qemu-e2k/hw/sun4m.c
bellard ba3c64fb47 Initial SPARC SMP support (Blue Swirl)
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1694 c046a42c-6fe2-441c-8c8c-71466251a162
2005-12-05 20:31:52 +00:00

332 lines
11 KiB
C

/*
* QEMU Sun4m System Emulator
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
#define KERNEL_LOAD_ADDR 0x00004000
#define CMDLINE_ADDR 0x007ff000
#define INITRD_LOAD_ADDR 0x00800000
#define PROM_ADDR 0xffd00000
#define PROM_FILENAMEB "proll.bin"
#define PROM_FILENAMEE "proll.elf"
#define PHYS_JJ_EEPROM 0x71200000 /* m48t08 */
#define PHYS_JJ_IDPROM_OFF 0x1FD8
#define PHYS_JJ_EEPROM_SIZE 0x2000
// IRQs are not PIL ones, but master interrupt controller register
// bits
#define PHYS_JJ_IOMMU 0x10000000 /* I/O MMU */
#define PHYS_JJ_TCX_FB 0x50000000 /* TCX frame buffer */
#define PHYS_JJ_SLAVIO 0x70000000 /* Slavio base */
#define PHYS_JJ_ESPDMA 0x78400000 /* ESP DMA controller */
#define PHYS_JJ_ESP 0x78800000 /* ESP SCSI */
#define PHYS_JJ_ESP_IRQ 18
#define PHYS_JJ_LEDMA 0x78400010 /* Lance DMA controller */
#define PHYS_JJ_LE 0x78C00000 /* Lance ethernet */
#define PHYS_JJ_LE_IRQ 16
#define PHYS_JJ_CLOCK 0x71D00000 /* Per-CPU timer/counter, L14 */
#define PHYS_JJ_CLOCK_IRQ 7
#define PHYS_JJ_CLOCK1 0x71D10000 /* System timer/counter, L10 */
#define PHYS_JJ_CLOCK1_IRQ 19
#define PHYS_JJ_INTR0 0x71E00000 /* Per-CPU interrupt control registers */
#define PHYS_JJ_INTR_G 0x71E10000 /* Master interrupt control registers */
#define PHYS_JJ_MS_KBD 0x71000000 /* Mouse and keyboard */
#define PHYS_JJ_MS_KBD_IRQ 14
#define PHYS_JJ_SER 0x71100000 /* Serial */
#define PHYS_JJ_SER_IRQ 15
#define PHYS_JJ_FDC 0x71400000 /* Floppy */
#define PHYS_JJ_FLOPPY_IRQ 22
#define PHYS_JJ_ME_IRQ 30 /* Module error, power fail */
#define MAX_CPUS 16
/* TSC handling */
uint64_t cpu_get_tsc()
{
return qemu_get_clock(vm_clock);
}
int DMA_get_channel_mode (int nchan)
{
return 0;
}
int DMA_read_memory (int nchan, void *buf, int pos, int size)
{
return 0;
}
int DMA_write_memory (int nchan, void *buf, int pos, int size)
{
return 0;
}
void DMA_hold_DREQ (int nchan) {}
void DMA_release_DREQ (int nchan) {}
void DMA_schedule(int nchan) {}
void DMA_run (void) {}
void DMA_init (int high_page_enable) {}
void DMA_register_channel (int nchan,
DMA_transfer_handler transfer_handler,
void *opaque)
{
}
static void nvram_set_word (m48t59_t *nvram, uint32_t addr, uint16_t value)
{
m48t59_write(nvram, addr++, (value >> 8) & 0xff);
m48t59_write(nvram, addr++, value & 0xff);
}
static void nvram_set_lword (m48t59_t *nvram, uint32_t addr, uint32_t value)
{
m48t59_write(nvram, addr++, value >> 24);
m48t59_write(nvram, addr++, (value >> 16) & 0xff);
m48t59_write(nvram, addr++, (value >> 8) & 0xff);
m48t59_write(nvram, addr++, value & 0xff);
}
static void nvram_set_string (m48t59_t *nvram, uint32_t addr,
const unsigned char *str, uint32_t max)
{
unsigned int i;
for (i = 0; i < max && str[i] != '\0'; i++) {
m48t59_write(nvram, addr + i, str[i]);
}
m48t59_write(nvram, addr + max - 1, '\0');
}
static m48t59_t *nvram;
extern int nographic;
static void nvram_init(m48t59_t *nvram, uint8_t *macaddr, const char *cmdline,
int boot_device, uint32_t RAM_size,
uint32_t kernel_size,
int width, int height, int depth)
{
unsigned char tmp = 0;
int i, j;
// Try to match PPC NVRAM
nvram_set_string(nvram, 0x00, "QEMU_BIOS", 16);
nvram_set_lword(nvram, 0x10, 0x00000001); /* structure v1 */
// NVRAM_size, arch not applicable
m48t59_write(nvram, 0x2D, smp_cpus & 0xff);
m48t59_write(nvram, 0x2E, 0);
m48t59_write(nvram, 0x2F, nographic & 0xff);
nvram_set_lword(nvram, 0x30, RAM_size);
m48t59_write(nvram, 0x34, boot_device & 0xff);
nvram_set_lword(nvram, 0x38, KERNEL_LOAD_ADDR);
nvram_set_lword(nvram, 0x3C, kernel_size);
if (cmdline) {
strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
nvram_set_lword(nvram, 0x40, CMDLINE_ADDR);
nvram_set_lword(nvram, 0x44, strlen(cmdline));
}
// initrd_image, initrd_size passed differently
nvram_set_word(nvram, 0x54, width);
nvram_set_word(nvram, 0x56, height);
nvram_set_word(nvram, 0x58, depth);
// Sun4m specific use
i = 0x1fd8;
m48t59_write(nvram, i++, 0x01);
m48t59_write(nvram, i++, 0x80); /* Sun4m OBP */
