qemu-e2k/target-sparc/op.c
bellard 658138bcbc flush insn support
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@743 c046a42c-6fe2-441c-8c8c-71466251a162
2004-04-25 17:56:08 +00:00

690 lines
12 KiB
C

/*
SPARC micro operations
Copyright (C) 2003 Thomas M. Ogrisegg <tom@fnord.at>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exec.h"
/*XXX*/
#define REGNAME g0
#define REG (env->gregs[0])
#include "op_template.h"
#define REGNAME g1
#define REG (env->gregs[1])
#include "op_template.h"
#define REGNAME g2
#define REG (env->gregs[2])
#include "op_template.h"
#define REGNAME g3
#define REG (env->gregs[3])
#include "op_template.h"
#define REGNAME g4
#define REG (env->gregs[4])
#include "op_template.h"
#define REGNAME g5
#define REG (env->gregs[5])
#include "op_template.h"
#define REGNAME g6
#define REG (env->gregs[6])
#include "op_template.h"
#define REGNAME g7
#define REG (env->gregs[7])
#include "op_template.h"
#define REGNAME i0
#define REG (env->regwptr[16])
#include "op_template.h"
#define REGNAME i1
#define REG (env->regwptr[17])
#include "op_template.h"
#define REGNAME i2
#define REG (env->regwptr[18])
#include "op_template.h"
#define REGNAME i3
#define REG (env->regwptr[19])
#include "op_template.h"
#define REGNAME i4
#define REG (env->regwptr[20])
#include "op_template.h"
#define REGNAME i5
#define REG (env->regwptr[21])
#include "op_template.h"
#define REGNAME i6
#define REG (env->regwptr[22])
#include "op_template.h"
#define REGNAME i7
#define REG (env->regwptr[23])
#include "op_template.h"
#define REGNAME l0
#define REG (env->regwptr[8])
#include "op_template.h"
#define REGNAME l1
#define REG (env->regwptr[9])
#include "op_template.h"
#define REGNAME l2
#define REG (env->regwptr[10])
#include "op_template.h"
#define REGNAME l3
#define REG (env->regwptr[11])
#include "op_template.h"
#define REGNAME l4
#define REG (env->regwptr[12])
#include "op_template.h"
#define REGNAME l5
#define REG (env->regwptr[13])
#include "op_template.h"
#define REGNAME l6
#define REG (env->regwptr[14])
#include "op_template.h"
#define REGNAME l7
#define REG (env->regwptr[15])
#include "op_template.h"
#define REGNAME o0
#define REG (env->regwptr[0])
#include "op_template.h"
#define REGNAME o1
#define REG (env->regwptr[1])
#include "op_template.h"
#define REGNAME o2
#define REG (env->regwptr[2])
#include "op_template.h"
#define REGNAME o3
#define REG (env->regwptr[3])
#include "op_template.h"
#define REGNAME o4
#define REG (env->regwptr[4])
#include "op_template.h"
#define REGNAME o5
#define REG (env->regwptr[5])
#include "op_template.h"
#define REGNAME o6
#define REG (env->regwptr[6])
#include "op_template.h"
#define REGNAME o7
