qemu-e2k/hw/scsi/vmw_pvscsi.c
Peter Maydell 739e95f574 scsi: Replace scsi_bus_new() with scsi_bus_init(), scsi_bus_init_named()
The function scsi_bus_new() creates a new SCSI bus; callers can
either pass in a name argument to specify the name of the new bus, or
they can pass in NULL to allow the bus to be given an automatically
generated unique name.  Almost all callers want to use the
autogenerated name; the only exception is the virtio-scsi device.

Taking a name argument that should almost always be NULL is an
easy-to-misuse API design -- it encourages callers to think perhaps
they should pass in some standard name like "scsi" or "scsi-bus".  We
don't do this anywhere for SCSI, but we do (incorrectly) do it for
other bus types such as i2c.

The function name also implies that it will return a newly allocated
object, when it in fact does in-place allocation.  We more commonly
name such functions foo_init(), with foo_new() being the
allocate-and-return variant.

Replace all the scsi_bus_new() callsites with either:
 * scsi_bus_init() for the usual case where the caller wants
   an autogenerated bus name
 * scsi_bus_init_named() for the rare case where the caller
   needs to specify the bus name

and document that for the _named() version it's then the caller's
responsibility to think about uniqueness of bus names.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 20210923121153.23754-2-peter.maydell@linaro.org
2021-09-30 13:42:10 +01:00

1358 lines
38 KiB
C

/*
* QEMU VMWARE PVSCSI paravirtual SCSI bus
*
* Copyright (c) 2012 Ravello Systems LTD (http://ravellosystems.com)
*
* Developed by Daynix Computing LTD (http://www.daynix.com)
*
* Based on implementation by Paolo Bonzini
* http://lists.gnu.org/archive/html/qemu-devel/2011-08/msg00729.html
*
* Authors:
* Paolo Bonzini <pbonzini@redhat.com>
* Dmitry Fleytman <dmitry@daynix.com>
* Yan Vugenfirer <yan@daynix.com>
*
* This work is licensed under the terms of the GNU GPL, version 2.
* See the COPYING file in the top-level directory.
*
* NOTE about MSI-X:
* MSI-X support has been removed for the moment because it leads Windows OS
* to crash on startup. The crash happens because Windows driver requires
* MSI-X shared memory to be part of the same BAR used for rings state
* registers, etc. This is not supported by QEMU infrastructure so separate
* BAR created from MSI-X purposes. Windows driver fails to deal with 2 BARs.
*
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/main-loop.h"
#include "qemu/module.h"
#include "hw/scsi/scsi.h"
#include "migration/vmstate.h"
#include "scsi/constants.h"
#include "hw/pci/msi.h"
#include "hw/qdev-properties.h"
#include "vmw_pvscsi.h"
#include "trace.h"
#include "qom/object.h"
#define PVSCSI_USE_64BIT (true)
#define PVSCSI_PER_VECTOR_MASK (false)
#define PVSCSI_MAX_DEVS (64)
#define PVSCSI_MSIX_NUM_VECTORS (1)
#define PVSCSI_MAX_SG_ELEM 2048
#define PVSCSI_MAX_CMD_DATA_WORDS \
(sizeof(PVSCSICmdDescSetupRings)/sizeof(uint32_t))
#define RS_GET_FIELD(m, field) \
(ldl_le_pci_dma(&container_of(m, PVSCSIState, rings)->parent_obj, \
(m)->rs_pa + offsetof(struct PVSCSIRingsState, field)))
#define RS_SET_FIELD(m, field, val) \
(stl_le_pci_dma(&container_of(m, PVSCSIState, rings)->parent_obj, \
(m)->rs_pa + offsetof(struct PVSCSIRingsState, field), val))
struct PVSCSIClass {
PCIDeviceClass parent_class;
DeviceRealize parent_dc_realize;
};
#define TYPE_PVSCSI "pvscsi"
OBJECT_DECLARE_TYPE(PVSCSIState, PVSCSIClass, PVSCSI)
/* Compatibility flags for migration */
#define PVSCSI_COMPAT_OLD_PCI_CONFIGURATION_BIT 0
#define PVSCSI_COMPAT_OLD_PCI_CONFIGURATION \
(1 << PVSCSI_COMPAT_OLD_PCI_CONFIGURATION_BIT)
#define PVSCSI_COMPAT_DISABLE_PCIE_BIT 1
#define PVSCSI_COMPAT_DISABLE_PCIE \
(1 << PVSCSI_COMPAT_DISABLE_PCIE_BIT)
#define PVSCSI_USE_OLD_PCI_CONFIGURATION(s) \
((s)->compat_flags & PVSCSI_COMPAT_OLD_PCI_CONFIGURATION)
#define PVSCSI_MSI_OFFSET(s) \
(PVSCSI_USE_OLD_PCI_CONFIGURATION(s) ? 0x50 : 0x7c)
#define PVSCSI_EXP_EP_OFFSET (0x40)
typedef struct PVSCSIRingInfo {
uint64_t rs_pa;
uint32_t txr_len_mask;
uint32_t rxr_len_mask;
uint32_t msg_len_mask;
uint64_t req_ring_pages_pa[PVSCSI_SETUP_RINGS_MAX_NUM_PAGES];
uint64_t cmp_ring_pages_pa[PVSCSI_SETUP_RINGS_MAX_NUM_PAGES];
uint64_t msg_ring_pages_pa[PVSCSI_SETUP_MSG_RING_MAX_NUM_PAGES];
uint64_t consumed_ptr;
uint64_t filled_cmp_ptr;
uint64_t filled_msg_ptr;
} PVSCSIRingInfo;
typedef struct PVSCSISGState {
hwaddr elemAddr;
hwaddr dataAddr;
uint32_t resid;
} PVSCSISGState;
typedef QTAILQ_HEAD(, PVSCSIRequest) PVSCSIRequestList;
struct PVSCSIState {
PCIDevice parent_obj;
MemoryRegion io_space;
SCSIBus bus;
QEMUBH *completion_worker;
