qemu-e2k/hw/intc/arm_gicv3_dist.c
Peter Maydell 0edfcc9ec0 hw/intc/arm_gicv3: GICD_TYPER.SecurityExtn is RAZ if GICD_CTLR.DS == 1
The GICv3 specification says that the GICD_TYPER.SecurityExtn bit
is RAZ if GICD_CTLR.DS is 1. We were incorrectly making it RAZ
if the security extension is unsupported. "Security extension
unsupported" always implies GICD_CTLR.DS == 1, but the guest can
also set DS on a GIC which does support the security extension.
Fix the condition to correctly check the GICD_CTLR.DS bit.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: 20190524124248.28394-3-peter.maydell@linaro.org
2019-06-17 15:13:19 +01:00

901 lines
30 KiB
C

/*
* ARM GICv3 emulation: Distributor
*
* Copyright (c) 2015 Huawei.
* Copyright (c) 2016 Linaro Limited.
* Written by Shlomo Pongratz, Peter Maydell
*
* This code is licensed under the GPL, version 2 or (at your option)
* any later version.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "trace.h"
#include "gicv3_internal.h"
/* The GICD_NSACR registers contain a two bit field for each interrupt which
* allows the guest to give NonSecure code access to registers controlling
* Secure interrupts:
* 0b00: no access (NS accesses to bits for Secure interrupts will RAZ/WI)
* 0b01: NS r/w accesses permitted to ISPENDR, SETSPI_NSR, SGIR
* 0b10: as 0b01, and also r/w to ICPENDR, r/o to ISACTIVER/ICACTIVER,
* and w/o to CLRSPI_NSR
* 0b11: as 0b10, and also r/w to IROUTER and ITARGETSR
*
* Given a (multiple-of-32) interrupt number, these mask functions return
* a mask word where each bit is 1 if the NSACR settings permit access
* to the interrupt. The mask returned can then be ORed with the GICD_GROUP
* word for this set of interrupts to give an overall mask.
*/
typedef uint32_t maskfn(GICv3State *s, int irq);
static uint32_t mask_nsacr_ge1(GICv3State *s, int irq)
{
/* Return a mask where each bit is set if the NSACR field is >= 1 */
uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
raw_nsacr = (raw_nsacr >> 1) | raw_nsacr;
return half_unshuffle64(raw_nsacr);
}
static uint32_t mask_nsacr_ge2(GICv3State *s, int irq)
{
/* Return a mask where each bit is set if the NSACR field is >= 2 */
uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
raw_nsacr = raw_nsacr >> 1;
return half_unshuffle64(raw_nsacr);
}
/* We don't need a mask_nsacr_ge3() because IROUTER<n> isn't a bitmap register,
* but it would be implemented using:
* raw_nsacr = (raw_nsacr >> 1) & raw_nsacr;
*/
static uint32_t mask_group_and_nsacr(GICv3State *s, MemTxAttrs attrs,
maskfn *maskfn, int irq)
{
/* Return a 32-bit mask which should be applied for this set of 32
* interrupts; each bit is 1 if access is permitted by the
* combination of attrs.secure, GICD_GROUPR and GICD_NSACR.
*/
uint32_t mask;
if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
/* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI
* unless the NSACR bits permit access.
*/
mask = *gic_bmp_ptr32(s->group, irq);
if (maskfn) {
mask |= maskfn(s, irq);
}
return mask;
}
return 0xFFFFFFFFU;
}
static int gicd_ns_access(GICv3State *s, int irq)
{
/* Return the 2 bit NS_access<x> field from GICD_NSACR<n> for the
* specified interrupt.
*/
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return 0;
}
return extract32(s->gicd_nsacr[irq / 16], (irq % 16) * 2, 2);
}
static void gicd_write_set_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
uint32_t *bmp,
maskfn *maskfn,
int offset, uint32_t val)
{
/* Helper routine to implement writing to a "set-bitmap" register
* (GICD_ISENABLER, GICD_ISPENDR, etc).
* Semantics implemented here:
* RAZ/WI for SGIs, PPIs, unimplemented IRQs
* Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
* Writing 1 means "set bit in bitmap"; writing 0 is ignored.
