6ebbf39000
allowing support of more than 2 mmu access modes. Add backward compatibility is_user variable in targets code when needed. Implement per target cpu_mmu_index function, avoiding duplicated code and #ifdef TARGET_xxx in softmmu core functions. Implement per target mmu modes definitions. As an example, add PowerPC hypervisor mode definition and Alpha executive and kernel modes definitions. Optimize PowerPC case, precomputing mmu_idx when MSR register changes and using the same definition in code translation code. git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3384 c046a42c-6fe2-441c-8c8c-71466251a162
1310 lines
42 KiB
C
1310 lines
42 KiB
C
/*
|
|
* MIPS emulation helpers for qemu.
|
|
*
|
|
* Copyright (c) 2004-2005 Jocelyn Mayer
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
#include <stdlib.h>
|
|
#include "exec.h"
|
|
|
|
#define GETPC() (__builtin_return_address(0))
|
|
|
|
/*****************************************************************************/
|
|
/* Exceptions processing helpers */
|
|
|
|
void do_raise_exception_err (uint32_t exception, int error_code)
|
|
{
|
|
#if 1
|
|
if (logfile && exception < 0x100)
|
|
fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
|
|
#endif
|
|
env->exception_index = exception;
|
|
env->error_code = error_code;
|
|
T0 = 0;
|
|
cpu_loop_exit();
|
|
}
|
|
|
|
void do_raise_exception (uint32_t exception)
|
|
{
|
|
do_raise_exception_err(exception, 0);
|
|
}
|
|
|
|
void do_restore_state (void *pc_ptr)
|
|
{
|
|
TranslationBlock *tb;
|
|
unsigned long pc = (unsigned long) pc_ptr;
|
|
|
|
tb = tb_find_pc (pc);
|
|
cpu_restore_state (tb, env, pc, NULL);
|
|
}
|
|
|
|
void do_raise_exception_direct_err (uint32_t exception, int error_code)
|
|
{
|
|
do_restore_state (GETPC ());
|
|
do_raise_exception_err (exception, error_code);
|
|
}
|
|
|
|
void do_raise_exception_direct (uint32_t exception)
|
|
{
|
|
do_raise_exception_direct_err (exception, 0);
|
|
}
|
|
|
|
#if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
|
|
#if TARGET_LONG_BITS > HOST_LONG_BITS
|
|
/* Those might call libgcc functions. */
|
|
void do_dsll (void)
|
|
{
|
|
T0 = T0 << T1;
|
|
}
|
|
|
|
void do_dsll32 (void)
|
|
{
|
|
T0 = T0 << (T1 + 32);
|
|
}
|
|
|
|
void do_dsra (void)
|
|
{
|
|
T0 = (int64_t)T0 >> T1;
|
|
}
|
|
|
|
void do_dsra32 (void)
|
|
{
|
|
T0 = (int64_t)T0 >> (T1 + 32);
|
|
}
|
|
|
|
void do_dsrl (void)
|
|
{
|
|
T0 = T0 >> T1;
|
|
}
|
|
|
|
void do_dsrl32 (void)
|
|
{
|
|
T0 = T0 >> (T1 + 32);
|
|
}
|
|
|
|
void do_drotr (void)
|
|
{
|
|
target_ulong tmp;
|
|
|
|
if (T1) {
|
|
tmp = T0 << (0x40 - T1);
|
|
T0 = (T0 >> T1) | tmp;
|
|
}
|
|
}
|
|
|
|
void do_drotr32 (void)
|
|
{
|
|
target_ulong tmp;
|
|
|
|
if (T1) {
|
|
tmp = T0 << (0x40 - (32 + T1));
|
|
T0 = (T0 >> (32 + T1)) | tmp;
|
|
}
|
|
}
|
|
|
|
void do_dsllv (void)
|
|
{
|
|
T0 = T1 << (T0 & 0x3F);
|
|
}
|
|
|
|
void do_dsrav (void)
|
|
{
|
|
T0 = (int64_t)T1 >> (T0 & 0x3F);
|
|
}
|
|
|
|
void do_dsrlv (void)
|
|
{
|
|
T0 = T1 >> (T0 & 0x3F);
|
|
}
|
|
|
|
void do_drotrv (void)
|
|
{
|
|
target_ulong tmp;
|
|
|
|
T0 &= 0x3F;
|
|
if (T0) {
|
|
tmp = T1 << (0x40 - T0);
|
|
T0 = (T1 >> T0) | tmp;
|
|
} else
|
|
T0 = T1;
|
|
}
|
|
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
|
|
#endif /* TARGET_MIPSN32 || TARGET_MIPS64 */
|
|
|
|
/* 64 bits arithmetic for 32 bits hosts */
|
|
#if TARGET_LONG_BITS > HOST_LONG_BITS
|
|
static always_inline uint64_t get_HILO (void)
|
|
{
|
|
return (env->HI[0][env->current_tc] << 32) | (uint32_t)env->LO[0][env->current_tc];
|
|
}
|
|
|
|
static always_inline void set_HILO (uint64_t HILO)
|
|
{
|
|
env->LO[0][env->current_tc] = (int32_t)HILO;
|
|
env->HI[0][env->current_tc] = (int32_t)(HILO >> 32);
|
|
}
|
|
|
|
void do_mult (void)
|
|
{
|
|
set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
|
|
}
|
|
|
|
void do_multu (void)
|
|
{
|
|
set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
|
|
}
|
|
|
|
void do_madd (void)
|
|
{
|
|
int64_t tmp;
|
|
|
|
tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
|
|
set_HILO((int64_t)get_HILO() + tmp);
|
|
}
|
|
|
|
void do_maddu (void)
|
|
{
|
|
uint64_t tmp;
|
|
|
|
tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
|
|
set_HILO(get_HILO() + tmp);
|
|
}
|
|
|
|
void do_msub (void)
|
|
{
|
|
int64_t tmp;
