qemu-e2k/hw/i386/kvmvapic.c
Like Xu 0e11fc6955 hw/i386: Replace global smp variables with machine smp properties
The global smp variables in i386 are replaced with smp machine properties.
To avoid calling qdev_get_machine() as much as possible, some related funtions
for acpi data generations are refactored. No semantic changes.

A local variable of the same name would be introduced in the declaration
phase if it's used widely in the context OR replace it on the spot if it's
only used once. No semantic changes.

Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20190518205428.90532-8-like.xu@linux.intel.com>
Reviewed-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2019-07-05 17:08:03 -03:00

871 lines
24 KiB
C

/*
* TPR optimization for 32-bit Windows guests (XP and Server 2003)
*
* Copyright (C) 2007-2008 Qumranet Technologies
* Copyright (C) 2012 Jan Kiszka, Siemens AG
*
* This work is licensed under the terms of the GNU GPL version 2, or
* (at your option) any later version. See the COPYING file in the
* top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/module.h"
#include "cpu.h"
#include "sysemu/sysemu.h"
#include "sysemu/cpus.h"
#include "sysemu/hw_accel.h"
#include "sysemu/kvm.h"
#include "hw/i386/apic_internal.h"
#include "hw/sysbus.h"
#include "hw/boards.h"
#include "tcg/tcg.h"
#define VAPIC_IO_PORT 0x7e
#define VAPIC_CPU_SHIFT 7
#define ROM_BLOCK_SIZE 512
#define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
typedef enum VAPICMode {
VAPIC_INACTIVE = 0,
VAPIC_ACTIVE = 1,
VAPIC_STANDBY = 2,
} VAPICMode;
typedef struct VAPICHandlers {
uint32_t set_tpr;
uint32_t set_tpr_eax;
uint32_t get_tpr[8];
uint32_t get_tpr_stack;
} QEMU_PACKED VAPICHandlers;
typedef struct GuestROMState {
char signature[8];
uint32_t vaddr;
uint32_t fixup_start;
uint32_t fixup_end;
uint32_t vapic_vaddr;
uint32_t vapic_size;
uint32_t vcpu_shift;
uint32_t real_tpr_addr;
VAPICHandlers up;
VAPICHandlers mp;
} QEMU_PACKED GuestROMState;
typedef struct VAPICROMState {
SysBusDevice busdev;
MemoryRegion io;
MemoryRegion rom;
uint32_t state;
uint32_t rom_state_paddr;
uint32_t rom_state_vaddr;
uint32_t vapic_paddr;
uint32_t real_tpr_addr;
GuestROMState rom_state;
size_t rom_size;
bool rom_mapped_writable;
VMChangeStateEntry *vmsentry;
} VAPICROMState;
#define TYPE_VAPIC "kvmvapic"
#define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
#define TPR_INSTR_ABS_MODRM 0x1
#define TPR_INSTR_MATCH_MODRM_REG 0x2
typedef struct TPRInstruction {
uint8_t opcode;
uint8_t modrm_reg;
unsigned int flags;
TPRAccess access;
size_t length;
off_t addr_offset;
} TPRInstruction;
/* must be sorted by length, shortest first */
static const TPRInstruction tpr_instr[] = {
{ /* mov abs to eax */
.opcode = 0xa1,
.access = TPR_ACCESS_READ,
.length = 5,
.addr_offset = 1,
},
{ /* mov eax to abs */
.opcode = 0xa3,
.access = TPR_ACCESS_WRITE,
.length = 5,
.addr_offset = 1,
},
{ /* mov r32 to r/m32 */
.opcode = 0x89,
.flags = TPR_INSTR_ABS_MODRM,
.access = TPR_ACCESS_WRITE,
.length = 6,
.addr_offset = 2,
},
{ /* mov r/m32 to r32 */
.opcode = 0x8b,
.flags = TPR_INSTR_ABS_MODRM,
.access = TPR_ACCESS_READ,
.length = 6,
.addr_offset = 2,
},
{ /* push r/m32 */
.opcode = 0xff,
.modrm_reg = 6,
.flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
.access = TPR_ACCESS_READ,
.length = 6,
.addr_offset = 2,
},
{ /* mov imm32, r/m32 (c7/0) */
.opcode = 0xc7,
.modrm_reg = 0,
.flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
.access = TPR_ACCESS_WRITE,
.length = 10,
.addr_offset = 2,
},
};
static void read_guest_rom_state(VAPICROMState *s)
{
cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
sizeof(GuestROMState));
}
static void write_guest_rom_state(VAPICROMState *s)
{
cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
sizeof(GuestROMState));
}
static void update_guest_rom_state(VAPICROMState *s)
{
read_guest_rom_state(s);
s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
write_guest_rom_state(s);
}
static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
{
CPUState *cs = env_cpu(env);
hwaddr paddr;
target_ulong addr;
if (s->state == VAPIC_ACTIVE) {
return 0;
}
/*
* If there is no prior TPR access instruction we could analyze (which is
* the case after resume from hibernation), we need to scan the possible
* virtual address space for the APIC mapping.