* offset should be the offset in bytes of the register from the start
* of its group.
*/
int irq = offset * 8;
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return;
}
val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
*gic_bmp_ptr32(bmp, irq) |= val;
gicv3_update(s, irq, 32);
}
static void gicd_write_clear_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
uint32_t *bmp,
maskfn *maskfn,
int offset, uint32_t val)
{
/* Helper routine to implement writing to a "clear-bitmap" register
* (GICD_ICENABLER, GICD_ICPENDR, etc).
* Semantics implemented here:
* RAZ/WI for SGIs, PPIs, unimplemented IRQs
* Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
* Writing 1 means "clear bit in bitmap"; writing 0 is ignored.
* offset should be the offset in bytes of the register from the start
* of its group.
*/
int irq = offset * 8;
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return;
}
val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
*gic_bmp_ptr32(bmp, irq) &= ~val;
gicv3_update(s, irq, 32);
}
static uint32_t gicd_read_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
uint32_t *bmp,
maskfn *maskfn,
int offset)
{
/* Helper routine to implement reading a "set/clear-bitmap" register
* (GICD_ICENABLER, GICD_ISENABLER, GICD_ICPENDR, etc).
* Semantics implemented here:
* RAZ/WI for SGIs, PPIs, unimplemented IRQs
* Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
* offset should be the offset in bytes of the register from the start
* of its group.
*/
int irq = offset * 8;
uint32_t val;
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return 0;
}
val = *gic_bmp_ptr32(bmp, irq);
if (bmp == s->pending) {
/* The PENDING register is a special case -- for level triggered
* interrupts, the PENDING state is the logical OR of the state of
* the PENDING latch with the input line level.
*/
uint32_t edge = *gic_bmp_ptr32(s->edge_trigger, irq);
uint32_t level = *gic_bmp_ptr32(s->level, irq);
val |= (~edge & level);
}
val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
return val;
}
static uint8_t gicd_read_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq)
{
/* Read the value of GICD_IPRIORITYR<n> for the specified interrupt,
* honouring security state (these are RAZ/WI for Group 0 or Secure
* Group 1 interrupts).
*/
uint32_t prio;
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return 0;
}
prio = s->gicd_ipriority[irq];
if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
if (!gicv3_gicd_group_test(s, irq)) {
/* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
return 0;
}
/* NS view of the interrupt priority */
prio = (prio << 1) & 0xff;
}
return prio;
}
static void gicd_write_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq,
uint8_t value)
{
/* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
* honouring security state (these are RAZ/WI for Group 0 or Secure
* Group 1 interrupts).
*/
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return;
}
if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
if (!gicv3_gicd_group_test(s, irq)) {
/* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
return;
}
/* NS view of the interrupt priority */
value = 0x80 | (value >> 1);
}
s->gicd_ipriority[irq] = value;
}
static uint64_t gicd_read_irouter(GICv3State *s, MemTxAttrs attrs, int irq)
{
/* Read the value of GICD_IROUTER<n> for the specified interrupt,
* honouring security state.
*/
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return 0;
}
if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
/* RAZ/WI for NS accesses to secure interrupts */
if (!gicv3_gicd_group_test(s, irq)) {
if (gicd_ns_access(s, irq) != 3) {
return 0;
}
}
}
return s->gicd_irouter[irq];
}
static void gicd_write_irouter(GICv3State *s, MemTxAttrs attrs, int irq,
uint64_t val)
{
/* Write the value of GICD_IROUTER<n> for the specified interrupt,
* honouring security state.
*/
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return;
}
if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
/* RAZ/WI for NS accesses to secure interrupts */
if (!gicv3_gicd_group_test(s, irq)) {
if (gicd_ns_access(s, irq) != 3) {
return;
}
}
}
s->gicd_irouter[irq] = val;
gicv3_cache_target_cpustate(s, irq);
gicv3_update(s, irq, 1);
}
static MemTxResult gicd_readb(GICv3State *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
/* Most GICv3 distributor registers do not support byte accesses. */
switch (offset) {
case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
/* This GIC implementation always has affinity routing enabled,
* so these registers are all RAZ/WI.