|
|
|
|
tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
|
|
set_HILO((int64_t)get_HILO() - tmp);
|
|
}
|
|
|
|
void do_msubu (void)
|
|
{
|
|
uint64_t tmp;
|
|
|
|
tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
|
|
set_HILO(get_HILO() - tmp);
|
|
}
|
|
#endif
|
|
|
|
#if HOST_LONG_BITS < 64
|
|
void do_div (void)
|
|
{
|
|
/* 64bit datatypes because we may see overflow/underflow. */
|
|
if (T1 != 0) {
|
|
env->LO[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1);
|
|
env->HI[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
|
|
void do_ddiv (void)
|
|
{
|
|
if (T1 != 0) {
|
|
lldiv_t res = lldiv((int64_t)T0, (int64_t)T1);
|
|
env->LO[0][env->current_tc] = res.quot;
|
|
env->HI[0][env->current_tc] = res.rem;
|
|
}
|
|
}
|
|
|
|
#if TARGET_LONG_BITS > HOST_LONG_BITS
|
|
void do_ddivu (void)
|
|
{
|
|
if (T1 != 0) {
|
|
env->LO[0][env->current_tc] = T0 / T1;
|
|
env->HI[0][env->current_tc] = T0 % T1;
|
|
}
|
|
}
|
|
#endif
|
|
#endif /* TARGET_MIPSN32 || TARGET_MIPS64 */
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
void do_mfc0_random (void)
|
|
{
|
|
cpu_abort(env, "mfc0 random\n");
|
|
}
|
|
|
|
void do_mfc0_count (void)
|
|
{
|
|
cpu_abort(env, "mfc0 count\n");
|
|
}
|
|
|
|
void cpu_mips_store_count(CPUState *env, uint32_t value)
|
|
{
|
|
cpu_abort(env, "mtc0 count\n");
|
|
}
|
|
|
|
void cpu_mips_store_compare(CPUState *env, uint32_t value)
|
|
{
|
|
cpu_abort(env, "mtc0 compare\n");
|
|
}
|
|
|
|
void cpu_mips_start_count(CPUState *env)
|
|
{
|
|
cpu_abort(env, "start count\n");
|
|
}
|
|
|
|
void cpu_mips_stop_count(CPUState *env)
|
|
{
|
|
cpu_abort(env, "stop count\n");
|
|
}
|
|
|
|
void cpu_mips_update_irq(CPUState *env)
|
|
{
|
|
cpu_abort(env, "mtc0 status / mtc0 cause\n");
|
|
}
|
|
|
|
void do_mtc0_status_debug(uint32_t old, uint32_t val)
|
|
{
|
|
cpu_abort(env, "mtc0 status debug\n");
|
|
}
|
|
|
|
void do_mtc0_status_irqraise_debug (void)
|
|
{
|
|
cpu_abort(env, "mtc0 status irqraise debug\n");
|
|
}
|
|
|
|
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
|
|
{
|
|
cpu_abort(env, "mips_tlb_flush\n");
|
|
}
|
|
|
|
#else
|
|
|
|
/* CP0 helpers */
|
|
void do_mfc0_random (void)
|
|
{
|
|
T0 = (int32_t)cpu_mips_get_random(env);
|
|
}
|
|
|
|
void do_mfc0_count (void)
|
|
{
|
|
T0 = (int32_t)cpu_mips_get_count(env);
|
|
}
|
|
|
|
void do_mtc0_status_debug(uint32_t old, uint32_t val)
|
|
{
|
|
fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
|
|
old, old & env->CP0_Cause & CP0Ca_IP_mask,
|
|
val, val & env->CP0_Cause & CP0Ca_IP_mask,
|
|
env->CP0_Cause);
|
|
(env->hflags & MIPS_HFLAG_UM) ? fputs(", UM\n", logfile)
|
|
: fputs("\n", logfile);
|
|
}
|
|
|
|
void do_mtc0_status_irqraise_debug(void)
|
|
{
|
|
fprintf(logfile, "Raise pending IRQs\n");
|
|
}
|
|
|
|
void fpu_handle_exception(void)
|
|
{
|
|
#ifdef CONFIG_SOFTFLOAT
|
|
int flags = get_float_exception_flags(&env->fpu->fp_status);
|
|
unsigned int cpuflags = 0, enable, cause = 0;
|
|
|
|
enable = GET_FP_ENABLE(env->fpu->fcr31);
|
|
|
|
/* determine current flags */
|
|
if (flags & float_flag_invalid) {
|
|
cpuflags |= FP_INVALID;
|
|
cause |= FP_INVALID & enable;
|
|
}
|
|
if (flags & float_flag_divbyzero) {
|
|
cpuflags |= FP_DIV0;
|
|
cause |= FP_DIV0 & enable;
|
|
}
|
|
if (flags & float_flag_overflow) {
|
|
cpuflags |= FP_OVERFLOW;
|
|
cause |= FP_OVERFLOW & enable;
|
|
}
|
|
if (flags & float_flag_underflow) {
|
|
cpuflags |= FP_UNDERFLOW;
|
|
cause |= FP_UNDERFLOW & enable;
|
|
}
|
|
if (flags & float_flag_inexact) {
|
|
cpuflags |= FP_INEXACT;
|
|
cause |= FP_INEXACT & enable;
|
|
}
|
|
SET_FP_FLAGS(env->fpu->fcr31, cpuflags);
|
|
SET_FP_CAUSE(env->fpu->fcr31, cause);
|
|
#else
|
|
SET_FP_FLAGS(env->fpu->fcr31, 0);
|
|
SET_FP_CAUSE(env->fpu->fcr31, 0);
|
|
#endif
|
|
}
|
|
|
|
/* TLB management */
|
|
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
|
|
{
|
|
/* Flush qemu's TLB and discard all shadowed entries. */
|
|
tlb_flush (env, flush_global);
|
|
env->tlb->tlb_in_use = env->tlb->nb_tlb;
|
|
}
|
|
|
|
static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
|
|
{
|
|
/* Discard entries from env->tlb[first] onwards. */
|
|
while (env->tlb->tlb_in_use > first) {
|
|
r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
|
|
}
|
|
}
|
|
|
|
static void r4k_fill_tlb (int idx)