#define REG (env->regwptr[7])
#include "op_template.h"
#define EIP (env->pc)
#define FLAG_SET(x) (env->psr&x)?1:0
void OPPROTO op_movl_T0_0(void)
{
T0 = 0;
}
void OPPROTO op_movl_T0_1(void)
{
T0 = 1;
}
void OPPROTO op_movl_T0_im(void)
{
T0 = PARAM1;
}
void OPPROTO op_movl_T1_im(void)
{
T1 = PARAM1;
}
void OPPROTO op_movl_T2_im(void)
{
T2 = PARAM1;
}
void OPPROTO op_addl_T1_im(void)
{
T1 += PARAM1;
}
void OPPROTO op_addl_T1_T2(void)
{
T1 += T2;
}
void OPPROTO op_subl_T1_T2(void)
{
T1 -= T2;
}
void OPPROTO op_add_T1_T0(void)
{
T0 += T1;
}
void OPPROTO op_add_T1_T0_cc(void)
{
unsigned int src1;
src1 = T0;
T0 += T1;
env->psr = 0;
if (!T0)
env->psr |= PSR_ZERO;
if ((int) T0 < 0)
env->psr |= PSR_NEG;
if (T0 < src1)
env->psr |= PSR_CARRY;
if (((src1 ^ T1 ^ -1) & (src1 ^ T0)) & (1 << 31))
env->psr |= PSR_OVF;
FORCE_RET();
}
void OPPROTO op_sub_T1_T0(void)
{
T0 -= T1;
}
void OPPROTO op_sub_T1_T0_cc(void)
{
unsigned int src1;
src1 = T0;
T0 -= T1;
env->psr = 0;
if (!T0)
env->psr |= PSR_ZERO;
if ((int) T0 < 0)
env->psr |= PSR_NEG;
if (src1 < T1)
env->psr |= PSR_CARRY;
if (((src1 ^ T1) & (src1 ^ T0)) & (1 << 31))
env->psr |= PSR_OVF;
FORCE_RET();
}
void OPPROTO op_and_T1_T0(void)
{
T0 &= T1;
}
void OPPROTO op_or_T1_T0(void)
{
T0 |= T1;
}
void OPPROTO op_xor_T1_T0(void)
{
T0 ^= T1;
}
void OPPROTO op_andn_T1_T0(void)
{
T0 &= ~T1;
}
void OPPROTO op_orn_T1_T0(void)
{
T0 |= ~T1;
}
void OPPROTO op_xnor_T1_T0(void)
{
T0 ^= ~T1;
}
void OPPROTO op_addx_T1_T0(void)
{
T0 += T1 + ((env->psr & PSR_CARRY) ? 1 : 0);
}
void OPPROTO op_umul_T1_T0(void)
{
uint64_t res;
res = (uint64_t) T0 *(uint64_t) T1;
T0 = res & 0xffffffff;
env->y = res >> 32;
}
void OPPROTO op_smul_T1_T0(void)
{
uint64_t res;
res = (int64_t) ((int32_t) T0) * (int64_t) ((int32_t) T1);
T0 = res & 0xffffffff;
env->y = res >> 32;
}
void OPPROTO op_mulscc_T1_T0(void)
{
unsigned int b1, C, V, b2, src1;
C = FLAG_SET(PSR_CARRY);
V = FLAG_SET(PSR_OVF);
b1 = C ^ V;
b2 = T0 & 1;
T0 = (b1 << 31) | (T0 >> 1);
if (!(env->y & 1))
T1 = 0;
/* do addition and update flags */
src1 = T0;
T0 += T1;
env->psr = 0;
if (!T0)
env->psr |= PSR_ZERO;
if ((int) T0 < 0)
env->psr |= PSR_NEG;
if (T0 < src1)
env->psr |= PSR_CARRY;
if (((src1 ^ T1 ^ -1) & (src1 ^ T0)) & (1 << 31))
env->psr |= PSR_OVF;
env->y = (b2 << 31) | (env->y >> 1);
FORCE_RET();
}
void OPPROTO op_udiv_T1_T0(void)
{
uint64_t x0;
uint32_t x1;
x0 = T0 | ((uint64_t) (env->y) << 32);
x1 = T1;
x0 = x0 / x1;
if (x0 > 0xffffffff) {
T0 = 0xffffffff;
T1 = 1;
} else {
T0 = x0;
T1 = 0;
}
FORCE_RET();
}
void OPPROTO op_sdiv_T1_T0(void)
{
int64_t x0;
int32_t x1;
x0 = T0 | ((uint64_t) (env->y) << 32);
x1 = T1;
x0 = x0 / x1;
if ((int32_t) x0 != x0) {
T0 = x0 >> 63;
T1 = 1;