*/
for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
paddr = cpu_get_phys_page_debug(cs, addr);
if (paddr != APIC_DEFAULT_ADDRESS) {
continue;
}
s->real_tpr_addr = addr + 0x80;
update_guest_rom_state(s);
return 0;
}
return -1;
}
static uint8_t modrm_reg(uint8_t modrm)
{
return (modrm >> 3) & 7;
}
static bool is_abs_modrm(uint8_t modrm)
{
return (modrm & 0xc7) == 0x05;
}
static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
{
return opcode[0] == instr->opcode &&
(!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
(!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
modrm_reg(opcode[1]) == instr->modrm_reg);
}
static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
target_ulong *pip, TPRAccess access)
{
CPUState *cs = CPU(cpu);
const TPRInstruction *instr;
target_ulong ip = *pip;
uint8_t opcode[2];
uint32_t real_tpr_addr;
int i;
if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
(ip & 0xf0000000ULL) != 0xe0000000ULL) {
return -1;
}
/*
* Early Windows 2003 SMP initialization contains a
*
* mov imm32, r/m32
*
* instruction that is patched by TPR optimization. The problem is that
* RSP, used by the patched instruction, is zero, so the guest gets a
* double fault and dies.
*/
if (cpu->env.regs[R_ESP] == 0) {
return -1;
}
if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
/*
* KVM without kernel-based TPR access reporting will pass an IP that
* points after the accessing instruction. So we need to look backward
* to find the reason.
*/
for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
instr = &tpr_instr[i];
if (instr->access != access) {
continue;
}
if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
sizeof(opcode), 0) < 0) {
return -1;
}
if (opcode_matches(opcode, instr)) {
ip -= instr->length;
goto instruction_ok;
}
}
return -1;
} else {
if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
return -1;
}
for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
instr = &tpr_instr[i];
if (opcode_matches(opcode, instr)) {
goto instruction_ok;
}
}
return -1;
}
instruction_ok:
/*
* Grab the virtual TPR address from the instruction
* and update the cached values.
*/
if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
(void *)&real_tpr_addr,
sizeof(real_tpr_addr), 0) < 0) {
return -1;
}
real_tpr_addr = le32_to_cpu(real_tpr_addr);
if ((real_tpr_addr & 0xfff) != 0x80) {
return -1;
}
s->real_tpr_addr = real_tpr_addr;
update_guest_rom_state(s);
*pip = ip;
return 0;
}
static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
{
CPUState *cs = env_cpu(env);
hwaddr paddr;
uint32_t rom_state_vaddr;
uint32_t pos, patch, offset;
/* nothing to do if already activated */
if (s->state == VAPIC_ACTIVE) {
return 0;
}
/* bail out if ROM init code was not executed (missing ROM?) */
if (s->state == VAPIC_INACTIVE) {
return -1;
}
/* find out virtual address of the ROM */
rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
if (paddr == -1) {
return -1;
}
paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
if (paddr != s->rom_state_paddr) {
return -1;
}
read_guest_rom_state(s);
if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
return -1;
}
s->rom_state_vaddr = rom_state_vaddr;
/* fixup addresses in ROM if needed */
if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
return 0;
}
for (pos = le32_to_cpu(s->rom_state.fixup_start);
pos < le32_to_cpu(s->rom_state.fixup_end);
pos += 4) {
cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
&offset, sizeof(offset));
offset = le32_to_cpu(offset);
cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
patch = le32_to_cpu(patch);
patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
patch = cpu_to_le32(patch);
cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
}
read_guest_rom_state(s);
s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
le32_to_cpu(s->rom_state.vaddr);
return 0;
}
/*
* Tries to read the unique processor number from the Kernel Processor Control
* Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
* cannot be accessed or is considered invalid. This also ensures that we are
* not patching the wrong guest.