*/
return MEMTX_OK;
case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
*data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static MemTxResult gicd_writeb(GICv3State *s, hwaddr offset,
uint64_t value, MemTxAttrs attrs)
{
/* Most GICv3 distributor registers do not support byte accesses. */
switch (offset) {
case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
/* This GIC implementation always has affinity routing enabled,
* so these registers are all RAZ/WI.
*/
return MEMTX_OK;
case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
{
int irq = offset - GICD_IPRIORITYR;
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return MEMTX_OK;
}
gicd_write_ipriorityr(s, attrs, irq, value);
gicv3_update(s, irq, 1);
return MEMTX_OK;
}
default:
return MEMTX_ERROR;
}
}
static MemTxResult gicd_readw(GICv3State *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
/* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
* support 16 bit accesses, and those registers are all part of the
* optional message-based SPI feature which this GIC does not currently
* implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
* reserved.
*/
return MEMTX_ERROR;
}
static MemTxResult gicd_writew(GICv3State *s, hwaddr offset,
uint64_t value, MemTxAttrs attrs)
{
/* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
* support 16 bit accesses, and those registers are all part of the
* optional message-based SPI feature which this GIC does not currently
* implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
* reserved.
*/
return MEMTX_ERROR;
}
static MemTxResult gicd_readl(GICv3State *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
/* Almost all GICv3 distributor registers are 32-bit.
* Note that WO registers must return an UNKNOWN value on reads,
* not an abort.
*/
switch (offset) {
case GICD_CTLR:
if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
/* The NS view of the GICD_CTLR sees only certain bits:
* + bit [31] (RWP) is an alias of the Secure bit [31]
* + bit [4] (ARE_NS) is an alias of Secure bit [5]
* + bit [1] (EnableGrp1A) is an alias of Secure bit [1] if
* NS affinity routing is enabled, otherwise RES0
* + bit [0] (EnableGrp1) is an alias of Secure bit [1] if
* NS affinity routing is not enabled, otherwise RES0
* Since for QEMU affinity routing is always enabled
* for both S and NS this means that bits [4] and [5] are
* both always 1, and we can simply make the NS view
* be bits 31, 4 and 1 of the S view.
*/
*data = s->gicd_ctlr & (GICD_CTLR_ARE_S |
GICD_CTLR_EN_GRP1NS |
GICD_CTLR_RWP);
} else {
*data = s->gicd_ctlr;
}
return MEMTX_OK;
case GICD_TYPER:
{
/* For this implementation:
* No1N == 1 (1-of-N SPI interrupts not supported)
* A3V == 1 (non-zero values of Affinity level 3 supported)
* IDbits == 0xf (we support 16-bit interrupt identifiers)
* DVIS == 0 (Direct virtual LPI injection not supported)
* LPIS == 0 (LPIs not supported)
* MBIS == 0 (message-based SPIs not supported)
* SecurityExtn == 1 if security extns supported
* CPUNumber == 0 since for us ARE is always 1
* ITLinesNumber == (num external irqs / 32) - 1
*/
int itlinesnumber = ((s->num_irq - GIC_INTERNAL) / 32) - 1;
/*
* SecurityExtn must be RAZ if GICD_CTLR.DS == 1, and
* "security extensions not supported" always implies DS == 1,
* so we only need to check the DS bit.
*/
bool sec_extn = !(s->gicd_ctlr & GICD_CTLR_DS);
*data = (1 << 25) | (1 << 24) | (sec_extn << 10) |
(0xf << 19) | itlinesnumber;
return MEMTX_OK;
}
case GICD_IIDR:
/* We claim to be an ARM r0p0 with a zero ProductID.
* This is the same as an r0p0 GIC-500.