|
|
{
|
|
r4k_tlb_t *tlb;
|
|
|
|
/* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
|
|
tlb = &env->tlb->mmu.r4k.tlb[idx];
|
|
tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
|
|
#if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
|
|
tlb->VPN &= env->SEGMask;
|
|
#endif
|
|
tlb->ASID = env->CP0_EntryHi & 0xFF;
|
|
tlb->PageMask = env->CP0_PageMask;
|
|
tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
|
|
tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
|
|
tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
|
|
tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
|
|
tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
|
|
tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
|
|
tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
|
|
tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
|
|
tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
|
|
}
|
|
|
|
void r4k_do_tlbwi (void)
|
|
{
|
|
/* Discard cached TLB entries. We could avoid doing this if the
|
|
tlbwi is just upgrading access permissions on the current entry;
|
|
that might be a further win. */
|
|
r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
|
|
|
|
r4k_invalidate_tlb(env, env->CP0_Index % env->tlb->nb_tlb, 0);
|
|
r4k_fill_tlb(env->CP0_Index % env->tlb->nb_tlb);
|
|
}
|
|
|
|
void r4k_do_tlbwr (void)
|
|
{
|
|
int r = cpu_mips_get_random(env);
|
|
|
|
r4k_invalidate_tlb(env, r, 1);
|
|
r4k_fill_tlb(r);
|
|
}
|
|
|
|
void r4k_do_tlbp (void)
|
|
{
|
|
r4k_tlb_t *tlb;
|
|
target_ulong mask;
|
|
target_ulong tag;
|
|
target_ulong VPN;
|
|
uint8_t ASID;
|
|
int i;
|
|
|
|
ASID = env->CP0_EntryHi & 0xFF;
|
|
for (i = 0; i < env->tlb->nb_tlb; i++) {
|
|
tlb = &env->tlb->mmu.r4k.tlb[i];
|
|
/* 1k pages are not supported. */
|
|
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
|
|
tag = env->CP0_EntryHi & ~mask;
|
|
VPN = tlb->VPN & ~mask;
|
|
/* Check ASID, virtual page number & size */
|
|
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
|
|
/* TLB match */
|
|
env->CP0_Index = i;
|
|
break;
|
|
}
|
|
}
|
|
if (i == env->tlb->nb_tlb) {
|
|
/* No match. Discard any shadow entries, if any of them match. */
|
|
for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
|
|
tlb = &env->tlb->mmu.r4k.tlb[i];
|
|
/* 1k pages are not supported. */
|
|
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
|
|
tag = env->CP0_EntryHi & ~mask;
|
|
VPN = tlb->VPN & ~mask;
|
|
/* Check ASID, virtual page number & size */
|
|
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
|
|
r4k_mips_tlb_flush_extra (env, i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
env->CP0_Index |= 0x80000000;
|
|
}
|
|
}
|
|
|
|
void r4k_do_tlbr (void)
|
|
{
|
|
r4k_tlb_t *tlb;
|
|
uint8_t ASID;
|
|
|
|
ASID = env->CP0_EntryHi & 0xFF;
|
|
tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb];
|
|
|
|
/* If this will change the current ASID, flush qemu's TLB. */
|
|
if (ASID != tlb->ASID)
|
|
cpu_mips_tlb_flush (env, 1);
|
|
|
|
r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
|
|
|
|
env->CP0_EntryHi = tlb->VPN | tlb->ASID;
|
|
env->CP0_PageMask = tlb->PageMask;
|
|
env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
|
|
(tlb->C0 << 3) | (tlb->PFN[0] >> 6);
|
|
env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
|
|
(tlb->C1 << 3) | (tlb->PFN[1] >> 6);
|
|
}
|
|
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
|
|
void dump_ldst (const unsigned char *func)
|
|
{
|
|
if (loglevel)
|
|
fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1);
|
|
}
|
|
|
|
void dump_sc (void)
|
|
{
|
|
if (loglevel) {
|
|
fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__,
|
|
T1, T0, env->CP0_LLAddr);
|
|
}
|
|
}
|
|
|
|
void debug_pre_eret (void)
|
|
{
|
|
fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
|
|
env->PC[env->current_tc], env->CP0_EPC);
|
|
if (env->CP0_Status & (1 << CP0St_ERL))
|
|
fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
|
|
if (env->hflags & MIPS_HFLAG_DM)
|
|
fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
|
|
fputs("\n", logfile);
|
|
}
|
|
|
|
void debug_post_eret (void)
|
|
{
|
|
fprintf(logfile, " => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
|
|
env->PC[env->current_tc], env->CP0_EPC);
|
|
if (env->CP0_Status & (1 << CP0St_ERL))
|
|
fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
|
|
if (env->hflags & MIPS_HFLAG_DM)
|
|
fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
|
|
if (env->hflags & MIPS_HFLAG_UM)
|
|
fputs(", UM\n", logfile);
|
|
else
|
|
fputs("\n", logfile);
|
|
}
|
|
|
|
void do_pmon (int function)
|
|
{
|
|
function /= 2;
|
|
switch (function) {
|
|
case 2: /* TODO: char inbyte(int waitflag); */
|
|
if (env->gpr[4][env->current_tc] == 0)
|
|
env->gpr[2][env->current_tc] = -1;
|
|
/* Fall through */
|
|
case 11: /* TODO: char inbyte (void); */
|
|
env->gpr[2][env->current_tc] = -1;
|
|
break;
|
|
case 3:
|
|
case 12:
|
|
printf("%c", (char)(env->gpr[4][env->current_tc] & 0xFF));
|
|
break;
|
|
case 17:
|
|
break;
|
|
case 158:
|
|
{
|
|
unsigned char *fmt = (void *)(unsigned long)env->gpr[4][env->current_tc];
|
|
printf("%s", fmt);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
|
|
|
|
#define MMUSUFFIX _mmu
|
|
#define ALIGNED_ONLY
|
|
|
|
#define SHIFT 0
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 1
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 2
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 3
|
|
#include "softmmu_template.h"
|
|
|
|
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
|
|
{
|
|
env->CP0_BadVAddr = addr;
|
|
do_restore_state (retaddr);
|
|
do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
|
|
}
|
|
|
|
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
|
|
{
|
|
TranslationBlock *tb;
|
|
CPUState *saved_env;
|
|
unsigned long pc;
|
|
int ret;
|
|
|
|
/* XXX: hack to restore env in all cases, even if not called from
|
|
generated code */
|
|
saved_env = env;
|
|
env = cpu_single_env;
|
|
ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
|
|
if (ret) {
|
|
if (retaddr) {
|
|
/* now we have a real cpu fault */
|
|
pc = (unsigned long)retaddr;
|
|
tb = tb_find_pc(pc);
|
|
if (tb) {
|
|
/* the PC is inside the translated code. It means that we have
|
|
a virtual CPU fault */
|
|
cpu_restore_state(tb, env, pc, NULL);
|
|
}
|
|
}
|
|
do_raise_exception_err(env->exception_index, env->error_code);
|
|
}
|
|
env = saved_env;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Complex FPU operations which may need stack space. */
|
|
|
|
#define FLOAT_SIGN32 (1 << 31)
|
|
#define FLOAT_SIGN64 (1ULL << 63)
|
|
#define FLOAT_ONE32 (0x3f8 << 20)
|
|
#define FLOAT_ONE64 (0x3ffULL << 52)
|
|
#define FLOAT_TWO32 (1 << 30)
|
|
#define FLOAT_TWO64 (1ULL << 62)
|
|
#define FLOAT_QNAN32 0x7fbfffff
|
|
#define FLOAT_QNAN64 0x7ff7ffffffffffffULL
|
|
#define FLOAT_SNAN32 0x7fffffff
|
|
#define FLOAT_SNAN64 0x7fffffffffffffffULL
|
|
|
|
/* convert MIPS rounding mode in FCR31 to IEEE library */
|
|
unsigned int ieee_rm[] = {
|
|
float_round_nearest_even,
|
|
float_round_to_zero,
|
|
float_round_up,
|
|
float_round_down
|
|
};
|
|
|
|
#define RESTORE_ROUNDING_MODE \
|
|
set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
|
|
|
|
void do_cfc1 (int reg)
|
|
{
|
|
switch (reg) {
|
|
case 0:
|
|
T0 = (int32_t)env->fpu->fcr0;
|
|
break;
|
|
case 25:
|
|
T0 = ((env->fpu->fcr31 >> 24) & 0xfe) | ((env->fpu->fcr31 >> 23) & 0x1);
|
|
break;
|
|
case 26:
|
|
T0 = env->fpu->fcr31 & 0x0003f07c;
|
|
break;
|
|
case 28:
|
|
T0 = (env->fpu->fcr31 & 0x00000f83) | ((env->fpu->fcr31 >> 22) & 0x4);
|
|
break;
|
|
default:
|
|
T0 = (int32_t)env->fpu->fcr31;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void do_ctc1 (int reg)
|
|
{
|
|
switch(reg) {
|
|
case 25:
|
|
if (T0 & 0xffffff00)
|
|
return;
|
|
env->fpu->fcr31 = (env->fpu->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) |
|
|
((T0 & 0x1) << 23);
|
|
break;
|
|
case 26:
|
|
if (T0 & 0x007c0000)
|
|
return;
|
|
env->fpu->fcr31 = (env->fpu->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c);
|
|
break;
|
|
case 28:
|
|
if (T0 & 0x007c0000)
|
|
return;
|
|
env->fpu->fcr31 = (env->fpu->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) |
|
|
((T0 & 0x4) << 22);
|
|
break;
|
|
case 31:
|
|
if (T0 & 0x007c0000)
|
|
return;
|
|
env->fpu->fcr31 = T0;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
/* set rounding mode */
|
|
RESTORE_ROUNDING_MODE;
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
if ((GET_FP_ENABLE(env->fpu->fcr31) | 0x20) & GET_FP_CAUSE(env->fpu->fcr31))
|
|
do_raise_exception(EXCP_FPE);
|
|
}
|
|
|
|
