Blue Swirl aba1d00a41 Work around OpenSolaris sys/regset.h namespace pollution
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2009-09-12 12:36:11 +00:00

385 lines
9.3 KiB
C

/*
* i386 execution defines
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include "dyngen-exec.h"
/* XXX: factorize this mess */
#ifdef TARGET_X86_64
#define TARGET_LONG_BITS 64
#else
#define TARGET_LONG_BITS 32
#endif
#include "cpu-defs.h"
register struct CPUX86State *env asm(AREG0);
#include "qemu-common.h"
#include "qemu-log.h"
#undef EAX
#define EAX (env->regs[R_EAX])
#undef ECX
#define ECX (env->regs[R_ECX])
#undef EDX
#define EDX (env->regs[R_EDX])
#undef EBX
#define EBX (env->regs[R_EBX])
#undef ESP
#define ESP (env->regs[R_ESP])
#undef EBP
#define EBP (env->regs[R_EBP])
#undef ESI
#define ESI (env->regs[R_ESI])
#undef EDI
#define EDI (env->regs[R_EDI])
#undef EIP
#define EIP (env->eip)
#define DF (env->df)
#define CC_SRC (env->cc_src)
#define CC_DST (env->cc_dst)
#define CC_OP (env->cc_op)
/* float macros */
#define FT0 (env->ft0)
#define ST0 (env->fpregs[env->fpstt].d)
#define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
#define ST1 ST(1)
#include "cpu.h"
#include "exec-all.h"
/* op_helper.c */
void do_interrupt(int intno, int is_int, int error_code,
target_ulong next_eip, int is_hw);
void do_interrupt_user(int intno, int is_int, int error_code,
target_ulong next_eip);
void QEMU_NORETURN raise_exception_err(int exception_index, int error_code);
void QEMU_NORETURN raise_exception(int exception_index);
void do_smm_enter(void);
/* n must be a constant to be efficient */
static inline target_long lshift(target_long x, int n)
{
if (n >= 0)
return x << n;
else
return x >> (-n);
}
#include "helper.h"
static inline void svm_check_intercept(uint32_t type)
{
helper_svm_check_intercept_param(type, 0);
}
#if !defined(CONFIG_USER_ONLY)
#include "softmmu_exec.h"
#endif /* !defined(CONFIG_USER_ONLY) */
#ifdef USE_X86LDOUBLE
/* use long double functions */
#define floatx_to_int32 floatx80_to_int32
#define floatx_to_int64 floatx80_to_int64
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
#define int32_to_floatx int32_to_floatx80
#define int64_to_floatx int64_to_floatx80
#define float32_to_floatx float32_to_floatx80
#define float64_to_floatx float64_to_floatx80
#define floatx_to_float32 floatx80_to_float32
#define floatx_to_float64 floatx80_to_float64
#define floatx_abs floatx80_abs
#define floatx_chs floatx80_chs
#define floatx_round_to_int floatx80_round_to_int
#define floatx_compare floatx80_compare
#define floatx_compare_quiet floatx80_compare_quiet
#else
#define floatx_to_int32 float64_to_int32
#define floatx_to_int64 float64_to_int64
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
#define int32_to_floatx int32_to_float64
#define int64_to_floatx int64_to_float64
#define float32_to_floatx float32_to_float64
#define float64_to_floatx(x, e) (x)
#define floatx_to_float32 float64_to_float32
#define floatx_to_float64(x, e) (x)
#define floatx_abs float64_abs
#define floatx_chs float64_chs
#define floatx_round_to_int float64_round_to_int
#define floatx_compare float64_compare
#define floatx_compare_quiet float64_compare_quiet
#endif
#define RC_MASK 0xc00
#define RC_NEAR 0x000
#define RC_DOWN 0x400
#define RC_UP 0x800
#define RC_CHOP 0xc00
#define MAXTAN 9223372036854775808.0
#ifdef USE_X86LDOUBLE
/* only for x86 */
typedef union {
long double d;
struct {
unsigned long long lower;
unsigned short upper;
} l;
} CPU86_LDoubleU;
/* the following deal with x86 long double-precision numbers */
#define MAXEXPD 0x7fff
#define EXPBIAS 16383
#define EXPD(fp) (fp.l.upper & 0x7fff)
#define SIGND(fp) ((fp.l.upper) & 0x8000)
#define MANTD(fp) (fp.l.lower)
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
#else
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
typedef union {
double d;
#if !defined(HOST_WORDS_BIGENDIAN) && !defined(__arm__)
struct {
uint32_t lower;
int32_t upper;
} l;
#else
struct {
int32_t upper;
uint32_t lower;
} l;
#endif
#ifndef __arm__
int64_t ll;
#endif
} CPU86_LDoubleU;