} else {
T0 = x0;
T1 = 0;
}
FORCE_RET();
}
void OPPROTO op_div_cc(void)
{
env->psr = 0;
if (!T0)
env->psr |= PSR_ZERO;
if ((int) T0 < 0)
env->psr |= PSR_NEG;
if (T1)
env->psr |= PSR_OVF;
FORCE_RET();
}
void OPPROTO op_subx_T1_T0(void)
{
T0 -= T1 + ((env->psr & PSR_CARRY) ? 1 : 0);
}
void OPPROTO op_logic_T0_cc(void)
{
env->psr = 0;
if (!T0)
env->psr |= PSR_ZERO;
if ((int) T0 < 0)
env->psr |= PSR_NEG;
FORCE_RET();
}
void OPPROTO op_set_flags(void)
{
env->psr = 0;
if (!T0)
env->psr |= PSR_ZERO;
if ((unsigned int) T0 < (unsigned int) T1)
env->psr |= PSR_CARRY;
if ((int) T0 < (int) T1)
env->psr |= PSR_OVF;
if ((int) T0 < 0)
env->psr |= PSR_NEG;
FORCE_RET();
}
void OPPROTO op_sll(void)
{
T0 <<= T1;
}
void OPPROTO op_srl(void)
{
T0 >>= T1;
}
void OPPROTO op_sra(void)
{
T0 = ((int32_t) T0) >> T1;
}
void OPPROTO op_st(void)
{
stl((void *) T0, T1);
}
void OPPROTO op_stb(void)
{
stb((void *) T0, T1);
}
void OPPROTO op_sth(void)
{
stw((void *) T0, T1);
}
void OPPROTO op_std(void)
{
stl((void *) T0, T1);
stl((void *) (T0 + 4), T2);
}
void OPPROTO op_ld(void)
{
T1 = ldl((void *) T0);
}
void OPPROTO op_ldub(void)
{
T1 = ldub((void *) T0);
}
void OPPROTO op_lduh(void)
{
T1 = lduw((void *) T0);
}
void OPPROTO op_ldsb(void)
{
T1 = ldsb((void *) T0);
}
void OPPROTO op_ldsh(void)
{
T1 = ldsw((void *) T0);
}
void OPPROTO op_ldstub(void)
{
T1 = ldub((void *) T0);
stb((void *) T0, 0xff); /* XXX: Should be Atomically */
}
void OPPROTO op_swap(void)
{
unsigned int tmp = ldl((void *) T0);
stl((void *) T0, T1); /* XXX: Should be Atomically */
T1 = tmp;
}
void OPPROTO op_ldd(void)
{
T1 = ldl((void *) T0);
T0 = ldl((void *) (T0 + 4));
}
void OPPROTO op_wry(void)
{
env->y = T0;
}
void OPPROTO op_rdy(void)
{
T0 = env->y;
}
void raise_exception(int tt)
{
env->exception_index = tt;
cpu_loop_exit();
}
void memcpy32(uint32_t *dst, const uint32_t *src)
{
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
}
static inline void set_cwp(int new_cwp)
{
/* put the modified wrap registers at their proper location */
if (env->cwp == (NWINDOWS - 1))
memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
env->cwp = new_cwp;
/* put the wrap registers at their temporary location */
if (new_cwp == (NWINDOWS - 1))
memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
env->regwptr = env->regbase + (new_cwp * 16);
}
/* XXX: use another pointer for %iN registers to avoid slow wrapping
handling ? */
void OPPROTO op_save(void)
{
int cwp;
cwp = (env->cwp - 1) & (NWINDOWS - 1);
if (env->wim & (1 << cwp)) {
raise_exception(TT_WIN_OVF);
}
set_cwp(cwp);
FORCE_RET();
}
void OPPROTO op_restore(void)
{
int cwp;
cwp = (env->cwp + 1) & (NWINDOWS - 1);
if (env->wim & (1 << cwp)) {