PVSCSIRequestList pending_queue;
PVSCSIRequestList completion_queue;
uint64_t reg_interrupt_status; /* Interrupt status register value */
uint64_t reg_interrupt_enabled; /* Interrupt mask register value */
uint64_t reg_command_status; /* Command status register value */
/* Command data adoption mechanism */
uint64_t curr_cmd; /* Last command arrived */
uint32_t curr_cmd_data_cntr; /* Amount of data for last command */
/* Collector for current command data */
uint32_t curr_cmd_data[PVSCSI_MAX_CMD_DATA_WORDS];
uint8_t rings_info_valid; /* Whether data rings initialized */
uint8_t msg_ring_info_valid; /* Whether message ring initialized */
uint8_t use_msg; /* Whether to use message ring */
uint8_t msi_used; /* For migration compatibility */
PVSCSIRingInfo rings; /* Data transfer rings manager */
uint32_t resetting; /* Reset in progress */
uint32_t compat_flags;
};
typedef struct PVSCSIRequest {
SCSIRequest *sreq;
PVSCSIState *dev;
uint8_t sense_key;
uint8_t completed;
int lun;
QEMUSGList sgl;
PVSCSISGState sg;
struct PVSCSIRingReqDesc req;
struct PVSCSIRingCmpDesc cmp;
QTAILQ_ENTRY(PVSCSIRequest) next;
} PVSCSIRequest;
/* Integer binary logarithm */
static int
pvscsi_log2(uint32_t input)
{
int log = 0;
assert(input > 0);
while (input >> ++log) {
}
return log;
}
static void
pvscsi_ring_init_data(PVSCSIRingInfo *m, PVSCSICmdDescSetupRings *ri)
{
int i;
uint32_t txr_len_log2, rxr_len_log2;
uint32_t req_ring_size, cmp_ring_size;
m->rs_pa = ri->ringsStatePPN << VMW_PAGE_SHIFT;
req_ring_size = ri->reqRingNumPages * PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE;
cmp_ring_size = ri->cmpRingNumPages * PVSCSI_MAX_NUM_CMP_ENTRIES_PER_PAGE;
txr_len_log2 = pvscsi_log2(req_ring_size - 1);
rxr_len_log2 = pvscsi_log2(cmp_ring_size - 1);
m->txr_len_mask = MASK(txr_len_log2);
m->rxr_len_mask = MASK(rxr_len_log2);
m->consumed_ptr = 0;
m->filled_cmp_ptr = 0;
for (i = 0; i < ri->reqRingNumPages; i++) {
m->req_ring_pages_pa[i] = ri->reqRingPPNs[i] << VMW_PAGE_SHIFT;
}
for (i = 0; i < ri->cmpRingNumPages; i++) {
m->cmp_ring_pages_pa[i] = ri->cmpRingPPNs[i] << VMW_PAGE_SHIFT;
}
RS_SET_FIELD(m, reqProdIdx, 0);
RS_SET_FIELD(m, reqConsIdx, 0);
RS_SET_FIELD(m, reqNumEntriesLog2, txr_len_log2);
RS_SET_FIELD(m, cmpProdIdx, 0);
RS_SET_FIELD(m, cmpConsIdx, 0);
RS_SET_FIELD(m, cmpNumEntriesLog2, rxr_len_log2);
trace_pvscsi_ring_init_data(txr_len_log2, rxr_len_log2);
/* Flush ring state page changes */
smp_wmb();
}
static int
pvscsi_ring_init_msg(PVSCSIRingInfo *m, PVSCSICmdDescSetupMsgRing *ri)
{
int i;
uint32_t len_log2;
uint32_t ring_size;
if (!ri->numPages || ri->numPages > PVSCSI_SETUP_MSG_RING_MAX_NUM_PAGES) {
return -1;
}
ring_size = ri->numPages * PVSCSI_MAX_NUM_MSG_ENTRIES_PER_PAGE;
len_log2 = pvscsi_log2(ring_size - 1);
m->msg_len_mask = MASK(len_log2);
m->filled_msg_ptr = 0;
for (i = 0; i < ri->numPages; i++) {
m->msg_ring_pages_pa[i] = ri->ringPPNs[i] << VMW_PAGE_SHIFT;
}
RS_SET_FIELD(m, msgProdIdx, 0);
RS_SET_FIELD(m, msgConsIdx, 0);
RS_SET_FIELD(m, msgNumEntriesLog2, len_log2);
trace_pvscsi_ring_init_msg(len_log2);
/* Flush ring state page changes */
smp_wmb();
return 0;
}
static void
pvscsi_ring_cleanup(PVSCSIRingInfo *mgr)
{
mgr->rs_pa = 0;
mgr->txr_len_mask = 0;
mgr->rxr_len_mask = 0;
mgr->msg_len_mask = 0;
mgr->consumed_ptr = 0;
mgr->filled_cmp_ptr = 0;
mgr->filled_msg_ptr = 0;
memset(mgr->req_ring_pages_pa, 0, sizeof(mgr->req_ring_pages_pa));
memset(mgr->cmp_ring_pages_pa, 0, sizeof(mgr->cmp_ring_pages_pa));
memset(mgr->msg_ring_pages_pa, 0, sizeof(mgr->msg_ring_pages_pa));
}
static hwaddr
pvscsi_ring_pop_req_descr(PVSCSIRingInfo *mgr)
{
uint32_t ready_ptr = RS_GET_FIELD(mgr, reqProdIdx);
uint32_t ring_size = PVSCSI_MAX_NUM_PAGES_REQ_RING
* PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE;
if (ready_ptr != mgr->consumed_ptr
&& ready_ptr - mgr->consumed_ptr < ring_size) {
uint32_t next_ready_ptr =
mgr->consumed_ptr++ & mgr->txr_len_mask;
uint32_t next_ready_page =
next_ready_ptr / PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE;
uint32_t inpage_idx =
next_ready_ptr % PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE;
return mgr->req_ring_pages_pa[next_ready_page] +
inpage_idx * sizeof(PVSCSIRingReqDesc);
} else {
return 0;
}
}
static void
pvscsi_ring_flush_req(PVSCSIRingInfo *mgr)
{
RS_SET_FIELD(mgr, reqConsIdx, mgr->consumed_ptr);
}
static hwaddr
pvscsi_ring_pop_cmp_descr(PVSCSIRingInfo *mgr)
{
/*
* According to Linux driver code it explicitly verifies that number
* of requests being processed by device is less then the size of
* completion queue, so device may omit completion queue overflow
* conditions check. We assume that this is true for other (Windows)
* drivers as well.