/* the following deal with IEEE double-precision numbers */
#define MAXEXPD 0x7ff
#define EXPBIAS 1023
#define EXPD(fp) (((fp.l.upper) >> 20) & 0x7FF)
#define SIGND(fp) ((fp.l.upper) & 0x80000000)
#ifdef __arm__
#define MANTD(fp) (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
#else
#define MANTD(fp) (fp.ll & ((1LL << 52) - 1))
#endif
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
#endif
static inline void fpush(void)
{
env->fpstt = (env->fpstt - 1) & 7;
env->fptags[env->fpstt] = 0; /* validate stack entry */
}
static inline void fpop(void)
{
env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
env->fpstt = (env->fpstt + 1) & 7;
}
#ifndef USE_X86LDOUBLE
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
{
CPU86_LDoubleU temp;
int upper, e;
uint64_t ll;
/* mantissa */
upper = lduw(ptr + 8);
/* XXX: handle overflow ? */
e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
e |= (upper >> 4) & 0x800; /* sign */
ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
#ifdef __arm__
temp.l.upper = (e << 20) | (ll >> 32);
temp.l.lower = ll;
#else
temp.ll = ll | ((uint64_t)e << 52);
#endif
return temp.d;
}
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
{
CPU86_LDoubleU temp;
int e;
temp.d = f;
/* mantissa */
stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
/* exponent + sign */
e = EXPD(temp) - EXPBIAS + 16383;
e |= SIGND(temp) >> 16;
stw(ptr + 8, e);
}
#else
/* we use memory access macros */
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
{
CPU86_LDoubleU temp;
temp.l.lower = ldq(ptr);
temp.l.upper = lduw(ptr + 8);
return temp.d;
}
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
{
CPU86_LDoubleU temp;
temp.d = f;
stq(ptr, temp.l.lower);
stw(ptr + 8, temp.l.upper);
}
#endif /* USE_X86LDOUBLE */
#define FPUS_IE (1 << 0)
#define FPUS_DE (1 << 1)
#define FPUS_ZE (1 << 2)
#define FPUS_OE (1 << 3)
#define FPUS_UE (1 << 4)
#define FPUS_PE (1 << 5)
#define FPUS_SF (1 << 6)
#define FPUS_SE (1 << 7)
#define FPUS_B (1 << 15)
#define FPUC_EM 0x3f
static inline uint32_t compute_eflags(void)
{
return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
}
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
static inline void load_eflags(int eflags, int update_mask)
{
CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
DF = 1 - (2 * ((eflags >> 10) & 1));
env->eflags = (env->eflags & ~update_mask) |
(eflags & update_mask) | 0x2;
}
static inline void env_to_regs(void)
{
#ifdef reg_EAX
EAX = env->regs[R_EAX];
#endif
#ifdef reg_ECX
ECX = env->regs[R_ECX];
#endif
#ifdef reg_EDX
EDX = env->regs[R_EDX];
#endif
#ifdef reg_EBX
EBX = env->regs[R_EBX];
#endif
#ifdef reg_ESP
ESP = env->regs[R_ESP];
#endif
#ifdef reg_EBP
EBP = env->regs[R_EBP];
#endif
#ifdef reg_ESI
ESI = env->regs[R_ESI];
#endif
#ifdef reg_EDI
EDI = env->regs[R_EDI];
#endif
}
static inline void regs_to_env(void)
{
#ifdef reg_EAX
env->regs[R_EAX] = EAX;
#endif
#ifdef reg_ECX
env->regs[R_ECX] = ECX;
#endif
#ifdef reg_EDX
env->regs[R_EDX] = EDX;
#endif
#ifdef reg_EBX
env->regs[R_EBX] = EBX;
#endif
#ifdef reg_ESP
env->regs[R_ESP] = ESP;
#endif
#ifdef reg_EBP
env->regs[R_EBP] = EBP;
#endif
#ifdef reg_ESI
env->regs[R_ESI] = ESI;
#endif
#ifdef reg_EDI
env->regs[R_EDI] = EDI;
#endif
}
static inline int cpu_has_work(CPUState *env)
{
int work;
work = (env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK);
work |= env->interrupt_request & CPU_INTERRUPT_NMI;
work |= env->interrupt_request & CPU_INTERRUPT_INIT;
work |= env->interrupt_request & CPU_INTERRUPT_SIPI;
return work;
}
static inline int cpu_halted(CPUState *env) {
/* handle exit of HALTED state */
if (!env->halted)
return 0;
/* disable halt condition */
if (cpu_has_work(env)) {
env->halted = 0;
return 0;
}
return EXCP_HALTED;
}
/* load efer and update the corresponding hflags. XXX: do consistency
checks with cpuid bits ? */
static inline void cpu_load_efer(CPUState *env, uint64_t val)
{
env->efer = val;
env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
if (env->efer & MSR_EFER_LMA)
env->hflags |= HF_LMA_MASK;
if (env->efer & MSR_EFER_SVME)
env->hflags |= HF_SVME_MASK;
}