat);
reg_resp.repeat = head.repeat;
registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
for (count = 0; count < head.repeat; count++) {
uint64_t chunk;
uint8_t *chunk_start, *chunk_end;
reg = &registers[count];
network_to_register(reg);
reg_result = &results[count];
trace_qemu_rdma_registration_handle_register_loop(count,
reg->current_index, reg->key.current_addr, reg->chunks);
if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
error_report("rdma: 'register' bad block index %u (vs %d)",
(unsigned int)reg->current_index,
rdma->local_ram_blocks.nb_blocks);
ret = -ENOENT;
goto out;
}
block = &(rdma->local_ram_blocks.block[reg->current_index]);
if (block->is_ram_block) {
if (block->offset > reg->key.current_addr) {
error_report("rdma: bad register address for block %s"
" offset: %" PRIx64 " current_addr: %" PRIx64,
block->block_name, block->offset,
reg->key.current_addr);
ret = -ERANGE;
goto out;
}
host_addr = (block->local_host_addr +
(reg->key.current_addr - block->offset));
chunk = ram_chunk_index(block->local_host_addr,
(uint8_t *) host_addr);
} else {
chunk = reg->key.chunk;
host_addr = block->local_host_addr +
(reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
/* Check for particularly bad chunk value */
if (host_addr < (void *)block->local_host_addr) {
error_report("rdma: bad chunk for block %s"
" chunk: %" PRIx64,
block->block_name, reg->key.chunk);
ret = -ERANGE;
goto out;
}
}
chunk_start = ram_chunk_start(block, chunk);
chunk_end = ram_chunk_end(block, chunk + reg->chunks);
if (qemu_rdma_register_and_get_keys(rdma, block,
(uintptr_t)host_addr, NULL, &reg_result->rkey,
chunk, chunk_start, chunk_end)) {
error_report("cannot get rkey");
ret = -EINVAL;
goto out;
}
reg_result->host_addr = (uintptr_t)block->local_host_addr;
trace_qemu_rdma_registration_handle_register_rkey(
reg_result->rkey);
result_to_network(reg_result);
}
ret = qemu_rdma_post_send_control(rdma,
(uint8_t *) results, &reg_resp);
if (ret < 0) {
error_report("Failed to send control buffer");
goto out;
}
break;
case RDMA_CONTROL_UNREGISTER_REQUEST:
trace_qemu_rdma_registration_handle_unregister(head.repeat);
unreg_resp.repeat = head.repeat;
registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
for (count = 0; count < head.repeat; count++) {
reg = &registers[count];
network_to_register(reg);
trace_qemu_rdma_registration_handle_unregister_loop(count,
reg->current_index, reg->key.chunk);
block = &(rdma->local_ram_blocks.block[reg->current_index]);
ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
block->pmr[reg->key.chunk] = NULL;
if (ret != 0) {
perror("rdma unregistration chunk failed");
ret = -ret;
goto out;
}
rdma->total_registrations--;
trace_qemu_rdma_registration_handle_unregister_success(
reg->key.chunk);
}
ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
if (ret < 0) {
error_report("Failed to send control buffer");
goto out;
}
break;
case RDMA_CONTROL_REGISTER_RESULT:
error_report("Invalid RESULT message at dest.");
ret = -EIO;
goto out;
default:
error_report("Unknown control message %s", control_desc[head.type]);
ret = -EIO;
goto out;
}
} while (1);
out:
if (ret < 0) {
rdma->error_state = ret;
}
return ret;
}
/* Destination:
* Called via a ram_control_load_hook during the initial RAM load section which
* lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
* on the source.
* We've already built our local RAMBlock list, but not yet sent the list to
* the source.
*/
static int rdma_block_notification_handle(QEMUFileRDMA *rfile, const char *name)
{
RDMAContext *rdma = rfile->rdma;
int curr;
int found = -1;
/* Find the matching RAMBlock in our local list */
for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
found = curr;
break;
}
}
if (found == -1) {
error_report("RAMBlock '%s' not found on destination", name);
return -ENOENT;
}
rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
trace_rdma_block_notification_handle(name, rdma->next_src_index);
rdma->next_src_index++;
return 0;
}
static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
{
switch (flags) {
case RAM_CONTROL_BLOCK_REG:
return rdma_block_notification_handle(opaque, data);
case RAM_CONTROL_HOOK:
return qemu_rdma_registration_handle(f, opaque);
default:
/* Shouldn't be called with any other values */
abort();
}
}
static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
uint64_t flags, void *data)
{
QEMUFileRDMA *rfile = opaque;
RDMAContext *rdma = rfile->rdma;
CHECK_ERROR_STATE();
trace_qemu_rdma_registration_start(flags);
qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
qemu_fflush(f);
return 0;
}
/*
* Inform dest that dynamic registrations are done for now.
* First, flush writes, if any.
*/
static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
uint64_t flags, void *data)
{
Error *local_err = NULL, **errp = &local_err;
QEMUFileRDMA *rfile = opaque;
RDMAContext *rdma = rfile->rdma;
RDMAControlHeader head = { .len = 0, .repeat = 1 };
int ret = 0;
CHECK_ERROR_STATE();
qemu_fflush(f);
ret = qemu_rdma_drain_cq(f, rdma);
if (ret < 0) {
goto err;
}
if (flags == RAM_CONTROL_SETUP) {
RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
RDMALocalBlocks *local = &rdma->local_ram_blocks;
int reg_result_idx, i, nb_dest_blocks;
head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
trace_qemu_rdma_registration_stop_ram();
/*
* Make sure that we parallelize the pinning on both sides.