*/
uint32_t free_cmp_ptr =
mgr->filled_cmp_ptr++ & mgr->rxr_len_mask;
uint32_t free_cmp_page =
free_cmp_ptr / PVSCSI_MAX_NUM_CMP_ENTRIES_PER_PAGE;
uint32_t inpage_idx =
free_cmp_ptr % PVSCSI_MAX_NUM_CMP_ENTRIES_PER_PAGE;
return mgr->cmp_ring_pages_pa[free_cmp_page] +
inpage_idx * sizeof(PVSCSIRingCmpDesc);
}
static hwaddr
pvscsi_ring_pop_msg_descr(PVSCSIRingInfo *mgr)
{
uint32_t free_msg_ptr =
mgr->filled_msg_ptr++ & mgr->msg_len_mask;
uint32_t free_msg_page =
free_msg_ptr / PVSCSI_MAX_NUM_MSG_ENTRIES_PER_PAGE;
uint32_t inpage_idx =
free_msg_ptr % PVSCSI_MAX_NUM_MSG_ENTRIES_PER_PAGE;
return mgr->msg_ring_pages_pa[free_msg_page] +
inpage_idx * sizeof(PVSCSIRingMsgDesc);
}
static void
pvscsi_ring_flush_cmp(PVSCSIRingInfo *mgr)
{
/* Flush descriptor changes */
smp_wmb();
trace_pvscsi_ring_flush_cmp(mgr->filled_cmp_ptr);
RS_SET_FIELD(mgr, cmpProdIdx, mgr->filled_cmp_ptr);
}
static bool
pvscsi_ring_msg_has_room(PVSCSIRingInfo *mgr)
{
uint32_t prodIdx = RS_GET_FIELD(mgr, msgProdIdx);
uint32_t consIdx = RS_GET_FIELD(mgr, msgConsIdx);
return (prodIdx - consIdx) < (mgr->msg_len_mask + 1);
}
static void
pvscsi_ring_flush_msg(PVSCSIRingInfo *mgr)
{
/* Flush descriptor changes */
smp_wmb();
trace_pvscsi_ring_flush_msg(mgr->filled_msg_ptr);
RS_SET_FIELD(mgr, msgProdIdx, mgr->filled_msg_ptr);
}
static void
pvscsi_reset_state(PVSCSIState *s)
{
s->curr_cmd = PVSCSI_CMD_FIRST;
s->curr_cmd_data_cntr = 0;
s->reg_command_status = PVSCSI_COMMAND_PROCESSING_SUCCEEDED;
s->reg_interrupt_status = 0;
pvscsi_ring_cleanup(&s->rings);
s->rings_info_valid = FALSE;
s->msg_ring_info_valid = FALSE;
QTAILQ_INIT(&s->pending_queue);
QTAILQ_INIT(&s->completion_queue);
}
static void
pvscsi_update_irq_status(PVSCSIState *s)
{
PCIDevice *d = PCI_DEVICE(s);
bool should_raise = s->reg_interrupt_enabled & s->reg_interrupt_status;
trace_pvscsi_update_irq_level(should_raise, s->reg_interrupt_enabled,
s->reg_interrupt_status);
if (msi_enabled(d)) {
if (should_raise) {
trace_pvscsi_update_irq_msi();
msi_notify(d, PVSCSI_VECTOR_COMPLETION);
}
return;
}
pci_set_irq(d, !!should_raise);
}
static void
pvscsi_raise_completion_interrupt(PVSCSIState *s)
{
s->reg_interrupt_status |= PVSCSI_INTR_CMPL_0;
/* Memory barrier to flush interrupt status register changes*/
smp_wmb();
pvscsi_update_irq_status(s);
}
static void
pvscsi_raise_message_interrupt(PVSCSIState *s)
{
s->reg_interrupt_status |= PVSCSI_INTR_MSG_0;
/* Memory barrier to flush interrupt status register changes*/
smp_wmb();
pvscsi_update_irq_status(s);
}
static void
pvscsi_cmp_ring_put(PVSCSIState *s, struct PVSCSIRingCmpDesc *cmp_desc)
{
hwaddr cmp_descr_pa;
cmp_descr_pa = pvscsi_ring_pop_cmp_descr(&s->rings);
trace_pvscsi_cmp_ring_put(cmp_descr_pa);
cpu_physical_memory_write(cmp_descr_pa, cmp_desc, sizeof(*cmp_desc));
}
static void
pvscsi_msg_ring_put(PVSCSIState *s, struct PVSCSIRingMsgDesc *msg_desc)
{
hwaddr msg_descr_pa;
msg_descr_pa = pvscsi_ring_pop_msg_descr(&s->rings);
trace_pvscsi_msg_ring_put(msg_descr_pa);
cpu_physical_memory_write(msg_descr_pa, msg_desc, sizeof(*msg_desc));
}
static void
pvscsi_process_completion_queue(void *opaque)
{
PVSCSIState *s = opaque;
PVSCSIRequest *pvscsi_req;
bool has_completed = false;
while (!QTAILQ_EMPTY(&s->completion_queue)) {
pvscsi_req = QTAILQ_FIRST(&s->completion_queue);
QTAILQ_REMOVE(&s->completion_queue, pvscsi_req, next);
pvscsi_cmp_ring_put(s, &pvscsi_req->cmp);
g_free(pvscsi_req);
has_completed = true;
}
if (has_completed) {
pvscsi_ring_flush_cmp(&s->rings);
pvscsi_raise_completion_interrupt(s);
}
}
static void
pvscsi_reset_adapter(PVSCSIState *s)
{
s->resetting++;
qbus_reset_all(BUS(&s->bus));
s->resetting--;
pvscsi_process_completion_queue(s);
assert(QTAILQ_EMPTY(&s->pending_queue));
pvscsi_reset_state(s);
}
static void
pvscsi_schedule_completion_processing(PVSCSIState *s)
{
/* Try putting more complete requests on the ring. */
if (!QTAILQ_EMPTY(&s->completion_queue)) {
qemu_bh_schedule(s->completion_worker);
}
}
static void
pvscsi_complete_request(PVSCSIState *s, PVSCSIRequest *r)
{
assert(!r->completed);
trace_pvscsi_complete_request(r->cmp.context, r->cmp.dataLen,
r->sense_key);
if (r->sreq != NULL) {
scsi_req_unref(r->sreq);
r->sreq = NULL;
}
r->completed = 1;