raise_exception(TT_WIN_UNF);
}
set_cwp(cwp);
FORCE_RET();
}
void OPPROTO op_exception(void)
{
env->exception_index = PARAM1;
cpu_loop_exit();
}
void OPPROTO op_trap_T0(void)
{
env->exception_index = TT_TRAP + (T0 & 0x7f);
cpu_loop_exit();
}
void OPPROTO op_trapcc_T0(void)
{
if (T2) {
env->exception_index = TT_TRAP + (T0 & 0x7f);
cpu_loop_exit();
}
FORCE_RET();
}
void OPPROTO op_exit_tb(void)
{
EXIT_TB();
}
void OPPROTO op_eval_be(void)
{
T2 = (env->psr & PSR_ZERO);
}
void OPPROTO op_eval_ble(void)
{
unsigned int Z = FLAG_SET(PSR_ZERO), N = FLAG_SET(PSR_NEG), V = FLAG_SET(PSR_OVF);
T2 = Z | (N ^ V);
}
void OPPROTO op_eval_bl(void)
{
unsigned int N = FLAG_SET(PSR_NEG), V = FLAG_SET(PSR_OVF);
T2 = N ^ V;
}
void OPPROTO op_eval_bleu(void)
{
unsigned int Z = FLAG_SET(PSR_ZERO), C = FLAG_SET(PSR_CARRY);
T2 = C | Z;
}
void OPPROTO op_eval_bcs(void)
{
T2 = (env->psr & PSR_CARRY);
}
void OPPROTO op_eval_bvs(void)
{
T2 = (env->psr & PSR_OVF);
}
void OPPROTO op_eval_bneg(void)
{
T2 = (env->psr & PSR_NEG);
}
void OPPROTO op_eval_bne(void)
{
T2 = !(env->psr & PSR_ZERO);
}
void OPPROTO op_eval_bg(void)
{
unsigned int Z = FLAG_SET(PSR_ZERO), N = FLAG_SET(PSR_NEG), V = FLAG_SET(PSR_OVF);
T2 = !(Z | (N ^ V));
}
void OPPROTO op_eval_bge(void)
{
unsigned int N = FLAG_SET(PSR_NEG), V = FLAG_SET(PSR_OVF);
T2 = !(N ^ V);
}
void OPPROTO op_eval_bgu(void)
{
unsigned int Z = FLAG_SET(PSR_ZERO), C = FLAG_SET(PSR_CARRY);
T2 = !(C | Z);
}
void OPPROTO op_eval_bcc(void)
{
T2 = !(env->psr & PSR_CARRY);
}
void OPPROTO op_eval_bpos(void)
{
T2 = !(env->psr & PSR_NEG);
}
void OPPROTO op_eval_bvc(void)
{
T2 = !(env->psr & PSR_OVF);
}
void OPPROTO op_movl_T2_0(void)
{
T2 = 0;
}
void OPPROTO op_movl_T2_1(void)
{
T2 = 1;
}
void OPPROTO op_jmp_im(void)
{
env->pc = PARAM1;
}
void OPPROTO op_movl_npc_im(void)
{
env->npc = PARAM1;
}
void OPPROTO op_movl_npc_T0(void)
{
env->npc = T0;
}
void OPPROTO op_next_insn(void)
{
env->pc = env->npc;
env->npc = env->npc + 4;
}
void OPPROTO op_branch(void)
{
env->npc = PARAM3; /* XXX: optimize */
JUMP_TB(op_branch, PARAM1, 0, PARAM2);
}
void OPPROTO op_branch2(void)
{
if (T2) {
env->npc = PARAM2 + 4;
JUMP_TB(op_branch2, PARAM1, 0, PARAM2);
} else {
env->npc = PARAM3 + 4;
JUMP_TB(op_branch2, PARAM1, 1, PARAM3);
}
FORCE_RET();
}
void OPPROTO op_branch_a(void)
{
if (T2) {
env->npc = PARAM2; /* XXX: optimize */
JUMP_TB(op_generic_branch_a, PARAM1, 0, PARAM3);
} else {
env->npc = PARAM3 + 8; /* XXX: optimize */
JUMP_TB(op_generic_branch_a, PARAM1, 1, PARAM3 + 4);
}
FORCE_RET();
}
void OPPROTO op_generic_branch(void)
{
if (T2) {
env->npc = PARAM1;
} else {
env->npc = PARAM2;
}
FORCE_RET();
}
void OPPROTO op_flush_T0(void)
{
helper_flush(T0);
}