qemu-e2k/hw/net/sungem.c
Mark Cave-Ayland 8f90bc2f8f sungem: fix multicast filter CRC calculation
From the Linux sungem driver, we know that the multicast filter CRC is
implemented using ether_crc_le() which isn't the same as calling zlib's
crc32() function (the zlib implementation requires a complemented initial value
and also returns the complemented result).

Fix the multicast filter by simply using the new net_crc32_le() function.

Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Jason Wang <jasowang@redhat.com>
2017-12-22 10:00:47 +08:00

1451 lines
42 KiB
C

/*
* QEMU model of SUN GEM ethernet controller
*
* As found in Apple ASICs among others
*
* Copyright 2016 Ben Herrenschmidt
* Copyright 2017 Mark Cave-Ayland
*/
#include "qemu/osdep.h"
#include "hw/pci/pci.h"
#include "qemu/log.h"
#include "net/net.h"
#include "net/eth.h"
#include "net/checksum.h"
#include "hw/net/mii.h"
#include "sysemu/sysemu.h"
#include "trace.h"
#define TYPE_SUNGEM "sungem"
#define SUNGEM(obj) OBJECT_CHECK(SunGEMState, (obj), TYPE_SUNGEM)
#define MAX_PACKET_SIZE 9016
#define SUNGEM_MMIO_SIZE 0x200000
/* Global registers */
#define SUNGEM_MMIO_GREG_SIZE 0x2000
#define GREG_SEBSTATE 0x0000UL /* SEB State Register */
#define GREG_STAT 0x000CUL /* Status Register */
#define GREG_STAT_TXINTME 0x00000001 /* TX INTME frame transferred */
#define GREG_STAT_TXALL 0x00000002 /* All TX frames transferred */
#define GREG_STAT_TXDONE 0x00000004 /* One TX frame transferred */
#define GREG_STAT_RXDONE 0x00000010 /* One RX frame arrived */
#define GREG_STAT_RXNOBUF 0x00000020 /* No free RX buffers available */
#define GREG_STAT_RXTAGERR 0x00000040 /* RX tag framing is corrupt */
#define GREG_STAT_TXMAC 0x00004000 /* TX MAC signalled interrupt */
#define GREG_STAT_RXMAC 0x00008000 /* RX MAC signalled interrupt */
#define GREG_STAT_MAC 0x00010000 /* MAC Control signalled irq */
#define GREG_STAT_TXNR 0xfff80000 /* == TXDMA_TXDONE reg val */
#define GREG_STAT_TXNR_SHIFT 19
/* These interrupts are edge latches in the status register,
* reading it (or writing the corresponding bit in IACK) will
* clear them
*/
#define GREG_STAT_LATCH (GREG_STAT_TXALL | GREG_STAT_TXINTME | \
GREG_STAT_RXDONE | GREG_STAT_RXDONE | \
GREG_STAT_RXNOBUF | GREG_STAT_RXTAGERR)
#define GREG_IMASK 0x0010UL /* Interrupt Mask Register */
#define GREG_IACK 0x0014UL /* Interrupt ACK Register */
#define GREG_STAT2 0x001CUL /* Alias of GREG_STAT */
#define GREG_PCIESTAT 0x1000UL /* PCI Error Status Register */
#define GREG_PCIEMASK 0x1004UL /* PCI Error Mask Register */
#define GREG_SWRST 0x1010UL /* Software Reset Register */
#define GREG_SWRST_TXRST 0x00000001 /* TX Software Reset */
#define GREG_SWRST_RXRST 0x00000002 /* RX Software Reset */
#define GREG_SWRST_RSTOUT 0x00000004 /* Force RST# pin active */
/* TX DMA Registers */
#define SUNGEM_MMIO_TXDMA_SIZE 0x1000
#define TXDMA_KICK 0x0000UL /* TX Kick Register */
#define TXDMA_CFG 0x0004UL /* TX Configuration Register */
#define TXDMA_CFG_ENABLE 0x00000001 /* Enable TX DMA channel */
#define TXDMA_CFG_RINGSZ 0x0000001e /* TX descriptor ring size */
#define TXDMA_DBLOW 0x0008UL /* TX Desc. Base Low */
#define TXDMA_DBHI 0x000CUL /* TX Desc. Base High */
#define TXDMA_PCNT 0x0024UL /* TX FIFO Packet Counter */
#define TXDMA_SMACHINE 0x0028UL /* TX State Machine Register */
#define TXDMA_DPLOW 0x0030UL /* TX Data Pointer Low */
#define TXDMA_DPHI 0x0034UL /* TX Data Pointer High */
#define TXDMA_TXDONE 0x0100UL /* TX Completion Register */
#define TXDMA_FTAG 0x0108UL /* TX FIFO Tag */
#define TXDMA_FSZ 0x0118UL /* TX FIFO Size */
/* Receive DMA Registers */
#define SUNGEM_MMIO_RXDMA_SIZE 0x2000
#define RXDMA_CFG 0x0000UL /* RX Configuration Register */
#define RXDMA_CFG_ENABLE 0x00000001 /* Enable RX DMA channel */
#define RXDMA_CFG_RINGSZ 0x0000001e /* RX descriptor ring size */
#define RXDMA_CFG_FBOFF 0x00001c00 /* Offset of first data byte */
#define RXDMA_CFG_CSUMOFF 0x000fe000 /* Skip bytes before csum calc */
#define RXDMA_DBLOW 0x0004UL /* RX Descriptor Base Low */