*/
*data = gicv3_iidr();
return MEMTX_OK;
case GICD_STATUSR:
/* RAZ/WI for us (this is an optional register and our implementation
* does not track RO/WO/reserved violations to report them to the guest)
*/
*data = 0;
return MEMTX_OK;
case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
{
int irq;
if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
*data = 0;
return MEMTX_OK;
}
/* RAZ/WI for SGIs, PPIs, unimplemented irqs */
irq = (offset - GICD_IGROUPR) * 8;
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
*data = 0;
return MEMTX_OK;
}
*data = *gic_bmp_ptr32(s->group, irq);
return MEMTX_OK;
}
case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
*data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
offset - GICD_ISENABLER);
return MEMTX_OK;
case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
*data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
offset - GICD_ICENABLER);
return MEMTX_OK;
case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
*data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
offset - GICD_ISPENDR);
return MEMTX_OK;
case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
*data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
offset - GICD_ICPENDR);
return MEMTX_OK;
case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
*data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
offset - GICD_ISACTIVER);
return MEMTX_OK;
case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
*data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
offset - GICD_ICACTIVER);
return MEMTX_OK;
case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
{
int i, irq = offset - GICD_IPRIORITYR;
uint32_t value = 0;
for (i = irq + 3; i >= irq; i--) {
value <<= 8;
value |= gicd_read_ipriorityr(s, attrs, i);
}
*data = value;
return MEMTX_OK;
}
case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
/* RAZ/WI since affinity routing is always enabled */
*data = 0;
return MEMTX_OK;
case GICD_ICFGR ... GICD_ICFGR + 0xff:
{
/* Here only the even bits are used; odd bits are RES0 */
int irq = (offset - GICD_ICFGR) * 4;
uint32_t value = 0;
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
*data = 0;
return MEMTX_OK;
}
/* Since our edge_trigger bitmap is one bit per irq, we only need
* half of the 32-bit word, which we can then spread out
* into the odd bits.
*/
value = *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f);
value &= mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
value = extract32(value, (irq & 0x1f) ? 16 : 0, 16);
value = half_shuffle32(value) << 1;
*data = value;
return MEMTX_OK;
}
case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
{
int irq;
if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
/* RAZ/WI if security disabled, or if
* security enabled and this is an NS access
*/
*data = 0;
return MEMTX_OK;
}
/* RAZ/WI for SGIs, PPIs, unimplemented irqs */
irq = (offset - GICD_IGRPMODR) * 8;
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
*data = 0;
return MEMTX_OK;
}
*data = *gic_bmp_ptr32(s->grpmod, irq);
return MEMTX_OK;
}
case GICD_NSACR ... GICD_NSACR + 0xff:
{
/* Two bits per interrupt */
int irq = (offset - GICD_NSACR) * 4;
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
*data = 0;
return MEMTX_OK;
}
if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
/* RAZ/WI if security disabled, or if
* security enabled and this is an NS access
*/
*data = 0;
return MEMTX_OK;
}
*data = s->gicd_nsacr[irq / 16];
return MEMTX_OK;
}
case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
/* RAZ/WI since affinity routing is always enabled */
*data = 0;
return MEMTX_OK;
case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
{
uint64_t r;
int irq = (offset - GICD_IROUTER) / 8;
r = gicd_read_irouter(s, attrs, irq);
if (offset & 7) {
*data = r >> 32;
} else {
*data = (uint32_t)r;
}
return MEMTX_OK;
}
case GICD_IDREGS ... GICD_IDREGS + 0x2f:
/* ID registers */
*data = gicv3_idreg(offset - GICD_IDREGS);
return MEMTX_OK;
case GICD_SGIR:
/* WO registers, return unknown value */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest read from WO register at offset "
TARGET_FMT_plx "\n", __func__, offset);
*data = 0;
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static MemTxResult gicd_writel(GICv3State *s, hwaddr offset,
uint64_t value, MemTxAttrs attrs)
{
/* Almost all GICv3 distributor registers are 32-bit. Note that
* RO registers must ignore writes, not abort.
*/
switch (offset) {
case GICD_CTLR:
{
uint32_t mask;
/* GICv3 5.3.20 */
if (s->gicd_ctlr & GICD_CTLR_DS) {
/* With only one security state, E1NWF is RAZ/WI, DS is RAO/WI,
* ARE is RAO/WI (affinity routing always on), and only
* bits 0 and 1 (group enables) are writable.
*/
mask = GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1NS;
} else {
if (attrs.secure) {
/* for secure access:
* ARE_NS and ARE_S are RAO/WI (affinity routing always on)
* E1NWF is RAZ/WI (we don't support enable-1-of-n-wakeup)
*
* We can only modify bits[2:0] (the group enables).