*/
static int get_kpcr_number(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
struct kpcr {
uint8_t fill1[0x1c];
uint32_t self;
uint8_t fill2[0x31];
uint8_t number;
} QEMU_PACKED kpcr;
if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
(void *)&kpcr, sizeof(kpcr), 0) < 0 ||
kpcr.self != env->segs[R_FS].base) {
return -1;
}
return kpcr.number;
}
static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
{
int cpu_number = get_kpcr_number(cpu);
hwaddr vapic_paddr;
static const uint8_t enabled = 1;
if (cpu_number < 0) {
return -1;
}
vapic_paddr = s->vapic_paddr +
(((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
&enabled, sizeof(enabled));
apic_enable_vapic(cpu->apic_state, vapic_paddr);
s->state = VAPIC_ACTIVE;
return 0;
}
static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
{
cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
}
static void patch_call(X86CPU *cpu, target_ulong ip, uint32_t target)
{
uint32_t offset;
offset = cpu_to_le32(target - ip - 5);
patch_byte(cpu, ip, 0xe8); /* call near */
cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
}
typedef struct PatchInfo {
VAPICHandlers *handler;
target_ulong ip;
} PatchInfo;
static void do_patch_instruction(CPUState *cs, run_on_cpu_data data)
{
X86CPU *x86_cpu = X86_CPU(cs);
PatchInfo *info = (PatchInfo *) data.host_ptr;
VAPICHandlers *handlers = info->handler;
target_ulong ip = info->ip;
uint8_t opcode[2];
uint32_t imm32 = 0;
cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
switch (opcode[0]) {
case 0x89: /* mov r32 to r/m32 */
patch_byte(x86_cpu, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
patch_call(x86_cpu, ip + 1, handlers->set_tpr);
break;
case 0x8b: /* mov r/m32 to r32 */
patch_byte(x86_cpu, ip, 0x90);
patch_call(x86_cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
break;
case 0xa1: /* mov abs to eax */
patch_call(x86_cpu, ip, handlers->get_tpr[0]);
break;
case 0xa3: /* mov eax to abs */
patch_call(x86_cpu, ip, handlers->set_tpr_eax);
break;
case 0xc7: /* mov imm32, r/m32 (c7/0) */
patch_byte(x86_cpu, ip, 0x68); /* push imm32 */
cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
patch_call(x86_cpu, ip + 5, handlers->set_tpr);
break;
case 0xff: /* push r/m32 */
patch_byte(x86_cpu, ip, 0x50); /* push eax */
patch_call(x86_cpu, ip + 1, handlers->get_tpr_stack);
break;
default:
abort();
}
g_free(info);
}
static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
{
MachineState *ms = MACHINE(qdev_get_machine());
CPUState *cs = CPU(cpu);
VAPICHandlers *handlers;
PatchInfo *info;
if (ms->smp.cpus == 1) {
handlers = &s->rom_state.up;
} else {
handlers = &s->rom_state.mp;
}
info = g_new(PatchInfo, 1);
info->handler = handlers;
info->ip = ip;
async_safe_run_on_cpu(cs, do_patch_instruction, RUN_ON_CPU_HOST_PTR(info));
}
void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
TPRAccess access)
{
VAPICROMState *s = VAPIC(dev);
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
cpu_synchronize_state(cs);
if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
if (s->state == VAPIC_ACTIVE) {
vapic_enable(s, cpu);
}
return;
}
if (update_rom_mapping(s, env, ip) < 0) {
return;
}
if (vapic_enable(s, cpu) < 0) {
return;
}
patch_instruction(s, cpu, ip);
}