#define RXDMA_DBHI 0x0008UL /* RX Descriptor Base High */
#define RXDMA_PCNT 0x0018UL /* RX FIFO Packet Counter */
#define RXDMA_SMACHINE 0x001CUL /* RX State Machine Register */
#define RXDMA_PTHRESH 0x0020UL /* Pause Thresholds */
#define RXDMA_DPLOW 0x0024UL /* RX Data Pointer Low */
#define RXDMA_DPHI 0x0028UL /* RX Data Pointer High */
#define RXDMA_KICK 0x0100UL /* RX Kick Register */
#define RXDMA_DONE 0x0104UL /* RX Completion Register */
#define RXDMA_BLANK 0x0108UL /* RX Blanking Register */
#define RXDMA_FTAG 0x0110UL /* RX FIFO Tag */
#define RXDMA_FSZ 0x0120UL /* RX FIFO Size */
/* MAC Registers */
#define SUNGEM_MMIO_MAC_SIZE 0x200
#define MAC_TXRST 0x0000UL /* TX MAC Software Reset Command */
#define MAC_RXRST 0x0004UL /* RX MAC Software Reset Command */
#define MAC_TXSTAT 0x0010UL /* TX MAC Status Register */
#define MAC_RXSTAT 0x0014UL /* RX MAC Status Register */
#define MAC_CSTAT 0x0018UL /* MAC Control Status Register */
#define MAC_CSTAT_PTR 0xffff0000 /* Pause Time Received */
#define MAC_TXMASK 0x0020UL /* TX MAC Mask Register */
#define MAC_RXMASK 0x0024UL /* RX MAC Mask Register */
#define MAC_MCMASK 0x0028UL /* MAC Control Mask Register */
#define MAC_TXCFG 0x0030UL /* TX MAC Configuration Register */
#define MAC_TXCFG_ENAB 0x00000001 /* TX MAC Enable */
#define MAC_RXCFG 0x0034UL /* RX MAC Configuration Register */
#define MAC_RXCFG_ENAB 0x00000001 /* RX MAC Enable */
#define MAC_RXCFG_SFCS 0x00000004 /* Strip FCS */
#define MAC_RXCFG_PROM 0x00000008 /* Promiscuous Mode */
#define MAC_RXCFG_PGRP 0x00000010 /* Promiscuous Group */
#define MAC_RXCFG_HFE 0x00000020 /* Hash Filter Enable */
#define MAC_XIFCFG 0x003CUL /* XIF Configuration Register */
#define MAC_XIFCFG_LBCK 0x00000002 /* Loopback TX to RX */
#define MAC_MINFSZ 0x0050UL /* MinFrameSize Register */
#define MAC_MAXFSZ 0x0054UL /* MaxFrameSize Register */
#define MAC_ADDR0 0x0080UL /* MAC Address 0 Register */
#define MAC_ADDR1 0x0084UL /* MAC Address 1 Register */
#define MAC_ADDR2 0x0088UL /* MAC Address 2 Register */
#define MAC_ADDR3 0x008CUL /* MAC Address 3 Register */
#define MAC_ADDR4 0x0090UL /* MAC Address 4 Register */
#define MAC_ADDR5 0x0094UL /* MAC Address 5 Register */
#define MAC_HASH0 0x00C0UL /* Hash Table 0 Register */
#define MAC_PATMPS 0x0114UL /* Peak Attempts Register */
#define MAC_SMACHINE 0x0134UL /* State Machine Register */
/* MIF Registers */
#define SUNGEM_MMIO_MIF_SIZE 0x20
#define MIF_FRAME 0x000CUL /* MIF Frame/Output Register */
#define MIF_FRAME_OP 0x30000000 /* OPcode */
#define MIF_FRAME_PHYAD 0x0f800000 /* PHY ADdress */
#define MIF_FRAME_REGAD 0x007c0000 /* REGister ADdress */
#define MIF_FRAME_TALSB 0x00010000 /* Turn Around LSB */
#define MIF_FRAME_DATA 0x0000ffff /* Instruction Payload */
#define MIF_CFG 0x0010UL /* MIF Configuration Register */
#define MIF_CFG_MDI0 0x00000100 /* MDIO_0 present or read-bit */
#define MIF_CFG_MDI1 0x00000200 /* MDIO_1 present or read-bit */
#define MIF_STATUS 0x0018UL /* MIF Status Register */
#define MIF_SMACHINE 0x001CUL /* MIF State Machine Register */
/* PCS/Serialink Registers */
#define SUNGEM_MMIO_PCS_SIZE 0x60
#define PCS_MIISTAT 0x0004UL /* PCS MII Status Register */
#define PCS_ISTAT 0x0018UL /* PCS Interrupt Status Reg */
#define PCS_SSTATE 0x005CUL /* Serialink State Register */
/* Descriptors */
struct gem_txd {
uint64_t control_word;
uint64_t buffer;
};
#define TXDCTRL_BUFSZ 0x0000000000007fffULL /* Buffer Size */
#define TXDCTRL_CSTART 0x00000000001f8000ULL /* CSUM Start Offset */
#define TXDCTRL_COFF 0x000000001fe00000ULL /* CSUM Stuff Offset */
#define TXDCTRL_CENAB 0x0000000020000000ULL /* CSUM Enable */
#define TXDCTRL_EOF 0x0000000040000000ULL /* End of Frame */
#define TXDCTRL_SOF 0x0000000080000000ULL /* Start of Frame */
#define TXDCTRL_INTME 0x0000000100000000ULL /* "Interrupt Me" */
struct gem_rxd {
uint64_t status_word;
uint64_t buffer;
};
#define RXDCTRL_HPASS 0x1000000000000000ULL /* Passed Hash Filter */
#define RXDCTRL_ALTMAC 0x2000000000000000ULL /* Matched ALT MAC */