* For very large guests, doing this serially takes a really
* long time, so we have to 'interleave' the pinning locally
* with the control messages by performing the pinning on this
* side before we receive the control response from the other
* side that the pinning has completed.
*/
ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
&reg_result_idx, rdma->pin_all ?
qemu_rdma_reg_whole_ram_blocks : NULL);
if (ret < 0) {
ERROR(errp, "receiving remote info!");
return ret;
}
nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
/*
* The protocol uses two different sets of rkeys (mutually exclusive):
* 1. One key to represent the virtual address of the entire ram block.
* (dynamic chunk registration disabled - pin everything with one rkey.)
* 2. One to represent individual chunks within a ram block.
* (dynamic chunk registration enabled - pin individual chunks.)
*
* Once the capability is successfully negotiated, the destination transmits
* the keys to use (or sends them later) including the virtual addresses
* and then propagates the remote ram block descriptions to his local copy.
*/
if (local->nb_blocks != nb_dest_blocks) {
ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) "
"Your QEMU command line parameters are probably "
"not identical on both the source and destination.",
local->nb_blocks, nb_dest_blocks);
rdma->error_state = -EINVAL;
return -EINVAL;
}
qemu_rdma_move_header(rdma, reg_result_idx, &resp);
memcpy(rdma->dest_blocks,
rdma->wr_data[reg_result_idx].control_curr, resp.len);
for (i = 0; i < nb_dest_blocks; i++) {
network_to_dest_block(&rdma->dest_blocks[i]);
/* We require that the blocks are in the same order */
if (rdma->dest_blocks[i].length != local->block[i].length) {
ERROR(errp, "Block %s/%d has a different length %" PRIu64
"vs %" PRIu64, local->block[i].block_name, i,
local->block[i].length,
rdma->dest_blocks[i].length);
rdma->error_state = -EINVAL;
return -EINVAL;
}
local->block[i].remote_host_addr =
rdma->dest_blocks[i].remote_host_addr;
local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
}
}
trace_qemu_rdma_registration_stop(flags);
head.type = RDMA_CONTROL_REGISTER_FINISHED;
ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
if (ret < 0) {
goto err;
}
return 0;
err:
rdma->error_state = ret;
return ret;
}
static int qemu_rdma_get_fd(void *opaque)
{
QEMUFileRDMA *rfile = opaque;
RDMAContext *rdma = rfile->rdma;
return rdma->comp_channel->fd;
}
static const QEMUFileOps rdma_read_ops = {
.get_buffer = qemu_rdma_get_buffer,
.get_fd = qemu_rdma_get_fd,
.close = qemu_rdma_close,
.hook_ram_load = rdma_load_hook,
};
static const QEMUFileOps rdma_write_ops = {
.put_buffer = qemu_rdma_put_buffer,
.close = qemu_rdma_close,
.before_ram_iterate = qemu_rdma_registration_start,
.after_ram_iterate = qemu_rdma_registration_stop,
.save_page = qemu_rdma_save_page,
};
static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
{
QEMUFileRDMA *r;
if (qemu_file_mode_is_not_valid(mode)) {
return NULL;
}
r = g_malloc0(sizeof(QEMUFileRDMA));
r->rdma = rdma;
if (mode[0] == 'w') {
r->file = qemu_fopen_ops(r, &rdma_write_ops);
} else {
r->file = qemu_fopen_ops(r, &rdma_read_ops);
}
return r->file;
}
static void rdma_accept_incoming_migration(void *opaque)
{
RDMAContext *rdma = opaque;
int ret;
QEMUFile *f;
Error *local_err = NULL, **errp = &local_err;
trace_qemu_rdma_accept_incoming_migration();
ret = qemu_rdma_accept(rdma);
if (ret) {
ERROR(errp, "RDMA Migration initialization failed!");
return;
}
trace_qemu_rdma_accept_incoming_migration_accepted();
f = qemu_fopen_rdma(rdma, "rb");
if (f == NULL) {
ERROR(errp, "could not qemu_fopen_rdma!");
qemu_rdma_cleanup(rdma);
return;
}
rdma->migration_started_on_destination = 1;
process_incoming_migration(f);
}
void rdma_start_incoming_migration(const char *host_port, Error **errp)
{
int ret;
RDMAContext *rdma;
Error *local_err = NULL;
trace_rdma_start_incoming_migration();
rdma = qemu_rdma_data_init(host_port, &local_err);
if (rdma == NULL) {
goto err;
}
ret = qemu_rdma_dest_init(rdma, &local_err);
if (ret) {
goto err;
}
trace_rdma_start_incoming_migration_after_dest_init();
ret = rdma_listen(rdma->listen_id, 5);
if (ret) {
ERROR(errp, "listening on socket!");
goto err;
}
trace_rdma_start_incoming_migration_after_rdma_listen();
qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
NULL, (void *)(intptr_t)rdma);
return;
err:
error_propagate(errp, local_err);
g_free(rdma);
}
void rdma_start_outgoing_migration(void *opaque,
const char *host_port, Error **errp)
{
MigrationState *s = opaque;
Error *local_err = NULL, **temp = &local_err;
RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
int ret = 0;
if (rdma == NULL) {
ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
goto err;
}
ret = qemu_rdma_source_init(rdma, &local_err,
s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]);
if (ret) {
goto err;
}
trace_rdma_start_outgoing_migration_after_rdma_source_init();
ret = qemu_rdma_connect(rdma, &local_err);
if (ret) {
goto err;
}
trace_rdma_start_outgoing_migration_after_rdma_connect();
s->file = qemu_fopen_rdma(rdma, "wb");
migrate_fd_connect(s);
return;
err:
error_propagate(errp, local_err);
g_free(rdma);
migrate_fd_error(s);
}