*/
mask = GICD_CTLR_DS | GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1_ALL;
} else {
/* For non secure access ARE_NS is RAO/WI and EnableGrp1
* is RES0. The only writable bit is [1] (EnableGrp1A), which
* is an alias of the Secure bit [1].
*/
mask = GICD_CTLR_EN_GRP1NS;
}
}
s->gicd_ctlr = (s->gicd_ctlr & ~mask) | (value & mask);
if (value & mask & GICD_CTLR_DS) {
/* We just set DS, so the ARE_NS and EnG1S bits are now RES0.
* Note that this is a one-way transition because if DS is set
* then it's not writeable, so it can only go back to 0 with a
* hardware reset.
*/
s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS);
}
gicv3_full_update(s);
return MEMTX_OK;
}
case GICD_STATUSR:
/* RAZ/WI for our implementation */
return MEMTX_OK;
case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
{
int irq;
if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
return MEMTX_OK;
}
/* RAZ/WI for SGIs, PPIs, unimplemented irqs */
irq = (offset - GICD_IGROUPR) * 8;
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return MEMTX_OK;
}
*gic_bmp_ptr32(s->group, irq) = value;
gicv3_update(s, irq, 32);
return MEMTX_OK;
}
case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL,
offset - GICD_ISENABLER, value);
return MEMTX_OK;
case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL,
offset - GICD_ICENABLER, value);
return MEMTX_OK;
case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
offset - GICD_ISPENDR, value);
return MEMTX_OK;
case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
offset - GICD_ICPENDR, value);
return MEMTX_OK;
case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
gicd_write_set_bitmap_reg(s, attrs, s->active, NULL,
offset - GICD_ISACTIVER, value);
return MEMTX_OK;
case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL,
offset - GICD_ICACTIVER, value);
return MEMTX_OK;
case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
{
int i, irq = offset - GICD_IPRIORITYR;
if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) {
return MEMTX_OK;
}
for (i = irq; i < irq + 4; i++, value >>= 8) {
gicd_write_ipriorityr(s, attrs, i, value);
}
gicv3_update(s, irq, 4);
return MEMTX_OK;
}
case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
/* RAZ/WI since affinity routing is always enabled */
return MEMTX_OK;
case GICD_ICFGR ... GICD_ICFGR + 0xff:
{
/* Here only the odd bits are used; even bits are RES0 */
int irq = (offset - GICD_ICFGR) * 4;
uint32_t mask, oldval;
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return MEMTX_OK;
}
/* Since our edge_trigger bitmap is one bit per irq, our input
* 32-bits will compress down into 16 bits which we need
* to write into the bitmap.
*/
value = half_unshuffle32(value >> 1);
mask = mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
if (irq & 0x1f) {
value <<= 16;
mask &= 0xffff0000U;
} else {
mask &= 0xffff;
}
oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f));
value = (oldval & ~mask) | (value & mask);
*gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value;
return MEMTX_OK;
}
case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
{
int irq;
if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
/* RAZ/WI if security disabled, or if
* security enabled and this is an NS access
*/
return MEMTX_OK;
}
/* RAZ/WI for SGIs, PPIs, unimplemented irqs */
irq = (offset - GICD_IGRPMODR) * 8;
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return MEMTX_OK;
}
*gic_bmp_ptr32(s->grpmod, irq) = value;
gicv3_update(s, irq, 32);
return MEMTX_OK;
}
case GICD_NSACR ... GICD_NSACR + 0xff:
{
/* Two bits per interrupt */
int irq = (offset - GICD_NSACR) * 4;
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return MEMTX_OK;
}
if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
/* RAZ/WI if security disabled, or if
* security enabled and this is an NS access
*/
return MEMTX_OK;
}
s->gicd_nsacr[irq / 16] = value;
/* No update required as this only affects access permission checks */