typedef struct {
PCIDevice pdev;
MemoryRegion sungem;
MemoryRegion greg;
MemoryRegion txdma;
MemoryRegion rxdma;
MemoryRegion mac;
MemoryRegion mif;
MemoryRegion pcs;
NICState *nic;
NICConf conf;
uint32_t phy_addr;
uint32_t gregs[SUNGEM_MMIO_GREG_SIZE >> 2];
uint32_t txdmaregs[SUNGEM_MMIO_TXDMA_SIZE >> 2];
uint32_t rxdmaregs[SUNGEM_MMIO_RXDMA_SIZE >> 2];
uint32_t macregs[SUNGEM_MMIO_MAC_SIZE >> 2];
uint32_t mifregs[SUNGEM_MMIO_MIF_SIZE >> 2];
uint32_t pcsregs[SUNGEM_MMIO_PCS_SIZE >> 2];
/* Cache some useful things */
uint32_t rx_mask;
uint32_t tx_mask;
/* Current tx packet */
uint8_t tx_data[MAX_PACKET_SIZE];
uint32_t tx_size;
uint64_t tx_first_ctl;
} SunGEMState;
static void sungem_eval_irq(SunGEMState *s)
{
uint32_t stat, mask;
mask = s->gregs[GREG_IMASK >> 2];
stat = s->gregs[GREG_STAT >> 2] & ~GREG_STAT_TXNR;
if (stat & ~mask) {
pci_set_irq(PCI_DEVICE(s), 1);
} else {
pci_set_irq(PCI_DEVICE(s), 0);
}
}
static void sungem_update_status(SunGEMState *s, uint32_t bits, bool val)
{
uint32_t stat;
stat = s->gregs[GREG_STAT >> 2];
if (val) {
stat |= bits;
} else {
stat &= ~bits;
}
s->gregs[GREG_STAT >> 2] = stat;
sungem_eval_irq(s);
}
static void sungem_eval_cascade_irq(SunGEMState *s)
{
uint32_t stat, mask;
mask = s->macregs[MAC_TXSTAT >> 2];
stat = s->macregs[MAC_TXMASK >> 2];
if (stat & ~mask) {
sungem_update_status(s, GREG_STAT_TXMAC, true);
} else {
sungem_update_status(s, GREG_STAT_TXMAC, false);
}
mask = s->macregs[MAC_RXSTAT >> 2];
stat = s->macregs[MAC_RXMASK >> 2];
if (stat & ~mask) {
sungem_update_status(s, GREG_STAT_RXMAC, true);
} else {
sungem_update_status(s, GREG_STAT_RXMAC, false);
}
mask = s->macregs[MAC_CSTAT >> 2];
stat = s->macregs[MAC_MCMASK >> 2] & ~MAC_CSTAT_PTR;
if (stat & ~mask) {
sungem_update_status(s, GREG_STAT_MAC, true);
} else {
sungem_update_status(s, GREG_STAT_MAC, false);
}
}
static void sungem_do_tx_csum(SunGEMState *s)
{
uint16_t start, off;
uint32_t csum;
start = (s->tx_first_ctl & TXDCTRL_CSTART) >> 15;
off = (s->tx_first_ctl & TXDCTRL_COFF) >> 21;
trace_sungem_tx_checksum(start, off);
if (start > (s->tx_size - 2) || off > (s->tx_size - 2)) {
trace_sungem_tx_checksum_oob();
return;
}
csum = net_raw_checksum(s->tx_data + start, s->tx_size - start);
stw_be_p(s->tx_data + off, csum);
}
static void sungem_send_packet(SunGEMState *s, const uint8_t *buf,
int size)
{
NetClientState *nc = qemu_get_queue(s->nic);
if (s->macregs[MAC_XIFCFG >> 2] & MAC_XIFCFG_LBCK) {
nc->info->receive(nc, buf, size);
} else {
qemu_send_packet(nc, buf, size);
}
}
static void sungem_process_tx_desc(SunGEMState *s, struct gem_txd *desc)
{
PCIDevice *d = PCI_DEVICE(s);
uint32_t len;
/* If it's a start of frame, discard anything we had in the
* buffer and start again. This should be an error condition
* if we had something ... for now we ignore it
*/
if (desc->control_word & TXDCTRL_SOF) {
if (s->tx_first_ctl) {
trace_sungem_tx_unfinished();
}
s->tx_size = 0;
s->tx_first_ctl = desc->control_word;
}
/* Grab data size */
len = desc->control_word & TXDCTRL_BUFSZ;
/* Clamp it to our max size */
if ((s->tx_size + len) > MAX_PACKET_SIZE) {
trace_sungem_tx_overflow();
len = MAX_PACKET_SIZE - s->tx_size;
}
/* Read the data */
pci_dma_read(d, desc->buffer, &s->tx_data[s->tx_size], len);
s->tx_size += len;
/* If end of frame, send packet */
if (desc->control_word & TXDCTRL_EOF) {
trace_sungem_tx_finished(s->tx_size);
/* Handle csum */
if (s->tx_first_ctl & TXDCTRL_CENAB) {
sungem_do_tx_csum(s);
}
/* Send it */
sungem_send_packet(s, s->tx_data, s->tx_size);
/* No more pending packet */
s->tx_size = 0;
s->tx_first_ctl = 0;
}
}
static void sungem_tx_kick(SunGEMState *s)
{
PCIDevice *d = PCI_DEVICE(s);
uint32_t comp, kick;
uint32_t txdma_cfg, txmac_cfg, ints;
uint64_t dbase;
trace_sungem_tx_kick();
/* Check that both TX MAC and TX DMA are enabled. We don't
* handle DMA-less direct FIFO operations (we don't emulate
* the FIFO at all).
*
* A write to TXDMA_KICK while DMA isn't enabled can happen
* when the driver is resetting the pointer.