QTAILQ_REMOVE(&s->pending_queue, r, next);
QTAILQ_INSERT_TAIL(&s->completion_queue, r, next);
pvscsi_schedule_completion_processing(s);
}
static QEMUSGList *pvscsi_get_sg_list(SCSIRequest *r)
{
PVSCSIRequest *req = r->hba_private;
trace_pvscsi_get_sg_list(req->sgl.nsg, req->sgl.size);
return &req->sgl;
}
static void
pvscsi_get_next_sg_elem(PVSCSISGState *sg)
{
struct PVSCSISGElement elem;
cpu_physical_memory_read(sg->elemAddr, &elem, sizeof(elem));
if ((elem.flags & ~PVSCSI_KNOWN_FLAGS) != 0) {
/*
* There is PVSCSI_SGE_FLAG_CHAIN_ELEMENT flag described in
* header file but its value is unknown. This flag requires
* additional processing, so we put warning here to catch it
* some day and make proper implementation
*/
trace_pvscsi_get_next_sg_elem(elem.flags);
}
sg->elemAddr += sizeof(elem);
sg->dataAddr = elem.addr;
sg->resid = elem.length;
}
static void
pvscsi_write_sense(PVSCSIRequest *r, uint8_t *sense, int len)
{
r->cmp.senseLen = MIN(r->req.senseLen, len);
r->sense_key = sense[(sense[0] & 2) ? 1 : 2];
cpu_physical_memory_write(r->req.senseAddr, sense, r->cmp.senseLen);
}
static void
pvscsi_command_failed(SCSIRequest *req)
{
PVSCSIRequest *pvscsi_req = req->hba_private;
PVSCSIState *s;
if (!pvscsi_req) {
trace_pvscsi_command_complete_not_found(req->tag);
return;
}
s = pvscsi_req->dev;
switch (req->host_status) {
case SCSI_HOST_NO_LUN:
pvscsi_req->cmp.hostStatus = BTSTAT_LUNMISMATCH;
break;
case SCSI_HOST_BUSY:
pvscsi_req->cmp.hostStatus = BTSTAT_ABORTQUEUE;
break;
case SCSI_HOST_TIME_OUT:
case SCSI_HOST_ABORTED:
pvscsi_req->cmp.hostStatus = BTSTAT_SENTRST;
break;
case SCSI_HOST_BAD_RESPONSE:
pvscsi_req->cmp.hostStatus = BTSTAT_SELTIMEO;
break;
case SCSI_HOST_RESET:
pvscsi_req->cmp.hostStatus = BTSTAT_BUSRESET;
break;
default:
pvscsi_req->cmp.hostStatus = BTSTAT_HASOFTWARE;
break;
}
pvscsi_req->cmp.scsiStatus = GOOD;
qemu_sglist_destroy(&pvscsi_req->sgl);
pvscsi_complete_request(s, pvscsi_req);
}
static void
pvscsi_command_complete(SCSIRequest *req, size_t resid)
{
PVSCSIRequest *pvscsi_req = req->hba_private;
PVSCSIState *s;
if (!pvscsi_req) {
trace_pvscsi_command_complete_not_found(req->tag);
return;
}
s = pvscsi_req->dev;
if (resid) {
/* Short transfer. */
trace_pvscsi_command_complete_data_run();
pvscsi_req->cmp.hostStatus = BTSTAT_DATARUN;
}
pvscsi_req->cmp.scsiStatus = req->status;
if (pvscsi_req->cmp.scsiStatus == CHECK_CONDITION) {
uint8_t sense[SCSI_SENSE_BUF_SIZE];
int sense_len =
scsi_req_get_sense(pvscsi_req->sreq, sense, sizeof(sense));
trace_pvscsi_command_complete_sense_len(sense_len);
pvscsi_write_sense(pvscsi_req, sense, sense_len);
}
qemu_sglist_destroy(&pvscsi_req->sgl);
pvscsi_complete_request(s, pvscsi_req);
}
static void
pvscsi_send_msg(PVSCSIState *s, SCSIDevice *dev, uint32_t msg_type)
{
if (s->msg_ring_info_valid && pvscsi_ring_msg_has_room(&s->rings)) {
PVSCSIMsgDescDevStatusChanged msg = {0};
msg.type = msg_type;
msg.bus = dev->channel;
msg.target = dev->id;
msg.lun[1] = dev->lun;
pvscsi_msg_ring_put(s, (PVSCSIRingMsgDesc *)&msg);
pvscsi_ring_flush_msg(&s->rings);
pvscsi_raise_message_interrupt(s);
}
}
static void
pvscsi_hotplug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp)
{
PVSCSIState *s = PVSCSI(hotplug_dev);
pvscsi_send_msg(s, SCSI_DEVICE(dev), PVSCSI_MSG_DEV_ADDED);
}
static void
pvscsi_hot_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp)
{
PVSCSIState *s = PVSCSI(hotplug_dev);
pvscsi_send_msg(s, SCSI_DEVICE(dev), PVSCSI_MSG_DEV_REMOVED);
qdev_simple_device_unplug_cb(hotplug_dev, dev, errp);
}
static void
pvscsi_request_cancelled(SCSIRequest *req)
{
PVSCSIRequest *pvscsi_req = req->hba_private;
PVSCSIState *s = pvscsi_req->dev;
if (pvscsi_req->completed) {
return;
}
if (pvscsi_req->dev->resetting) {
pvscsi_req->cmp.hostStatus = BTSTAT_BUSRESET;
} else {
pvscsi_req->cmp.hostStatus = BTSTAT_ABORTQUEUE;
}
pvscsi_complete_request(s, pvscsi_req);
}
static SCSIDevice*
pvscsi_device_find(PVSCSIState *s, int channel, int target,
uint8_t *requested_lun, uint8_t *target_lun)
{
if (requested_lun[0] || requested_lun[2] || requested_lun[3] ||
requested_lun[4] || requested_lun[5] || requested_lun[6] ||
requested_lun[7] || (target > PVSCSI_MAX_DEVS)) {
return NULL;
} else {
*target_lun = requested_lun[1];
