qemu-e2k/include/hw/clock.h
Peter Maydell 132b10251c clock: Add new clock_has_source() function
Add a function for checking whether a clock has a source.  This is
useful for devices which have input clocks that must be wired up by
the board as it allows them to fail in realize rather than ploughing
on with a zero-period clock.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-id: 20210128114145.20536-3-peter.maydell@linaro.org
Message-id: 20210121190622.22000-3-peter.maydell@linaro.org
2021-01-29 15:54:42 +00:00

295 lines
8.1 KiB
C

/*
* Hardware Clocks
*
* Copyright GreenSocs 2016-2020
*
* Authors:
* Frederic Konrad
* Damien Hedde
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#ifndef QEMU_HW_CLOCK_H
#define QEMU_HW_CLOCK_H
#include "qom/object.h"
#include "qemu/queue.h"
#include "qemu/host-utils.h"
#include "qemu/bitops.h"
#define TYPE_CLOCK "clock"
OBJECT_DECLARE_SIMPLE_TYPE(Clock, CLOCK)
typedef void ClockCallback(void *opaque);
/*
* clock store a value representing the clock's period in 2^-32ns unit.
* It can represent:
* + periods from 2^-32ns up to 4seconds
* + frequency from ~0.25Hz 2e10Ghz
* Resolution of frequency representation decreases with frequency:
* + at 100MHz, resolution is ~2mHz
* + at 1Ghz, resolution is ~0.2Hz
* + at 10Ghz, resolution is ~20Hz
*/
#define CLOCK_PERIOD_1SEC (1000000000llu << 32)
/*
* macro helpers to convert to hertz / nanosecond
*/
#define CLOCK_PERIOD_FROM_NS(ns) ((ns) * (CLOCK_PERIOD_1SEC / 1000000000llu))
#define CLOCK_PERIOD_FROM_HZ(hz) (((hz) != 0) ? CLOCK_PERIOD_1SEC / (hz) : 0u)
#define CLOCK_PERIOD_TO_HZ(per) (((per) != 0) ? CLOCK_PERIOD_1SEC / (per) : 0u)
/**
* Clock:
* @parent_obj: parent class
* @period: unsigned integer representing the period of the clock
* @canonical_path: clock path string cache (used for trace purpose)
* @callback: called when clock changes
* @callback_opaque: argument for @callback
* @source: source (or parent in clock tree) of the clock
* @children: list of clocks connected to this one (it is their source)
* @sibling: structure used to form a clock list
*/
struct Clock {
/*< private >*/
Object parent_obj;
/* all fields are private and should not be modified directly */
/* fields */
uint64_t period;
char *canonical_path;
ClockCallback *callback;
void *callback_opaque;
/* Clocks are organized in a clock tree */
Clock *source;
QLIST_HEAD(, Clock) children;
QLIST_ENTRY(Clock) sibling;
};
/*
* vmstate description entry to be added in device vmsd.
*/
extern const VMStateDescription vmstate_clock;
#define VMSTATE_CLOCK(field, state) \
VMSTATE_CLOCK_V(field, state, 0)
#define VMSTATE_CLOCK_V(field, state, version) \
VMSTATE_STRUCT_POINTER_V(field, state, version, vmstate_clock, Clock)
#define VMSTATE_ARRAY_CLOCK(field, state, num) \
VMSTATE_ARRAY_CLOCK_V(field, state, num, 0)
#define VMSTATE_ARRAY_CLOCK_V(field, state, num, version) \
VMSTATE_ARRAY_OF_POINTER_TO_STRUCT(field, state, num, version, \
vmstate_clock, Clock)
/**
* clock_setup_canonical_path:
* @clk: clock
*
* compute the canonical path of the clock (used by log messages)
*/
void clock_setup_canonical_path(Clock *clk);
/**
* clock_new:
* @parent: the clock parent
* @name: the clock object name
*
* Helper function to create a new clock and parent it to @parent. There is no
* need to call clock_setup_canonical_path on the returned clock as it is done
* by this function.
*
* @return the newly created clock
*/
Clock *clock_new(Object *parent, const char *name);
/**
* clock_set_callback:
* @clk: the clock to register the callback into
* @cb: the callback function
* @opaque: the argument to the callback
*
* Register a callback called on every clock update.
*/
void clock_set_callback(Clock *clk, ClockCallback *cb, void *opaque);
/**
* clock_clear_callback:
* @clk: the clock to delete the callback from
*
* Unregister the callback registered with clock_set_callback.
*/
void clock_clear_callback(Clock *clk);
/**
* clock_set_source:
* @clk: the clock.