*/
txdma_cfg = s->txdmaregs[TXDMA_CFG >> 2];
txmac_cfg = s->macregs[MAC_TXCFG >> 2];
if (!(txdma_cfg & TXDMA_CFG_ENABLE) ||
!(txmac_cfg & MAC_TXCFG_ENAB)) {
trace_sungem_tx_disabled();
return;
}
/* XXX Test min frame size register ? */
/* XXX Test max frame size register ? */
dbase = s->txdmaregs[TXDMA_DBHI >> 2];
dbase = (dbase << 32) | s->txdmaregs[TXDMA_DBLOW >> 2];
comp = s->txdmaregs[TXDMA_TXDONE >> 2] & s->tx_mask;
kick = s->txdmaregs[TXDMA_KICK >> 2] & s->tx_mask;
trace_sungem_tx_process(comp, kick, s->tx_mask + 1);
/* This is rather primitive for now, we just send everything we
* can in one go, like e1000. Ideally we should do the sending
* from some kind of background task
*/
while (comp != kick) {
struct gem_txd desc;
/* Read the next descriptor */
pci_dma_read(d, dbase + comp * sizeof(desc), &desc, sizeof(desc));
/* Byteswap descriptor */
desc.control_word = le64_to_cpu(desc.control_word);
desc.buffer = le64_to_cpu(desc.buffer);
trace_sungem_tx_desc(comp, desc.control_word, desc.buffer);
/* Send it for processing */
sungem_process_tx_desc(s, &desc);
/* Interrupt */
ints = GREG_STAT_TXDONE;
if (desc.control_word & TXDCTRL_INTME) {
ints |= GREG_STAT_TXINTME;
}
sungem_update_status(s, ints, true);
/* Next ! */
comp = (comp + 1) & s->tx_mask;
s->txdmaregs[TXDMA_TXDONE >> 2] = comp;
}
/* We sent everything, set status/irq bit */
sungem_update_status(s, GREG_STAT_TXALL, true);
}
static bool sungem_rx_full(SunGEMState *s, uint32_t kick, uint32_t done)
{
return kick == ((done + 1) & s->rx_mask);
}
static int sungem_can_receive(NetClientState *nc)
{
SunGEMState *s = qemu_get_nic_opaque(nc);
uint32_t kick, done, rxdma_cfg, rxmac_cfg;
bool full;
rxmac_cfg = s->macregs[MAC_RXCFG >> 2];
rxdma_cfg = s->rxdmaregs[RXDMA_CFG >> 2];
/* If MAC disabled, can't receive */
if ((rxmac_cfg & MAC_RXCFG_ENAB) == 0) {
trace_sungem_rx_mac_disabled();
return 0;
}
if ((rxdma_cfg & RXDMA_CFG_ENABLE) == 0) {
trace_sungem_rx_txdma_disabled();
return 0;
}
/* Check RX availability */
kick = s->rxdmaregs[RXDMA_KICK >> 2];
done = s->rxdmaregs[RXDMA_DONE >> 2];
full = sungem_rx_full(s, kick, done);
trace_sungem_rx_check(!full, kick, done);
return !full;
}
enum {
rx_no_match,
rx_match_promisc,
rx_match_bcast,
rx_match_allmcast,
rx_match_mcast,
rx_match_mac,
rx_match_altmac,
};
static int sungem_check_rx_mac(SunGEMState *s, const uint8_t *mac, uint32_t crc)
{
uint32_t rxcfg = s->macregs[MAC_RXCFG >> 2];
uint32_t mac0, mac1, mac2;
/* Promisc enabled ? */
if (rxcfg & MAC_RXCFG_PROM) {
return rx_match_promisc;
}
/* Format MAC address into dwords */
mac0 = (mac[4] << 8) | mac[5];
mac1 = (mac[2] << 8) | mac[3];
mac2 = (mac[0] << 8) | mac[1];
trace_sungem_rx_mac_check(mac0, mac1, mac2);
/* Is this a broadcast frame ? */
if (mac0 == 0xffff && mac1 == 0xffff && mac2 == 0xffff) {
return rx_match_bcast;
}
/* TODO: Implement address filter registers (or we don't care ?) */
/* Is this a multicast frame ? */
if (mac[0] & 1) {
trace_sungem_rx_mac_multicast();
/* Promisc group enabled ? */
if (rxcfg & MAC_RXCFG_PGRP) {
return rx_match_allmcast;
}
/* TODO: Check MAC control frames (or we don't care) ? */
/* Check hash filter (somebody check that's correct ?) */
if (rxcfg & MAC_RXCFG_HFE) {
uint32_t hash, idx;
crc >>= 24;
idx = (crc >> 2) & 0x3c;
hash = s->macregs[(MAC_HASH0 + idx) >> 2];
if (hash & (1 << (15 - (crc & 0xf)))) {
return rx_match_mcast;
}
}
return rx_no_match;
}
/* Main MAC check */
trace_sungem_rx_mac_compare(s->macregs[MAC_ADDR0 >> 2],
s->macregs[MAC_ADDR1 >> 2],
s->macregs[MAC_ADDR2 >> 2]);
if (mac0 == s->macregs[MAC_ADDR0 >> 2] &&
mac1 == s->macregs[MAC_ADDR1 >> 2] &&
mac2 == s->macregs[MAC_ADDR2 >> 2]) {
return rx_match_mac;
}
/* Alt MAC check */
if (mac0 == s->macregs[MAC_ADDR3 >> 2] &&
mac1 == s->macregs[MAC_ADDR4 >> 2] &&
mac2 == s->macregs[MAC_ADDR5 >> 2]) {
return rx_match_altmac;
}
return rx_no_match;
}
static ssize_t sungem_receive(NetClientState *nc, const uint8_t *buf,
size_t size)
{
SunGEMState *s = qemu_get_nic_opaque(nc);
PCIDevice *d = PCI_DEVICE(s);
uint32_t mac_crc, done, kick, max_fsize;
uint32_t fcs_size, ints, rxdma_cfg, rxmac_cfg, csum, coff;
uint8_t smallbuf[60];
struct gem_rxd desc;
uint64_t dbase, baddr;
unsigned int rx_cond;
trace_sungem_rx_packet(size);
rxmac_cfg = s->macregs[MAC_RXCFG >> 2];
rxdma_cfg = s->rxdmaregs[RXDMA_CFG >> 2];
max_fsize = s->macregs[MAC_MAXFSZ >> 2] & 0x7fff;
/* If MAC or DMA disabled, can't receive */
if (!(rxdma_cfg & RXDMA_CFG_ENABLE) ||
!(rxmac_cfg & MAC_RXCFG_ENAB)) {
trace_sungem_rx_disabled();
return 0;
}
/* Size adjustment for FCS */
if (rxmac_cfg & MAC_RXCFG_SFCS) {
fcs_size = 0;
} else {
fcs_size = 4;
}
/* Discard frame smaller than a MAC or larger than max frame size
* (when accounting for FCS)
*/
if (size < 6 || (size + 4) > max_fsize) {
trace_sungem_rx_bad_frame_size(size);
/* XXX Increment error statistics ? */
return size;
}
/* We don't drop too small frames since we get them in qemu, we pad
* them instead. We should probably use the min frame size register
* but I don't want to use a variable size staging buffer and I
* know both MacOS and Linux use the default 64 anyway. We use 60
* here to account for the non-existent FCS.