return scsi_device_find(&s->bus, channel, target, *target_lun);
}
}
static PVSCSIRequest *
pvscsi_queue_pending_descriptor(PVSCSIState *s, SCSIDevice **d,
struct PVSCSIRingReqDesc *descr)
{
PVSCSIRequest *pvscsi_req;
uint8_t lun;
pvscsi_req = g_malloc0(sizeof(*pvscsi_req));
pvscsi_req->dev = s;
pvscsi_req->req = *descr;
pvscsi_req->cmp.context = pvscsi_req->req.context;
QTAILQ_INSERT_TAIL(&s->pending_queue, pvscsi_req, next);
*d = pvscsi_device_find(s, descr->bus, descr->target, descr->lun, &lun);
if (*d) {
pvscsi_req->lun = lun;
}
return pvscsi_req;
}
static void
pvscsi_convert_sglist(PVSCSIRequest *r)
{
uint32_t chunk_size, elmcnt = 0;
uint64_t data_length = r->req.dataLen;
PVSCSISGState sg = r->sg;
while (data_length && elmcnt < PVSCSI_MAX_SG_ELEM) {
while (!sg.resid && elmcnt++ < PVSCSI_MAX_SG_ELEM) {
pvscsi_get_next_sg_elem(&sg);
trace_pvscsi_convert_sglist(r->req.context, r->sg.dataAddr,
r->sg.resid);
}
chunk_size = MIN(data_length, sg.resid);
if (chunk_size) {
qemu_sglist_add(&r->sgl, sg.dataAddr, chunk_size);
}
sg.dataAddr += chunk_size;
data_length -= chunk_size;
sg.resid -= chunk_size;
}
}
static void
pvscsi_build_sglist(PVSCSIState *s, PVSCSIRequest *r)
{
PCIDevice *d = PCI_DEVICE(s);
pci_dma_sglist_init(&r->sgl, d, 1);
if (r->req.flags & PVSCSI_FLAG_CMD_WITH_SG_LIST) {
pvscsi_convert_sglist(r);
} else {
qemu_sglist_add(&r->sgl, r->req.dataAddr, r->req.dataLen);
}
}
static void
pvscsi_process_request_descriptor(PVSCSIState *s,
struct PVSCSIRingReqDesc *descr)
{
SCSIDevice *d;
PVSCSIRequest *r = pvscsi_queue_pending_descriptor(s, &d, descr);
int64_t n;
trace_pvscsi_process_req_descr(descr->cdb[0], descr->context);
if (!d) {
r->cmp.hostStatus = BTSTAT_SELTIMEO;
trace_pvscsi_process_req_descr_unknown_device();
pvscsi_complete_request(s, r);
return;
}
if (descr->flags & PVSCSI_FLAG_CMD_WITH_SG_LIST) {
r->sg.elemAddr = descr->dataAddr;
}
r->sreq = scsi_req_new(d, descr->context, r->lun, descr->cdb, r);
if (r->sreq->cmd.mode == SCSI_XFER_FROM_DEV &&
(descr->flags & PVSCSI_FLAG_CMD_DIR_TODEVICE)) {
r->cmp.hostStatus = BTSTAT_BADMSG;
trace_pvscsi_process_req_descr_invalid_dir();
scsi_req_cancel(r->sreq);
return;
}
if (r->sreq->cmd.mode == SCSI_XFER_TO_DEV &&
(descr->flags & PVSCSI_FLAG_CMD_DIR_TOHOST)) {
r->cmp.hostStatus = BTSTAT_BADMSG;
trace_pvscsi_process_req_descr_invalid_dir();
scsi_req_cancel(r->sreq);
return;
}
pvscsi_build_sglist(s, r);
n = scsi_req_enqueue(r->sreq);
if (n) {
scsi_req_continue(r->sreq);
}
}
static void
pvscsi_process_io(PVSCSIState *s)
{
PVSCSIRingReqDesc descr;
hwaddr next_descr_pa;
if (!s->rings_info_valid) {
return;
}
while ((next_descr_pa = pvscsi_ring_pop_req_descr(&s->rings)) != 0) {
/* Only read after production index verification */
smp_rmb();
trace_pvscsi_process_io(next_descr_pa);
cpu_physical_memory_read(next_descr_pa, &descr, sizeof(descr));
pvscsi_process_request_descriptor(s, &descr);
}
pvscsi_ring_flush_req(&s->rings);
}
static void
pvscsi_dbg_dump_tx_rings_config(PVSCSICmdDescSetupRings *rc)
{
int i;
trace_pvscsi_tx_rings_ppn("Rings State", rc->ringsStatePPN);
trace_pvscsi_tx_rings_num_pages("Request Ring", rc->reqRingNumPages);
for (i = 0; i < rc->reqRingNumPages; i++) {
trace_pvscsi_tx_rings_ppn("Request Ring", rc->reqRingPPNs[i]);
}
trace_pvscsi_tx_rings_num_pages("Confirm Ring", rc->cmpRingNumPages);
for (i = 0; i < rc->cmpRingNumPages; i++) {
trace_pvscsi_tx_rings_ppn("Confirm Ring", rc->cmpRingPPNs[i]);
}
}
static uint64_t
pvscsi_on_cmd_config(PVSCSIState *s)
{
trace_pvscsi_on_cmd_noimpl("PVSCSI_CMD_CONFIG");
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
static uint64_t
pvscsi_on_cmd_unplug(PVSCSIState *s)
{
trace_pvscsi_on_cmd_noimpl("PVSCSI_CMD_DEVICE_UNPLUG");
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
static uint64_t
pvscsi_on_issue_scsi(PVSCSIState *s)
{
trace_pvscsi_on_cmd_noimpl("PVSCSI_CMD_ISSUE_SCSI");
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
static uint64_t
pvscsi_on_cmd_setup_rings(PVSCSIState *s)
{
PVSCSICmdDescSetupRings *rc =
(PVSCSICmdDescSetupRings *) s->curr_cmd_data;
trace_pvscsi_on_cmd_arrived("PVSCSI_CMD_SETUP_RINGS");
if (!rc->reqRingNumPages
|| rc->reqRingNumPages > PVSCSI_SETUP_RINGS_MAX_NUM_PAGES
|| !rc->cmpRingNumPages