* @src: the source clock
*
* Setup @src as the clock source of @clk. The current @src period
* value is also copied to @clk and its subtree but no callback is
* called.
* Further @src update will be propagated to @clk and its subtree.
*/
void clock_set_source(Clock *clk, Clock *src);
/**
* clock_has_source:
* @clk: the clock
*
* Returns true if the clock has a source clock connected to it.
* This is useful for devices which have input clocks which must
* be connected by the board/SoC code which creates them. The
* device code can use this to check in its realize method that
* the clock has been connected.
*/
static inline bool clock_has_source(const Clock *clk)
{
return clk->source != NULL;
}
/**
* clock_set:
* @clk: the clock to initialize.
* @value: the clock's value, 0 means unclocked
*
* Set the local cached period value of @clk to @value.
*
* @return: true if the clock is changed.
*/
bool clock_set(Clock *clk, uint64_t value);
static inline bool clock_set_hz(Clock *clk, unsigned hz)
{
return clock_set(clk, CLOCK_PERIOD_FROM_HZ(hz));
}
static inline bool clock_set_ns(Clock *clk, unsigned ns)
{
return clock_set(clk, CLOCK_PERIOD_FROM_NS(ns));
}
/**
* clock_propagate:
* @clk: the clock
*
* Propagate the clock period that has been previously configured using
* @clock_set(). This will update recursively all connected clocks.
* It is an error to call this function on a clock which has a source.
* Note: this function must not be called during device inititialization
* or migration.
*/
void clock_propagate(Clock *clk);
/**
* clock_update:
* @clk: the clock to update.
* @value: the new clock's value, 0 means unclocked
*
* Update the @clk to the new @value. All connected clocks will be informed
* of this update. This is equivalent to call @clock_set() then
* @clock_propagate().
*/
static inline void clock_update(Clock *clk, uint64_t value)
{
if (clock_set(clk, value)) {
clock_propagate(clk);
}
}
static inline void clock_update_hz(Clock *clk, unsigned hz)
{
clock_update(clk, CLOCK_PERIOD_FROM_HZ(hz));
}
static inline void clock_update_ns(Clock *clk, unsigned ns)
{
clock_update(clk, CLOCK_PERIOD_FROM_NS(ns));
}
/**
* clock_get:
* @clk: the clk to fetch the clock
*
* @return: the current period.
*/
static inline uint64_t clock_get(const Clock *clk)
{
return clk->period;
}
static inline unsigned clock_get_hz(Clock *clk)
{
return CLOCK_PERIOD_TO_HZ(clock_get(clk));
}
/**
* clock_ticks_to_ns:
* @clk: the clock to query
* @ticks: number of ticks
*
* Returns the length of time in nanoseconds for this clock
* to tick @ticks times. Because a clock can have a period
* which is not a whole number of nanoseconds, it is important
* to use this function when calculating things like timer
* expiry deadlines, rather than attempting to obtain a "period
* in nanoseconds" value and then multiplying that by a number
* of ticks.
*
* The result could in theory be too large to fit in a 64-bit
* value if the number of ticks and the clock period are both
* large; to avoid overflow the result will be saturated to INT64_MAX
* (because this is the largest valid input to the QEMUTimer APIs).
* Since INT64_MAX nanoseconds is almost 300 years, anything with
* an expiry later than that is in the "will never happen" category
* and callers can reasonably not special-case the saturated result.
*/
static inline uint64_t clock_ticks_to_ns(const Clock *clk, uint64_t ticks)
{
uint64_t ns_low, ns_high;
/*
* clk->period is the period in units of 2^-32 ns, so
* (clk->period * ticks) is the required length of time in those
* units, and we can convert to nanoseconds by multiplying by
* 2^32, which is the same as shifting the 128-bit multiplication
* result right by 32.
*/
mulu64(&ns_low, &ns_high, clk->period, ticks);
if (ns_high & MAKE_64BIT_MASK(31, 33)) {
return INT64_MAX;
}
return ns_low >> 32 | ns_high << 32;
}
/**
* clock_is_enabled:
* @clk: a clock
*
* @return: true if the clock is running.
*/
static inline bool clock_is_enabled(const Clock *clk)
{
return clock_get(clk) != 0;
}
/**
* clock_display_freq: return human-readable representation of clock frequency
* @clk: clock
*
* Return a string which has a human-readable representation of the
* clock's frequency, e.g. "33.3 MHz". This is intended for debug
* and display purposes.
*
* The caller is responsible for freeing the string with g_free().
*/
char *clock_display_freq(Clock *clk);
#endif /* QEMU_HW_CLOCK_H */