static always_inline char ieee_ex_to_mips(char xcpt)
|
|
{
|
|
return (xcpt & float_flag_inexact) >> 5 |
|
|
(xcpt & float_flag_underflow) >> 3 |
|
|
(xcpt & float_flag_overflow) >> 1 |
|
|
(xcpt & float_flag_divbyzero) << 1 |
|
|
(xcpt & float_flag_invalid) << 4;
|
|
}
|
|
|
|
static always_inline char mips_ex_to_ieee(char xcpt)
|
|
{
|
|
return (xcpt & FP_INEXACT) << 5 |
|
|
(xcpt & FP_UNDERFLOW) << 3 |
|
|
(xcpt & FP_OVERFLOW) << 1 |
|
|
(xcpt & FP_DIV0) >> 1 |
|
|
(xcpt & FP_INVALID) >> 4;
|
|
}
|
|
|
|
static always_inline void update_fcr31(void)
|
|
{
|
|
int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fpu->fp_status));
|
|
|
|
SET_FP_CAUSE(env->fpu->fcr31, tmp);
|
|
if (GET_FP_ENABLE(env->fpu->fcr31) & tmp)
|
|
do_raise_exception(EXCP_FPE);
|
|
else
|
|
UPDATE_FP_FLAGS(env->fpu->fcr31, tmp);
|
|
}
|
|
|
|
#define FLOAT_OP(name, p) void do_float_##name##_##p(void)
|
|
|
|
FLOAT_OP(cvtd, s)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FDT2 = float32_to_float64(FST0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(cvtd, w)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FDT2 = int32_to_float64(WT0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(cvtd, l)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FDT2 = int64_to_float64(DT0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(cvtl, d)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = FLOAT_SNAN64;
|
|
}
|
|
FLOAT_OP(cvtl, s)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = FLOAT_SNAN64;
|
|
}
|
|
|
|
FLOAT_OP(cvtps, pw)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
|
|
FSTH2 = int32_to_float32(WTH0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(cvtpw, ps)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
|
|
WTH2 = float32_to_int32(FSTH0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = FLOAT_SNAN32;
|
|
}
|
|
FLOAT_OP(cvts, d)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = float64_to_float32(FDT0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(cvts, w)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(cvts, l)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = int64_to_float32(DT0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(cvts, pl)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
WT2 = WT0;
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(cvts, pu)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
WT2 = WTH0;
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(cvtw, s)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = FLOAT_SNAN32;
|
|
}
|
|
FLOAT_OP(cvtw, d)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = FLOAT_SNAN32;
|
|
}
|
|
|
|
FLOAT_OP(roundl, d)
|
|
{
|
|
set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
|
|
DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = FLOAT_SNAN64;
|
|
}
|
|
FLOAT_OP(roundl, s)
|
|
{
|
|
set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
|
|
DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = FLOAT_SNAN64;
|
|
}
|
|
FLOAT_OP(roundw, d)
|
|
{
|
|
set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
|
|
WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = FLOAT_SNAN32;
|
|
}
|
|
FLOAT_OP(roundw, s)
|
|
{
|
|
set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
|
|
WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = FLOAT_SNAN32;
|
|
}
|
|
|
|
FLOAT_OP(truncl, d)
|
|
{
|
|
DT2 = float64_to_int64_round_to_zero(FDT0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = FLOAT_SNAN64;
|
|
}
|
|
FLOAT_OP(truncl, s)
|
|
{
|
|
DT2 = float32_to_int64_round_to_zero(FST0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = FLOAT_SNAN64;
|
|
}
|
|
FLOAT_OP(truncw, d)
|
|
{
|
|
WT2 = float64_to_int32_round_to_zero(FDT0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = FLOAT_SNAN32;
|
|
}
|
|
FLOAT_OP(truncw, s)
|
|
{
|
|
WT2 = float32_to_int32_round_to_zero(FST0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = FLOAT_SNAN32;
|
|
}
|
|
|
|
FLOAT_OP(ceill, d)
|
|
{
|
|
set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
|
|
DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = FLOAT_SNAN64;
|
|
}
|
|
FLOAT_OP(ceill, s)
|
|
{
|
|
set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
|
|
DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = FLOAT_SNAN64;
|
|
}
|
|