|| rc->cmpRingNumPages > PVSCSI_SETUP_RINGS_MAX_NUM_PAGES) {
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
pvscsi_dbg_dump_tx_rings_config(rc);
pvscsi_ring_init_data(&s->rings, rc);
s->rings_info_valid = TRUE;
return PVSCSI_COMMAND_PROCESSING_SUCCEEDED;
}
static uint64_t
pvscsi_on_cmd_abort(PVSCSIState *s)
{
PVSCSICmdDescAbortCmd *cmd = (PVSCSICmdDescAbortCmd *) s->curr_cmd_data;
PVSCSIRequest *r, *next;
trace_pvscsi_on_cmd_abort(cmd->context, cmd->target);
QTAILQ_FOREACH_SAFE(r, &s->pending_queue, next, next) {
if (r->req.context == cmd->context) {
break;
}
}
if (r) {
assert(!r->completed);
r->cmp.hostStatus = BTSTAT_ABORTQUEUE;
scsi_req_cancel(r->sreq);
}
return PVSCSI_COMMAND_PROCESSING_SUCCEEDED;
}
static uint64_t
pvscsi_on_cmd_unknown(PVSCSIState *s)
{
trace_pvscsi_on_cmd_unknown_data(s->curr_cmd_data[0]);
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
static uint64_t
pvscsi_on_cmd_reset_device(PVSCSIState *s)
{
uint8_t target_lun = 0;
struct PVSCSICmdDescResetDevice *cmd =
(struct PVSCSICmdDescResetDevice *) s->curr_cmd_data;
SCSIDevice *sdev;
sdev = pvscsi_device_find(s, 0, cmd->target, cmd->lun, &target_lun);
trace_pvscsi_on_cmd_reset_dev(cmd->target, (int) target_lun, sdev);
if (sdev != NULL) {
s->resetting++;
device_legacy_reset(&sdev->qdev);
s->resetting--;
return PVSCSI_COMMAND_PROCESSING_SUCCEEDED;
}
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
static uint64_t
pvscsi_on_cmd_reset_bus(PVSCSIState *s)
{
trace_pvscsi_on_cmd_arrived("PVSCSI_CMD_RESET_BUS");
s->resetting++;
qbus_reset_all(BUS(&s->bus));
s->resetting--;
return PVSCSI_COMMAND_PROCESSING_SUCCEEDED;
}
static uint64_t
pvscsi_on_cmd_setup_msg_ring(PVSCSIState *s)
{
PVSCSICmdDescSetupMsgRing *rc =
(PVSCSICmdDescSetupMsgRing *) s->curr_cmd_data;
trace_pvscsi_on_cmd_arrived("PVSCSI_CMD_SETUP_MSG_RING");
if (!s->use_msg) {
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
if (s->rings_info_valid) {
if (pvscsi_ring_init_msg(&s->rings, rc) < 0) {
return PVSCSI_COMMAND_PROCESSING_FAILED;
}
s->msg_ring_info_valid = TRUE;
}
return sizeof(PVSCSICmdDescSetupMsgRing) / sizeof(uint32_t);
}
static uint64_t
pvscsi_on_cmd_adapter_reset(PVSCSIState *s)
{
trace_pvscsi_on_cmd_arrived("PVSCSI_CMD_ADAPTER_RESET");
pvscsi_reset_adapter(s);
return PVSCSI_COMMAND_PROCESSING_SUCCEEDED;
}
static const struct {
int data_size;
uint64_t (*handler_fn)(PVSCSIState *s);
} pvscsi_commands[] = {
[PVSCSI_CMD_FIRST] = {
.data_size = 0,
.handler_fn = pvscsi_on_cmd_unknown,
},
/* Not implemented, data size defined based on what arrives on windows */
[PVSCSI_CMD_CONFIG] = {
.data_size = 6 * sizeof(uint32_t),
.handler_fn = pvscsi_on_cmd_config,
},
/* Command not implemented, data size is unknown */
[PVSCSI_CMD_ISSUE_SCSI] = {
.data_size = 0,
.handler_fn = pvscsi_on_issue_scsi,
},
/* Command not implemented, data size is unknown */
[PVSCSI_CMD_DEVICE_UNPLUG] = {
.data_size = 0,
.handler_fn = pvscsi_on_cmd_unplug,
},
[PVSCSI_CMD_SETUP_RINGS] = {
.data_size = sizeof(PVSCSICmdDescSetupRings),
.handler_fn = pvscsi_on_cmd_setup_rings,
},
[PVSCSI_CMD_RESET_DEVICE] = {
.data_size = sizeof(struct PVSCSICmdDescResetDevice),
.handler_fn = pvscsi_on_cmd_reset_device,
},
[PVSCSI_CMD_RESET_BUS] = {
.data_size = 0,
.handler_fn = pvscsi_on_cmd_reset_bus,
},
[PVSCSI_CMD_SETUP_MSG_RING] = {
.data_size = sizeof(PVSCSICmdDescSetupMsgRing),
.handler_fn = pvscsi_on_cmd_setup_msg_ring,
},
[PVSCSI_CMD_ADAPTER_RESET] = {
.data_size = 0,
.handler_fn = pvscsi_on_cmd_adapter_reset,
},
[PVSCSI_CMD_ABORT_CMD] = {
.data_size = sizeof(struct PVSCSICmdDescAbortCmd),
.handler_fn = pvscsi_on_cmd_abort,
},
};
static void
pvscsi_do_command_processing(PVSCSIState *s)
{
size_t bytes_arrived = s->curr_cmd_data_cntr * sizeof(uint32_t);
assert(s->curr_cmd < PVSCSI_CMD_LAST);
if (bytes_arrived >= pvscsi_commands[s->curr_cmd].data_size) {
s->reg_command_status = pvscsi_commands[s->curr_cmd].handler_fn(s);
s->curr_cmd = PVSCSI_CMD_FIRST;
s->curr_cmd_data_cntr = 0;
}
}
static void
pvscsi_on_command_data(PVSCSIState *s, uint32_t value)
{
size_t bytes_arrived = s->curr_cmd_data_cntr * sizeof(uint32_t);
assert(bytes_arrived < sizeof(s->curr_cmd_data));
s->curr_cmd_data[s->curr_cmd_data_cntr++] = value;
pvscsi_do_command_processing(s);