return MEMTX_OK;
}
case GICD_SGIR:
/* RES0 if affinity routing is enabled */
return MEMTX_OK;
case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
/* RAZ/WI since affinity routing is always enabled */
return MEMTX_OK;
case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
{
uint64_t r;
int irq = (offset - GICD_IROUTER) / 8;
if (irq < GIC_INTERNAL || irq >= s->num_irq) {
return MEMTX_OK;
}
/* Write half of the 64-bit register */
r = gicd_read_irouter(s, attrs, irq);
r = deposit64(r, (offset & 7) ? 32 : 0, 32, value);
gicd_write_irouter(s, attrs, irq, r);
return MEMTX_OK;
}
case GICD_IDREGS ... GICD_IDREGS + 0x2f:
case GICD_TYPER:
case GICD_IIDR:
/* RO registers, ignore the write */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write to RO register at offset "
TARGET_FMT_plx "\n", __func__, offset);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static MemTxResult gicd_writell(GICv3State *s, hwaddr offset,
uint64_t value, MemTxAttrs attrs)
{
/* Our only 64-bit registers are GICD_IROUTER<n> */
int irq;
switch (offset) {
case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
irq = (offset - GICD_IROUTER) / 8;
gicd_write_irouter(s, attrs, irq, value);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static MemTxResult gicd_readll(GICv3State *s, hwaddr offset,
uint64_t *data, MemTxAttrs attrs)
{
/* Our only 64-bit registers are GICD_IROUTER<n> */
int irq;
switch (offset) {
case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
irq = (offset - GICD_IROUTER) / 8;
*data = gicd_read_irouter(s, attrs, irq);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
GICv3State *s = (GICv3State *)opaque;
MemTxResult r;
switch (size) {
case 1:
r = gicd_readb(s, offset, data, attrs);
break;
case 2:
r = gicd_readw(s, offset, data, attrs);
break;
case 4:
r = gicd_readl(s, offset, data, attrs);
break;
case 8:
r = gicd_readll(s, offset, data, attrs);
break;
default:
r = MEMTX_ERROR;
break;
}
if (r == MEMTX_ERROR) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest read at offset " TARGET_FMT_plx
"size %u\n", __func__, offset, size);
trace_gicv3_dist_badread(offset, size, attrs.secure);
/* The spec requires that reserved registers are RAZ/WI;
* so use MEMTX_ERROR returns from leaf functions as a way to
* trigger the guest-error logging but don't return it to
* the caller, or we'll cause a spurious guest data abort.
*/
r = MEMTX_OK;
*data = 0;
} else {
trace_gicv3_dist_read(offset, *data, size, attrs.secure);
}
return r;
}
MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data,
unsigned size, MemTxAttrs attrs)
{
GICv3State *s = (GICv3State *)opaque;
MemTxResult r;
switch (size) {
case 1:
r = gicd_writeb(s, offset, data, attrs);
break;
case 2:
r = gicd_writew(s, offset, data, attrs);
break;
case 4:
r = gicd_writel(s, offset, data, attrs);
break;
case 8:
r = gicd_writell(s, offset, data, attrs);
break;
default:
r = MEMTX_ERROR;
break;
}
if (r == MEMTX_ERROR) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid guest write at offset " TARGET_FMT_plx
"size %u\n", __func__, offset, size);
trace_gicv3_dist_badwrite(offset, data, size, attrs.secure);
/* The spec requires that reserved registers are RAZ/WI;
* so use MEMTX_ERROR returns from leaf functions as a way to
* trigger the guest-error logging but don't return it to
* the caller, or we'll cause a spurious guest data abort.
*/
r = MEMTX_OK;
} else {
trace_gicv3_dist_write(offset, data, size, attrs.secure);
}
return r;
}
void gicv3_dist_set_irq(GICv3State *s, int irq, int level)
{
/* Update distributor state for a change in an external SPI input line */
if (level == gicv3_gicd_level_test(s, irq)) {
return;
}
trace_gicv3_dist_set_irq(irq, level);
gicv3_gicd_level_replace(s, irq, level);
if (level) {
/* 0->1 edges latch the pending bit for edge-triggered interrupts */
if (gicv3_gicd_edge_trigger_test(s, irq)) {
gicv3_gicd_pending_set(s, irq);
}
}
gicv3_update(s, irq, 1);
}