*/
if (size < 60) {
memcpy(smallbuf, buf, size);
memset(&smallbuf[size], 0, 60 - size);
buf = smallbuf;
size = 60;
}
/* Get MAC crc */
mac_crc = net_crc32_le(buf, ETH_ALEN);
/* Packet isn't for me ? */
rx_cond = sungem_check_rx_mac(s, buf, mac_crc);
if (rx_cond == rx_no_match) {
/* Just drop it */
trace_sungem_rx_unmatched();
return size;
}
/* Get ring pointers */
kick = s->rxdmaregs[RXDMA_KICK >> 2] & s->rx_mask;
done = s->rxdmaregs[RXDMA_DONE >> 2] & s->rx_mask;
trace_sungem_rx_process(done, kick, s->rx_mask + 1);
/* Ring full ? Can't receive */
if (sungem_rx_full(s, kick, done)) {
trace_sungem_rx_ringfull();
return 0;
}
/* Note: The real GEM will fetch descriptors in blocks of 4,
* for now we handle them one at a time, I think the driver will
* cope
*/
dbase = s->rxdmaregs[RXDMA_DBHI >> 2];
dbase = (dbase << 32) | s->rxdmaregs[RXDMA_DBLOW >> 2];
/* Read the next descriptor */
pci_dma_read(d, dbase + done * sizeof(desc), &desc, sizeof(desc));
trace_sungem_rx_desc(le64_to_cpu(desc.status_word),
le64_to_cpu(desc.buffer));
/* Effective buffer address */
baddr = le64_to_cpu(desc.buffer) & ~7ull;
baddr |= (rxdma_cfg & RXDMA_CFG_FBOFF) >> 10;
/* Write buffer out */
pci_dma_write(d, baddr, buf, size);
if (fcs_size) {
/* Should we add an FCS ? Linux doesn't ask us to strip it,
* however I believe nothing checks it... For now we just
* do nothing. It's faster this way.
*/
}
/* Calculate the checksum */
coff = (rxdma_cfg & RXDMA_CFG_CSUMOFF) >> 13;
csum = net_raw_checksum((uint8_t *)buf + coff, size - coff);
/* Build the updated descriptor */
desc.status_word = (size + fcs_size) << 16;
desc.status_word |= ((uint64_t)(mac_crc >> 16)) << 44;
desc.status_word |= csum;
if (rx_cond == rx_match_mcast) {
desc.status_word |= RXDCTRL_HPASS;
}
if (rx_cond == rx_match_altmac) {
desc.status_word |= RXDCTRL_ALTMAC;
}
desc.status_word = cpu_to_le64(desc.status_word);
pci_dma_write(d, dbase + done * sizeof(desc), &desc, sizeof(desc));
done = (done + 1) & s->rx_mask;
s->rxdmaregs[RXDMA_DONE >> 2] = done;
/* XXX Unconditionally set RX interrupt for now. The interrupt
* mitigation timer might well end up adding more overhead than
* helping here...
*/
ints = GREG_STAT_RXDONE;
if (sungem_rx_full(s, kick, done)) {
ints |= GREG_STAT_RXNOBUF;
}
sungem_update_status(s, ints, true);
return size;
}
static void sungem_set_link_status(NetClientState *nc)
{
/* We don't do anything for now as I believe none of the OSes
* drivers use the MIF autopoll feature nor the PHY interrupt
*/
}
static void sungem_update_masks(SunGEMState *s)
{
uint32_t sz;
sz = 1 << (((s->rxdmaregs[RXDMA_CFG >> 2] & RXDMA_CFG_RINGSZ) >> 1) + 5);
s->rx_mask = sz - 1;
sz = 1 << (((s->txdmaregs[TXDMA_CFG >> 2] & TXDMA_CFG_RINGSZ) >> 1) + 5);
s->tx_mask = sz - 1;
}
static void sungem_reset_rx(SunGEMState *s)
{
trace_sungem_rx_reset();
/* XXX Do RXCFG */
/* XXX Check value */
s->rxdmaregs[RXDMA_FSZ >> 2] = 0x140;
s->rxdmaregs[RXDMA_DONE >> 2] = 0;
s->rxdmaregs[RXDMA_KICK >> 2] = 0;
s->rxdmaregs[RXDMA_CFG >> 2] = 0x1000010;
s->rxdmaregs[RXDMA_PTHRESH >> 2] = 0xf8;
s->rxdmaregs[RXDMA_BLANK >> 2] = 0;
sungem_update_masks(s);
}
static void sungem_reset_tx(SunGEMState *s)
{
trace_sungem_tx_reset();
/* XXX Do TXCFG */
/* XXX Check value */
s->txdmaregs[TXDMA_FSZ >> 2] = 0x90;
s->txdmaregs[TXDMA_TXDONE >> 2] = 0;
s->txdmaregs[TXDMA_KICK >> 2] = 0;
s->txdmaregs[TXDMA_CFG >> 2] = 0x118010;
sungem_update_masks(s);
s->tx_size = 0;
s->tx_first_ctl = 0;
}
static void sungem_reset_all(SunGEMState *s, bool pci_reset)
{
trace_sungem_reset(pci_reset);
sungem_reset_rx(s);
sungem_reset_tx(s);
s->gregs[GREG_IMASK >> 2] = 0xFFFFFFF;
s->gregs[GREG_STAT >> 2] = 0;
if (pci_reset) {
uint8_t *ma = s->conf.macaddr.a;
s->gregs[GREG_SWRST >> 2] = 0;
s->macregs[MAC_ADDR0 >> 2] = (ma[4] << 8) | ma[5];
s->macregs[MAC_ADDR1 >> 2] = (ma[2] << 8) | ma[3];
s->macregs[MAC_ADDR2 >> 2] = (ma[0] << 8) | ma[1];
} else {
s->gregs[GREG_SWRST >> 2] &= GREG_SWRST_RSTOUT;
}
s->mifregs[MIF_CFG >> 2] = MIF_CFG_MDI0;
}
static void sungem_mii_write(SunGEMState *s, uint8_t phy_addr,
uint8_t reg_addr, uint16_t val)
{
trace_sungem_mii_write(phy_addr, reg_addr, val);
/* XXX TODO */
}
static uint16_t __sungem_mii_read(SunGEMState *s, uint8_t phy_addr,
uint8_t reg_addr)
{
if (phy_addr != s->phy_addr) {
return 0xffff;
}
/* Primitive emulation of a BCM5201 to please the driver,
* ID is 0x00406210. TODO: Do a gigabit PHY like BCM5400
*/
switch (reg_addr) {
case MII_BMCR:
return 0;
case MII_PHYID1:
return 0x0040;
case MII_PHYID2:
return 0x6210;
case MII_BMSR:
if (qemu_get_queue(s->nic)->link_down) {
return MII_BMSR_100TX_FD | MII_BMSR_AUTONEG;
} else {
return MII_BMSR_100TX_FD | MII_BMSR_AN_COMP |
MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
}
case MII_ANLPAR:
case MII_ANAR:
return MII_ANLPAR_TXFD;