}
static void
pvscsi_on_command(PVSCSIState *s, uint64_t cmd_id)
{
if ((cmd_id > PVSCSI_CMD_FIRST) && (cmd_id < PVSCSI_CMD_LAST)) {
s->curr_cmd = cmd_id;
} else {
s->curr_cmd = PVSCSI_CMD_FIRST;
trace_pvscsi_on_cmd_unknown(cmd_id);
}
s->curr_cmd_data_cntr = 0;
s->reg_command_status = PVSCSI_COMMAND_NOT_ENOUGH_DATA;
pvscsi_do_command_processing(s);
}
static void
pvscsi_io_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PVSCSIState *s = opaque;
switch (addr) {
case PVSCSI_REG_OFFSET_COMMAND:
pvscsi_on_command(s, val);
break;
case PVSCSI_REG_OFFSET_COMMAND_DATA:
pvscsi_on_command_data(s, (uint32_t) val);
break;
case PVSCSI_REG_OFFSET_INTR_STATUS:
trace_pvscsi_io_write("PVSCSI_REG_OFFSET_INTR_STATUS", val);
s->reg_interrupt_status &= ~val;
pvscsi_update_irq_status(s);
pvscsi_schedule_completion_processing(s);
break;
case PVSCSI_REG_OFFSET_INTR_MASK:
trace_pvscsi_io_write("PVSCSI_REG_OFFSET_INTR_MASK", val);
s->reg_interrupt_enabled = val;
pvscsi_update_irq_status(s);
break;
case PVSCSI_REG_OFFSET_KICK_NON_RW_IO:
trace_pvscsi_io_write("PVSCSI_REG_OFFSET_KICK_NON_RW_IO", val);
pvscsi_process_io(s);
break;
case PVSCSI_REG_OFFSET_KICK_RW_IO:
trace_pvscsi_io_write("PVSCSI_REG_OFFSET_KICK_RW_IO", val);
pvscsi_process_io(s);
break;
case PVSCSI_REG_OFFSET_DEBUG:
trace_pvscsi_io_write("PVSCSI_REG_OFFSET_DEBUG", val);
break;
default:
trace_pvscsi_io_write_unknown(addr, size, val);
break;
}
}
static uint64_t
pvscsi_io_read(void *opaque, hwaddr addr, unsigned size)
{
PVSCSIState *s = opaque;
switch (addr) {
case PVSCSI_REG_OFFSET_INTR_STATUS:
trace_pvscsi_io_read("PVSCSI_REG_OFFSET_INTR_STATUS",
s->reg_interrupt_status);
return s->reg_interrupt_status;
case PVSCSI_REG_OFFSET_INTR_MASK:
trace_pvscsi_io_read("PVSCSI_REG_OFFSET_INTR_MASK",
s->reg_interrupt_status);
return s->reg_interrupt_enabled;
case PVSCSI_REG_OFFSET_COMMAND_STATUS:
trace_pvscsi_io_read("PVSCSI_REG_OFFSET_COMMAND_STATUS",
s->reg_interrupt_status);
return s->reg_command_status;
default:
trace_pvscsi_io_read_unknown(addr, size);
return 0;
}
}
static void
pvscsi_init_msi(PVSCSIState *s)
{
int res;
PCIDevice *d = PCI_DEVICE(s);
res = msi_init(d, PVSCSI_MSI_OFFSET(s), PVSCSI_MSIX_NUM_VECTORS,
PVSCSI_USE_64BIT, PVSCSI_PER_VECTOR_MASK, NULL);
if (res < 0) {
trace_pvscsi_init_msi_fail(res);
s->msi_used = false;
} else {
s->msi_used = true;
}
}
static void
pvscsi_cleanup_msi(PVSCSIState *s)
{
PCIDevice *d = PCI_DEVICE(s);
msi_uninit(d);
}
static const MemoryRegionOps pvscsi_ops = {
.read = pvscsi_io_read,
.write = pvscsi_io_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static const struct SCSIBusInfo pvscsi_scsi_info = {
.tcq = true,
.max_target = PVSCSI_MAX_DEVS,
.max_channel = 0,
.max_lun = 0,
.get_sg_list = pvscsi_get_sg_list,
.complete = pvscsi_command_complete,
.cancel = pvscsi_request_cancelled,
.fail = pvscsi_command_failed,
};
static void
pvscsi_realizefn(PCIDevice *pci_dev, Error **errp)
{
PVSCSIState *s = PVSCSI(pci_dev);
trace_pvscsi_state("init");
/* PCI subsystem ID, subsystem vendor ID, revision */
if (PVSCSI_USE_OLD_PCI_CONFIGURATION(s)) {
pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, 0x1000);
} else {
pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID,
PCI_VENDOR_ID_VMWARE);
pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID,
PCI_DEVICE_ID_VMWARE_PVSCSI);
pci_config_set_revision(pci_dev->config, 0x2);
}
/* PCI latency timer = 255 */
pci_dev->config[PCI_LATENCY_TIMER] = 0xff;
/* Interrupt pin A */
pci_config_set_interrupt_pin(pci_dev->config, 1);
memory_region_init_io(&s->io_space, OBJECT(s), &pvscsi_ops, s,
"pvscsi-io", PVSCSI_MEM_SPACE_SIZE);
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->io_space);
pvscsi_init_msi(s);
if (pci_is_express(pci_dev) && pci_bus_is_express(pci_get_bus(pci_dev))) {
pcie_endpoint_cap_init(pci_dev, PVSCSI_EXP_EP_OFFSET);
}
s->completion_worker = qemu_bh_new(pvscsi_process_completion_queue, s);
scsi_bus_init(&s->bus, sizeof(s->bus), DEVICE(pci_dev), &pvscsi_scsi_info);
/* override default SCSI bus hotplug-handler, with pvscsi's one */
qbus_set_hotplug_handler(BUS(&s->bus), OBJECT(s));
pvscsi_reset_state(s);
}
static void
pvscsi_uninit(PCIDevice *pci_dev)
{
PVSCSIState *s = PVSCSI(pci_dev);
trace_pvscsi_state("uninit");