j = 0;
m48t59_write(nvram, i++, macaddr[j++]);
m48t59_write(nvram, i++, macaddr[j++]);
m48t59_write(nvram, i++, macaddr[j++]);
m48t59_write(nvram, i++, macaddr[j++]);
m48t59_write(nvram, i++, macaddr[j++]);
m48t59_write(nvram, i, macaddr[j]);
/* Calculate checksum */
for (i = 0x1fd8; i < 0x1fe7; i++) {
tmp ^= m48t59_read(nvram, i);
}
m48t59_write(nvram, 0x1fe7, tmp);
}
static void *slavio_intctl;
void pic_info()
{
slavio_pic_info(slavio_intctl);
}
void irq_info()
{
slavio_irq_info(slavio_intctl);
}
void pic_set_irq(int irq, int level)
{
slavio_pic_set_irq(slavio_intctl, irq, level);
}
void pic_set_irq_cpu(int irq, int level, unsigned int cpu)
{
slavio_pic_set_irq_cpu(slavio_intctl, irq, level, cpu);
}
static void *tcx;
void vga_update_display()
{
tcx_update_display(tcx);
}
void vga_invalidate_display()
{
tcx_invalidate_display(tcx);
}
void vga_screen_dump(const char *filename)
{
tcx_screen_dump(tcx, filename);
}
static void *iommu;
uint32_t iommu_translate(uint32_t addr)
{
return iommu_translate_local(iommu, addr);
}
static void *slavio_misc;
void qemu_system_powerdown(void)
{
slavio_set_power_fail(slavio_misc, 1);
}
static void main_cpu_reset(void *opaque)
{
CPUState *env = opaque;
cpu_reset(env);
}
/* Sun4m hardware initialisation */
static void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
DisplayState *ds, const char **fd_filename, int snapshot,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename)
{
CPUState *env, *envs[MAX_CPUS];
char buf[1024];
int ret, linux_boot;
unsigned int i;
long vram_size = 0x100000, prom_offset, initrd_size, kernel_size;
linux_boot = (kernel_filename != NULL);
/* init CPUs */
for(i = 0; i < smp_cpus; i++) {
env = cpu_init();
envs[i] = env;
if (i != 0)
env->halted = 1;
register_savevm("cpu", i, 3, cpu_save, cpu_load, env);
qemu_register_reset(main_cpu_reset, env);
}
/* allocate RAM */
cpu_register_physical_memory(0, ram_size, 0);
iommu = iommu_init(PHYS_JJ_IOMMU);
slavio_intctl = slavio_intctl_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
for(i = 0; i < smp_cpus; i++) {
slavio_intctl_set_cpu(slavio_intctl, i, envs[i]);
}
tcx = tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size, graphic_width, graphic_height);
lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
nvram = m48t59_init(0, PHYS_JJ_EEPROM, 0, PHYS_JJ_EEPROM_SIZE, 8);
for (i = 0; i < MAX_CPUS; i++) {
slavio_timer_init(PHYS_JJ_CLOCK + i * TARGET_PAGE_SIZE, PHYS_JJ_CLOCK_IRQ, 0, i);
}
slavio_timer_init(PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ, 2, (unsigned int)-1);
slavio_serial_ms_kbd_init(PHYS_JJ_MS_KBD, PHYS_JJ_MS_KBD_IRQ);
// Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
// Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[1], serial_hds[0]);
fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table);
esp_init(bs_table, PHYS_JJ_ESP_IRQ, PHYS_JJ_ESP, PHYS_JJ_ESPDMA);
slavio_misc = slavio_misc_init(PHYS_JJ_SLAVIO, PHYS_JJ_ME_IRQ);
prom_offset = ram_size + vram_size;
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEE);
ret = load_elf(buf, phys_ram_base + prom_offset);
if (ret < 0) {
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB);
ret = load_image(buf, phys_ram_base + prom_offset);
}
if (ret < 0) {
fprintf(stderr, "qemu: could not load prom '%s'\n",
buf);
exit(1);
}
cpu_register_physical_memory(PROM_ADDR, (ret + TARGET_PAGE_SIZE) & TARGET_PAGE_MASK,
prom_offset | IO_MEM_ROM);
kernel_size = 0;
if (linux_boot) {
kernel_size = load_elf(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
if (kernel_size < 0)
kernel_size = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
if (kernel_size < 0)
kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
/* load initrd */
initrd_size = 0;
if (initrd_filename) {
initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
}
if (initrd_size > 0) {
for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i)
== 0x48647253) { // HdrS
stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size);
break;
}
}
}
}
nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, ram_size, kernel_size, graphic_width, graphic_height, graphic_depth);
}
QEMUMachine sun4m_machine = {
"sun4m",
"Sun4m platform",
sun4m_init,
};