FLOAT_OP(ceilw, d)
|
|
{
|
|
set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
|
|
WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = FLOAT_SNAN32;
|
|
}
|
|
FLOAT_OP(ceilw, s)
|
|
{
|
|
set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
|
|
WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = FLOAT_SNAN32;
|
|
}
|
|
|
|
FLOAT_OP(floorl, d)
|
|
{
|
|
set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
|
|
DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = FLOAT_SNAN64;
|
|
}
|
|
FLOAT_OP(floorl, s)
|
|
{
|
|
set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
|
|
DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
DT2 = FLOAT_SNAN64;
|
|
}
|
|
FLOAT_OP(floorw, d)
|
|
{
|
|
set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
|
|
WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = FLOAT_SNAN32;
|
|
}
|
|
FLOAT_OP(floorw, s)
|
|
{
|
|
set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
|
|
WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
WT2 = FLOAT_SNAN32;
|
|
}
|
|
|
|
/* MIPS specific unary operations */
|
|
FLOAT_OP(recip, d)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(recip, s)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
|
|
FLOAT_OP(rsqrt, d)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
|
|
FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(rsqrt, s)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
|
|
FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
|
|
FLOAT_OP(recip1, d)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(recip1, s)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(recip1, ps)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
|
|
FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
|
|
FLOAT_OP(rsqrt1, d)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
|
|
FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(rsqrt1, s)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
|
|
FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(rsqrt1, ps)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
|
|
FSTH2 = float32_sqrt(FSTH0, &env->fpu->fp_status);
|
|
FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
|
|
FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
|
|
/* binary operations */
|
|
#define FLOAT_BINOP(name) \
|
|
FLOAT_OP(name, d) \
|
|
{ \
|
|
set_float_exception_flags(0, &env->fpu->fp_status); \
|
|
FDT2 = float64_ ## name (FDT0, FDT1, &env->fpu->fp_status); \
|
|
update_fcr31(); \
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \
|
|
FDT2 = FLOAT_QNAN64; \
|
|
} \
|
|
FLOAT_OP(name, s) \
|
|
{ \
|
|
set_float_exception_flags(0, &env->fpu->fp_status); \
|
|
FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status); \
|
|
update_fcr31(); \
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \
|
|
FST2 = FLOAT_QNAN32; \
|
|
} \
|
|
FLOAT_OP(name, ps) \
|
|
{ \
|
|
set_float_exception_flags(0, &env->fpu->fp_status); \
|
|
FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status); \
|
|
FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fpu->fp_status); \
|
|
update_fcr31(); \
|
|
if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) { \
|
|
FST2 = FLOAT_QNAN32; \
|
|
FSTH2 = FLOAT_QNAN32; \
|
|
} \
|
|
}
|
|
FLOAT_BINOP(add)
|
|
FLOAT_BINOP(sub)
|
|
FLOAT_BINOP(mul)
|
|
FLOAT_BINOP(div)
|
|
#undef FLOAT_BINOP
|
|
|
|
/* MIPS specific binary operations */
|
|
FLOAT_OP(recip2, d)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
|
|
FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status) ^ FLOAT_SIGN64;
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(recip2, s)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
|
|
FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(recip2, ps)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
|
|
FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
|
|
FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
|
|
FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
|
|
update_fcr31();
|
|
}
|
|
|
|
FLOAT_OP(rsqrt2, d)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
|
|
FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status);
|
|
FDT2 = float64_div(FDT2, FLOAT_TWO64, &env->fpu->fp_status) ^ FLOAT_SIGN64;
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(rsqrt2, s)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