case 0x18: /* 5201 AUX status */
return 3; /* 100FD */
default:
return 0;
};
}
static uint16_t sungem_mii_read(SunGEMState *s, uint8_t phy_addr,
uint8_t reg_addr)
{
uint16_t val;
val = __sungem_mii_read(s, phy_addr, reg_addr);
trace_sungem_mii_read(phy_addr, reg_addr, val);
return val;
}
static uint32_t sungem_mii_op(SunGEMState *s, uint32_t val)
{
uint8_t phy_addr, reg_addr, op;
/* Ignore not start of frame */
if ((val >> 30) != 1) {
trace_sungem_mii_invalid_sof(val >> 30);
return 0xffff;
}
phy_addr = (val & MIF_FRAME_PHYAD) >> 23;
reg_addr = (val & MIF_FRAME_REGAD) >> 18;
op = (val & MIF_FRAME_OP) >> 28;
switch (op) {
case 1:
sungem_mii_write(s, phy_addr, reg_addr, val & MIF_FRAME_DATA);
return val | MIF_FRAME_TALSB;
case 2:
return sungem_mii_read(s, phy_addr, reg_addr) | MIF_FRAME_TALSB;
default:
trace_sungem_mii_invalid_op(op);
}
return 0xffff | MIF_FRAME_TALSB;
}
static void sungem_mmio_greg_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
SunGEMState *s = opaque;
if (!(addr < 0x20) && !(addr >= 0x1000 && addr <= 0x1010)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Write to unknown GREG register 0x%"HWADDR_PRIx"\n",
addr);
return;
}
trace_sungem_mmio_greg_write(addr, val);
/* Pre-write filter */
switch (addr) {
/* Read only registers */
case GREG_SEBSTATE:
case GREG_STAT:
case GREG_STAT2:
case GREG_PCIESTAT:
return; /* No actual write */
case GREG_IACK:
val &= GREG_STAT_LATCH;
s->gregs[GREG_STAT >> 2] &= ~val;
sungem_eval_irq(s);
return; /* No actual write */
case GREG_PCIEMASK:
val &= 0x7;
break;
}
s->gregs[addr >> 2] = val;
/* Post write action */
switch (addr) {
case GREG_IMASK:
/* Re-evaluate interrupt */
sungem_eval_irq(s);
break;
case GREG_SWRST:
switch (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)) {
case GREG_SWRST_RXRST:
sungem_reset_rx(s);
break;
case GREG_SWRST_TXRST:
sungem_reset_tx(s);
break;
case GREG_SWRST_RXRST | GREG_SWRST_TXRST:
sungem_reset_all(s, false);
}
break;
}
}
static uint64_t sungem_mmio_greg_read(void *opaque, hwaddr addr, unsigned size)
{
SunGEMState *s = opaque;
uint32_t val;
if (!(addr < 0x20) && !(addr >= 0x1000 && addr <= 0x1010)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Read from unknown GREG register 0x%"HWADDR_PRIx"\n",
addr);
return 0;
}
val = s->gregs[addr >> 2];
trace_sungem_mmio_greg_read(addr, val);
switch (addr) {
case GREG_STAT:
/* Side effect, clear bottom 7 bits */
s->gregs[GREG_STAT >> 2] &= ~GREG_STAT_LATCH;
sungem_eval_irq(s);
/* Inject TX completion in returned value */
val = (val & ~GREG_STAT_TXNR) |
(s->txdmaregs[TXDMA_TXDONE >> 2] << GREG_STAT_TXNR_SHIFT);
break;
case GREG_STAT2:
/* Return the status reg without side effect
* (and inject TX completion in returned value)
*/
val = (s->gregs[GREG_STAT >> 2] & ~GREG_STAT_TXNR) |
(s->txdmaregs[TXDMA_TXDONE >> 2] << GREG_STAT_TXNR_SHIFT);
break;
}
return val;
}
static const MemoryRegionOps sungem_mmio_greg_ops = {
.read = sungem_mmio_greg_read,
.write = sungem_mmio_greg_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void sungem_mmio_txdma_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
SunGEMState *s = opaque;
if (!(addr < 0x38) && !(addr >= 0x100 && addr <= 0x118)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Write to unknown TXDMA register 0x%"HWADDR_PRIx"\n",
addr);
return;
}
trace_sungem_mmio_txdma_write(addr, val);
/* Pre-write filter */
switch (addr) {
/* Read only registers */
case TXDMA_TXDONE:
case TXDMA_PCNT:
case TXDMA_SMACHINE:
case TXDMA_DPLOW:
case TXDMA_DPHI:
case TXDMA_FSZ:
case TXDMA_FTAG:
return; /* No actual write */
}
s->txdmaregs[addr >> 2] = val;
/* Post write action */
switch (addr) {
case TXDMA_KICK:
sungem_tx_kick(s);
break;
case TXDMA_CFG:
sungem_update_masks(s);
break;
}
}
static uint64_t sungem_mmio_txdma_read(void *opaque, hwaddr addr, unsigned size)
{
SunGEMState *s = opaque;
uint32_t val;
if (!(addr < 0x38) && !(addr >= 0x100 && addr <= 0x118)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Read from unknown TXDMA register 0x%"HWADDR_PRIx"\n",
addr);
return 0;
}
val = s->txdmaregs[addr >> 2];
trace_sungem_mmio_txdma_read(addr, val);
return val;
}
static const MemoryRegionOps sungem_mmio_txdma_ops = {
.read = sungem_mmio_txdma_read,
.write = sungem_mmio_txdma_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void sungem_mmio_rxdma_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
SunGEMState *s = opaque;
if (!(addr <= 0x28) && !(addr >= 0x100 && addr <= 0x120)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Write to unknown RXDMA register 0x%"HWADDR_PRIx"\n",
addr);
return;
}
trace_sungem_mmio_rxdma_write(addr, val);
/* Pre-write filter */
switch (addr) {
/* Read only registers */
case RXDMA_DONE:
case RXDMA_PCNT:
case RXDMA_SMACHINE:
case RXDMA_DPLOW:
case RXDMA_DPHI:
case RXDMA_FSZ:
case RXDMA_FTAG:
return; /* No actual write */
}
s->rxdmaregs[addr >> 2] = val;
/* Post write action */
switch (addr) {
case RXDMA_KICK:
trace_sungem_rx_kick(val);
break;
case RXDMA_CFG:
sungem_update_masks(s);
if ((s->macregs[MAC_RXCFG >> 2] & MAC_RXCFG_ENAB) != 0 &&
(s->rxdmaregs[RXDMA_CFG >> 2] & RXDMA_CFG_ENABLE) != 0) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
break;
}
}
static uint64_t sungem_mmio_rxdma_read(void *opaque, hwaddr addr, unsigned size)
{
SunGEMState *s = opaque;
uint32_t val;
if (!(addr <= 0x28) && !(addr >= 0x100 && addr <= 0x120)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Read from unknown RXDMA register 0x%"HWADDR_PRIx"\n",
addr);
return 0;
}
val = s->rxdmaregs[addr >> 2];
trace_sungem_mmio_rxdma_read(addr, val);
return val;
}
static const MemoryRegionOps sungem_mmio_rxdma_ops = {
.read = sungem_mmio_rxdma_read,
.write = sungem_mmio_rxdma_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void sungem_mmio_mac_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
SunGEMState *s = opaque;
if (!(addr <= 0x134)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Write to unknown MAC register 0x%"HWADDR_PRIx"\n",
addr);
return;
}
trace_sungem_mmio_mac_write(addr, val);
/* Pre-write filter */
switch (addr) {
/* Read only registers */
case MAC_TXRST: /* Not technically read-only but will do for now */
case MAC_RXRST: /* Not technically read-only but will do for now */
case MAC_TXSTAT:
case MAC_RXSTAT:
case MAC_CSTAT:
case MAC_PATMPS:
case MAC_SMACHINE:
return; /* No actual write */
case MAC_MINFSZ:
/* 10-bits implemented */
val &= 0x3ff;
break;
}
s->macregs[addr >> 2] = val;
/* Post write action */
switch (addr) {
case MAC_TXMASK:
case MAC_RXMASK:
case MAC_MCMASK:
sungem_eval_cascade_irq(s);
break;
case MAC_RXCFG:
sungem_update_masks(s);
if ((s->macregs[MAC_RXCFG >> 2] & MAC_RXCFG_ENAB) != 0 &&
(s->rxdmaregs[RXDMA_CFG >> 2] & RXDMA_CFG_ENABLE) != 0) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
break;
}
}
static uint64_t sungem_mmio_mac_read(void *opaque, hwaddr addr, unsigned size)
{
SunGEMState *s = opaque;
uint32_t val;
if (!(addr <= 0x134)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Read from unknown MAC register 0x%"HWADDR_PRIx"\n",
addr);
return 0;
}
val = s->macregs[addr >> 2];
trace_sungem_mmio_mac_read(addr, val);
switch (addr) {
case MAC_TXSTAT:
/* Side effect, clear all */
s->macregs[addr >> 2] = 0;
sungem_update_status(s, GREG_STAT_TXMAC, false);
break;
case MAC_RXSTAT:
/* Side effect, clear all */
s->macregs[addr >> 2] = 0;
sungem_update_status(s, GREG_STAT_RXMAC, false);
break;
case MAC_CSTAT:
/* Side effect, interrupt bits */
s->macregs[addr >> 2] &= MAC_CSTAT_PTR;
sungem_update_status(s, GREG_STAT_MAC, false);
break;
}
return val;
}
static const MemoryRegionOps sungem_mmio_mac_ops = {
.read = sungem_mmio_mac_read,
.write = sungem_mmio_mac_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void sungem_mmio_mif_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
SunGEMState *s = opaque;
if (!(addr <= 0x1c)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Write to unknown MIF register 0x%"HWADDR_PRIx"\n",
addr);
return;
}
trace_sungem_mmio_mif_write(addr, val);
/* Pre-write filter */
switch (addr) {
/* Read only registers */
case MIF_STATUS:
case MIF_SMACHINE:
return; /* No actual write */
case MIF_CFG:
/* Maintain the RO MDI bits to advertize an MDIO PHY on MDI0 */
val &= ~MIF_CFG_MDI1;
val |= MIF_CFG_MDI0;
break;
}
s->mifregs[addr >> 2] = val;
/* Post write action */
switch (addr) {
case MIF_FRAME:
s->mifregs[addr >> 2] = sungem_mii_op(s, val);
break;
}
}
static uint64_t sungem_mmio_mif_read(void *opaque, hwaddr addr, unsigned size)
{
SunGEMState *s = opaque;
uint32_t val;
if (!(addr <= 0x1c)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Read from unknown MIF register 0x%"HWADDR_PRIx"\n",
addr);
return 0;
}
val = s->mifregs[addr >> 2];
trace_sungem_mmio_mif_read(addr, val);
return val;
}
static const MemoryRegionOps sungem_mmio_mif_ops = {
.read = sungem_mmio_mif_read,
.write = sungem_mmio_mif_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void sungem_mmio_pcs_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
SunGEMState *s = opaque;
if (!(addr <= 0x18) && !(addr >= 0x50 && addr <= 0x5c)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Write to unknown PCS register 0x%"HWADDR_PRIx"\n",
addr);
return;
}
trace_sungem_mmio_pcs_write(addr, val);
/* Pre-write filter */
switch (addr) {
/* Read only registers */
case PCS_MIISTAT:
case PCS_ISTAT:
case PCS_SSTATE:
return; /* No actual write */
}
s->pcsregs[addr >> 2] = val;
}
static uint64_t sungem_mmio_pcs_read(void *opaque, hwaddr addr, unsigned size)
{
SunGEMState *s = opaque;
uint32_t val;