qemu_bh_delete(s->completion_worker);
pvscsi_cleanup_msi(s);
}
static void
pvscsi_reset(DeviceState *dev)
{
PCIDevice *d = PCI_DEVICE(dev);
PVSCSIState *s = PVSCSI(d);
trace_pvscsi_state("reset");
pvscsi_reset_adapter(s);
}
static int
pvscsi_pre_save(void *opaque)
{
PVSCSIState *s = (PVSCSIState *) opaque;
trace_pvscsi_state("presave");
assert(QTAILQ_EMPTY(&s->pending_queue));
assert(QTAILQ_EMPTY(&s->completion_queue));
return 0;
}
static int
pvscsi_post_load(void *opaque, int version_id)
{
trace_pvscsi_state("postload");
return 0;
}
static bool pvscsi_vmstate_need_pcie_device(void *opaque)
{
PVSCSIState *s = PVSCSI(opaque);
return !(s->compat_flags & PVSCSI_COMPAT_DISABLE_PCIE);
}
static bool pvscsi_vmstate_test_pci_device(void *opaque, int version_id)
{
return !pvscsi_vmstate_need_pcie_device(opaque);
}
static const VMStateDescription vmstate_pvscsi_pcie_device = {
.name = "pvscsi/pcie",
.needed = pvscsi_vmstate_need_pcie_device,
.fields = (VMStateField[]) {
VMSTATE_PCI_DEVICE(parent_obj, PVSCSIState),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_pvscsi = {
.name = "pvscsi",
.version_id = 0,
.minimum_version_id = 0,
.pre_save = pvscsi_pre_save,
.post_load = pvscsi_post_load,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_TEST(parent_obj, PVSCSIState,
pvscsi_vmstate_test_pci_device, 0,
vmstate_pci_device, PCIDevice),
VMSTATE_UINT8(msi_used, PVSCSIState),
VMSTATE_UINT32(resetting, PVSCSIState),
VMSTATE_UINT64(reg_interrupt_status, PVSCSIState),
VMSTATE_UINT64(reg_interrupt_enabled, PVSCSIState),
VMSTATE_UINT64(reg_command_status, PVSCSIState),
VMSTATE_UINT64(curr_cmd, PVSCSIState),
VMSTATE_UINT32(curr_cmd_data_cntr, PVSCSIState),
VMSTATE_UINT32_ARRAY(curr_cmd_data, PVSCSIState,
ARRAY_SIZE(((PVSCSIState *)NULL)->curr_cmd_data)),
VMSTATE_UINT8(rings_info_valid, PVSCSIState),
VMSTATE_UINT8(msg_ring_info_valid, PVSCSIState),
VMSTATE_UINT8(use_msg, PVSCSIState),
VMSTATE_UINT64(rings.rs_pa, PVSCSIState),
VMSTATE_UINT32(rings.txr_len_mask, PVSCSIState),
VMSTATE_UINT32(rings.rxr_len_mask, PVSCSIState),
VMSTATE_UINT64_ARRAY(rings.req_ring_pages_pa, PVSCSIState,
PVSCSI_SETUP_RINGS_MAX_NUM_PAGES),
VMSTATE_UINT64_ARRAY(rings.cmp_ring_pages_pa, PVSCSIState,
PVSCSI_SETUP_RINGS_MAX_NUM_PAGES),
VMSTATE_UINT64(rings.consumed_ptr, PVSCSIState),
VMSTATE_UINT64(rings.filled_cmp_ptr, PVSCSIState),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_pvscsi_pcie_device,
NULL
}
};
static Property pvscsi_properties[] = {
DEFINE_PROP_UINT8("use_msg", PVSCSIState, use_msg, 1),
DEFINE_PROP_BIT("x-old-pci-configuration", PVSCSIState, compat_flags,
PVSCSI_COMPAT_OLD_PCI_CONFIGURATION_BIT, false),
DEFINE_PROP_BIT("x-disable-pcie", PVSCSIState, compat_flags,
PVSCSI_COMPAT_DISABLE_PCIE_BIT, false),
DEFINE_PROP_END_OF_LIST(),
};
static void pvscsi_realize(DeviceState *qdev, Error **errp)
{
PVSCSIClass *pvs_c = PVSCSI_GET_CLASS(qdev);
PCIDevice *pci_dev = PCI_DEVICE(qdev);
PVSCSIState *s = PVSCSI(qdev);
if (!(s->compat_flags & PVSCSI_COMPAT_DISABLE_PCIE)) {
pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS;
}
pvs_c->parent_dc_realize(qdev, errp);
}
static void pvscsi_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
PVSCSIClass *pvs_k = PVSCSI_CLASS(klass);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(klass);
k->realize = pvscsi_realizefn;
k->exit = pvscsi_uninit;
k->vendor_id = PCI_VENDOR_ID_VMWARE;
k->device_id = PCI_DEVICE_ID_VMWARE_PVSCSI;
k->class_id = PCI_CLASS_STORAGE_SCSI;
k->subsystem_id = 0x1000;
device_class_set_parent_realize(dc, pvscsi_realize,
&pvs_k->parent_dc_realize);
dc->reset = pvscsi_reset;
dc->vmsd = &vmstate_pvscsi;
device_class_set_props(dc, pvscsi_properties);
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
hc->unplug = pvscsi_hot_unplug;
hc->plug = pvscsi_hotplug;
}
static const TypeInfo pvscsi_info = {
.name = TYPE_PVSCSI,
.parent = TYPE_PCI_DEVICE,
.class_size = sizeof(PVSCSIClass),
.instance_size = sizeof(PVSCSIState),
.class_init = pvscsi_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ INTERFACE_PCIE_DEVICE },
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{ }
}
};
static void
pvscsi_register_types(void)
{
type_register_static(&pvscsi_info);
}
type_init(pvscsi_register_types);