|
|
FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
|
|
FST2 = float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
|
|
update_fcr31();
|
|
}
|
|
FLOAT_OP(rsqrt2, ps)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
|
|
FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
|
|
FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
|
|
FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status);
|
|
FST2 = float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
|
|
FSTH2 = float32_div(FSTH2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
|
|
update_fcr31();
|
|
}
|
|
|
|
FLOAT_OP(addr, ps)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = float32_add (FST0, FSTH0, &env->fpu->fp_status);
|
|
FSTH2 = float32_add (FST1, FSTH1, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
|
|
FLOAT_OP(mulr, ps)
|
|
{
|
|
set_float_exception_flags(0, &env->fpu->fp_status);
|
|
FST2 = float32_mul (FST0, FSTH0, &env->fpu->fp_status);
|
|
FSTH2 = float32_mul (FST1, FSTH1, &env->fpu->fp_status);
|
|
update_fcr31();
|
|
}
|
|
|
|
/* compare operations */
|
|
#define FOP_COND_D(op, cond) \
|
|
void do_cmp_d_ ## op (long cc) \
|
|
{ \
|
|
int c = cond; \
|
|
update_fcr31(); \
|
|
if (c) \
|
|
SET_FP_COND(cc, env->fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->fpu); \
|
|
} \
|
|
void do_cmpabs_d_ ## op (long cc) \
|
|
{ \
|
|
int c; \
|
|
FDT0 &= ~FLOAT_SIGN64; \
|
|
FDT1 &= ~FLOAT_SIGN64; \
|
|
c = cond; \
|
|
update_fcr31(); \
|
|
if (c) \
|
|
SET_FP_COND(cc, env->fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->fpu); \
|
|
}
|
|
|
|
int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
|
|
{
|
|
if (float64_is_signaling_nan(a) ||
|
|
float64_is_signaling_nan(b) ||
|
|
(sig && (float64_is_nan(a) || float64_is_nan(b)))) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 1;
|
|
} else if (float64_is_nan(a) || float64_is_nan(b)) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float*_is_unordered() is still called. */
|
|
FOP_COND_D(f, (float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status), 0))
|
|
FOP_COND_D(un, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status))
|
|
FOP_COND_D(eq, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
|
|
FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
|
|
FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
|
|
FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
|
|
FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
|
|
FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_le(FDT0, FDT1, &env->fpu->fp_status))
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float*_is_unordered() is still called. */
|
|
FOP_COND_D(sf, (float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status), 0))
|
|
FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status))
|
|
FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
|
|
FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
|
|
FOP_COND_D(lt, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
|
|
FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
|
|
FOP_COND_D(le, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
|
|
FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_le(FDT0, FDT1, &env->fpu->fp_status))
|
|
|
|
#define FOP_COND_S(op, cond) \
|
|
void do_cmp_s_ ## op (long cc) \
|
|
{ \
|
|
int c = cond; \
|
|
update_fcr31(); \
|
|
if (c) \
|
|
SET_FP_COND(cc, env->fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->fpu); \
|
|
} \
|
|
void do_cmpabs_s_ ## op (long cc) \
|
|
{ \
|
|
int c; \
|
|
FST0 &= ~FLOAT_SIGN32; \
|
|
FST1 &= ~FLOAT_SIGN32; \
|
|
c = cond; \
|
|
update_fcr31(); \
|
|
if (c) \
|
|
SET_FP_COND(cc, env->fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->fpu); \
|
|
}
|
|
|
|
flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
|
|
{
|
|
if (float32_is_signaling_nan(a) ||
|
|
float32_is_signaling_nan(b) ||
|
|
(sig && (float32_is_nan(a) || float32_is_nan(b)))) {
|
|
float_raise(float_flag_invalid, status);
|
|
return 1;
|
|
} else if (float32_is_nan(a) || float32_is_nan(b)) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float*_is_unordered() is still called. */
|
|
FOP_COND_S(f, (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0))
|
|