if (!(addr <= 0x18) && !(addr >= 0x50 && addr <= 0x5c)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Read from unknown PCS register 0x%"HWADDR_PRIx"\n",
addr);
return 0;
}
val = s->pcsregs[addr >> 2];
trace_sungem_mmio_pcs_read(addr, val);
return val;
}
static const MemoryRegionOps sungem_mmio_pcs_ops = {
.read = sungem_mmio_pcs_read,
.write = sungem_mmio_pcs_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void sungem_uninit(PCIDevice *dev)
{
SunGEMState *s = SUNGEM(dev);
qemu_del_nic(s->nic);
}
static NetClientInfo net_sungem_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = sungem_can_receive,
.receive = sungem_receive,
.link_status_changed = sungem_set_link_status,
};
static void sungem_realize(PCIDevice *pci_dev, Error **errp)
{
DeviceState *dev = DEVICE(pci_dev);
SunGEMState *s = SUNGEM(pci_dev);
uint8_t *pci_conf;
pci_conf = pci_dev->config;
pci_set_word(pci_conf + PCI_STATUS,
PCI_STATUS_FAST_BACK |
PCI_STATUS_DEVSEL_MEDIUM |
PCI_STATUS_66MHZ);
pci_set_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID, 0x0);
pci_set_word(pci_conf + PCI_SUBSYSTEM_ID, 0x0);
pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
pci_conf[PCI_MIN_GNT] = 0x40;
pci_conf[PCI_MAX_LAT] = 0x40;
sungem_reset_all(s, true);
memory_region_init(&s->sungem, OBJECT(s), "sungem", SUNGEM_MMIO_SIZE);
memory_region_init_io(&s->greg, OBJECT(s), &sungem_mmio_greg_ops, s,
"sungem.greg", SUNGEM_MMIO_GREG_SIZE);
memory_region_add_subregion(&s->sungem, 0, &s->greg);
memory_region_init_io(&s->txdma, OBJECT(s), &sungem_mmio_txdma_ops, s,
"sungem.txdma", SUNGEM_MMIO_TXDMA_SIZE);
memory_region_add_subregion(&s->sungem, 0x2000, &s->txdma);
memory_region_init_io(&s->rxdma, OBJECT(s), &sungem_mmio_rxdma_ops, s,
"sungem.rxdma", SUNGEM_MMIO_RXDMA_SIZE);
memory_region_add_subregion(&s->sungem, 0x4000, &s->rxdma);
memory_region_init_io(&s->mac, OBJECT(s), &sungem_mmio_mac_ops, s,
"sungem.mac", SUNGEM_MMIO_MAC_SIZE);
memory_region_add_subregion(&s->sungem, 0x6000, &s->mac);
memory_region_init_io(&s->mif, OBJECT(s), &sungem_mmio_mif_ops, s,
"sungem.mif", SUNGEM_MMIO_MIF_SIZE);
memory_region_add_subregion(&s->sungem, 0x6200, &s->mif);
memory_region_init_io(&s->pcs, OBJECT(s), &sungem_mmio_pcs_ops, s,
"sungem.pcs", SUNGEM_MMIO_PCS_SIZE);
memory_region_add_subregion(&s->sungem, 0x9000, &s->pcs);
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->sungem);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_sungem_info, &s->conf,
object_get_typename(OBJECT(dev)),
dev->id, s);
qemu_format_nic_info_str(qemu_get_queue(s->nic),
s->conf.macaddr.a);
}
static void sungem_reset(DeviceState *dev)
{
SunGEMState *s = SUNGEM(dev);
sungem_reset_all(s, true);
}
static void sungem_instance_init(Object *obj)
{
SunGEMState *s = SUNGEM(obj);
device_add_bootindex_property(obj, &s->conf.bootindex,
"bootindex", "/ethernet-phy@0",
DEVICE(obj), NULL);
}
static Property sungem_properties[] = {
DEFINE_NIC_PROPERTIES(SunGEMState, conf),
/* Phy address should be 0 for most Apple machines except
* for K2 in which case it's 1. Will be set by a machine
* override.
*/
DEFINE_PROP_UINT32("phy_addr", SunGEMState, phy_addr, 0),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription vmstate_sungem = {
.name = "sungem",
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_PCI_DEVICE(pdev, SunGEMState),
VMSTATE_MACADDR(conf.macaddr, SunGEMState),
VMSTATE_UINT32(phy_addr, SunGEMState),
VMSTATE_UINT32_ARRAY(gregs, SunGEMState, (SUNGEM_MMIO_GREG_SIZE >> 2)),
VMSTATE_UINT32_ARRAY(txdmaregs, SunGEMState,
(SUNGEM_MMIO_TXDMA_SIZE >> 2)),
VMSTATE_UINT32_ARRAY(rxdmaregs, SunGEMState,
(SUNGEM_MMIO_RXDMA_SIZE >> 2)),
VMSTATE_UINT32_ARRAY(macregs, SunGEMState, (SUNGEM_MMIO_MAC_SIZE >> 2)),
VMSTATE_UINT32_ARRAY(mifregs, SunGEMState, (SUNGEM_MMIO_MIF_SIZE >> 2)),
VMSTATE_UINT32_ARRAY(pcsregs, SunGEMState, (SUNGEM_MMIO_PCS_SIZE >> 2)),
VMSTATE_UINT32(rx_mask, SunGEMState),
VMSTATE_UINT32(tx_mask, SunGEMState),
VMSTATE_UINT8_ARRAY(tx_data, SunGEMState, MAX_PACKET_SIZE),
VMSTATE_UINT32(tx_size, SunGEMState),
VMSTATE_UINT64(tx_first_ctl, SunGEMState),
VMSTATE_END_OF_LIST()
}
};
static void sungem_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->realize = sungem_realize;
k->exit = sungem_uninit;
k->vendor_id = PCI_VENDOR_ID_APPLE;
k->device_id = PCI_DEVICE_ID_APPLE_UNI_N_GMAC;
k->revision = 0x01;
k->class_id = PCI_CLASS_NETWORK_ETHERNET;
dc->vmsd = &vmstate_sungem;
dc->reset = sungem_reset;
dc->props = sungem_properties;
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
}
static const TypeInfo sungem_info = {
.name = TYPE_SUNGEM,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(SunGEMState),
.class_init = sungem_class_init,
.instance_init = sungem_instance_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{ }
}
};
static void sungem_register_types(void)
{
type_register_static(&sungem_info);
}
type_init(sungem_register_types)