FOP_COND_S(un, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status))
|
|
FOP_COND_S(eq, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
|
|
FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status))
|
|
FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
|
|
FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status))
|
|
FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
|
|
FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status))
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float*_is_unordered() is still called. */
|
|
FOP_COND_S(sf, (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0))
|
|
FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status))
|
|
FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
|
|
FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status))
|
|
FOP_COND_S(lt, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
|
|
FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status))
|
|
FOP_COND_S(le, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
|
|
FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status))
|
|
|
|
#define FOP_COND_PS(op, condl, condh) \
|
|
void do_cmp_ps_ ## op (long cc) \
|
|
{ \
|
|
int cl = condl; \
|
|
int ch = condh; \
|
|
update_fcr31(); \
|
|
if (cl) \
|
|
SET_FP_COND(cc, env->fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->fpu); \
|
|
if (ch) \
|
|
SET_FP_COND(cc + 1, env->fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc + 1, env->fpu); \
|
|
} \
|
|
void do_cmpabs_ps_ ## op (long cc) \
|
|
{ \
|
|
int cl, ch; \
|
|
FST0 &= ~FLOAT_SIGN32; \
|
|
FSTH0 &= ~FLOAT_SIGN32; \
|
|
FST1 &= ~FLOAT_SIGN32; \
|
|
FSTH1 &= ~FLOAT_SIGN32; \
|
|
cl = condl; \
|
|
ch = condh; \
|
|
update_fcr31(); \
|
|
if (cl) \
|
|
SET_FP_COND(cc, env->fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->fpu); \
|
|
if (ch) \
|
|
SET_FP_COND(cc + 1, env->fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc + 1, env->fpu); \
|
|
}
|
|
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float*_is_unordered() is still called. */
|
|
FOP_COND_PS(f, (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0),
|
|
(float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status), 0))
|
|
FOP_COND_PS(un, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status),
|
|
float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status))
|
|
FOP_COND_PS(eq, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status),
|
|
!float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
|
|
FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status),
|
|
float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
|
|
FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status),
|
|
!float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
|
|
FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status),
|
|
float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
|
|
FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status),
|
|
!float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
|
|
FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status),
|
|
float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float*_is_unordered() is still called. */
|
|
FOP_COND_PS(sf, (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0),
|
|
(float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status), 0))
|
|
FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status),
|
|
float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status))
|
|
FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status),
|
|
!float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
|
|
FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status),
|
|
float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
|
|
FOP_COND_PS(lt, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status),
|
|
!float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
|
|
FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status),
|
|
float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
|
|
FOP_COND_PS(le, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status),
|
|
!float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
|
|
FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status),
|
|
float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
|