typedef struct VAPICEnableTPRReporting {
DeviceState *apic;
bool enable;
} VAPICEnableTPRReporting;
static void vapic_do_enable_tpr_reporting(CPUState *cpu, run_on_cpu_data data)
{
VAPICEnableTPRReporting *info = data.host_ptr;
apic_enable_tpr_access_reporting(info->apic, info->enable);
}
static void vapic_enable_tpr_reporting(bool enable)
{
VAPICEnableTPRReporting info = {
.enable = enable,
};
CPUState *cs;
X86CPU *cpu;
CPU_FOREACH(cs) {
cpu = X86_CPU(cs);
info.apic = cpu->apic_state;
run_on_cpu(cs, vapic_do_enable_tpr_reporting, RUN_ON_CPU_HOST_PTR(&info));
}
}
static void vapic_reset(DeviceState *dev)
{
VAPICROMState *s = VAPIC(dev);
s->state = VAPIC_INACTIVE;
s->rom_state_paddr = 0;
vapic_enable_tpr_reporting(false);
}
/*
* Set the IRQ polling hypercalls to the supported variant:
* - vmcall if using KVM in-kernel irqchip
* - 32-bit VAPIC port write otherwise
*/
static int patch_hypercalls(VAPICROMState *s)
{
hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
static const uint8_t vmcall_pattern[] = { /* vmcall */
0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
};
static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
};
uint8_t alternates[2];
const uint8_t *pattern;
const uint8_t *patch;
off_t pos;
uint8_t *rom;
rom = g_malloc(s->rom_size);
cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
if (kvm_irqchip_in_kernel()) {
pattern = outl_pattern;
alternates[0] = outl_pattern[7];
alternates[1] = outl_pattern[7];
patch = &vmcall_pattern[5];
} else {
pattern = vmcall_pattern;
alternates[0] = vmcall_pattern[7];
alternates[1] = 0xd9; /* AMD's VMMCALL */
patch = &outl_pattern[5];
}
if (memcmp(rom + pos, pattern, 7) == 0 &&
(rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
/*
* Don't flush the tb here. Under ordinary conditions, the patched
* calls are miles away from the current IP. Under malicious
* conditions, the guest could trick us to crash.
*/
}
}
g_free(rom);
return 0;
}
/*
* For TCG mode or the time KVM honors read-only memory regions, we need to
* enable write access to the option ROM so that variables can be updated by
* the guest.
*/
static int vapic_map_rom_writable(VAPICROMState *s)
{
hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
MemoryRegionSection section;
MemoryRegion *as;
size_t rom_size;
uint8_t *ram;
as = sysbus_address_space(&s->busdev);
if (s->rom_mapped_writable) {
memory_region_del_subregion(as, &s->rom);
object_unparent(OBJECT(&s->rom));
}
/* grab RAM memory region (region @rom_paddr may still be pc.rom) */
section = memory_region_find(as, 0, 1);
/* read ROM size from RAM region */
if (rom_paddr + 2 >= memory_region_size(section.mr)) {
return -1;
}
ram = memory_region_get_ram_ptr(section.mr);
rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
if (rom_size == 0) {
return -1;
}
s->rom_size = rom_size;
/* We need to round to avoid creating subpages
* from which we cannot run code. */
rom_size += rom_paddr & ~TARGET_PAGE_MASK;
rom_paddr &= TARGET_PAGE_MASK;
rom_size = TARGET_PAGE_ALIGN(rom_size);
memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
rom_paddr, rom_size);
memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
s->rom_mapped_writable = true;
memory_region_unref(section.mr);
return 0;
}
static int vapic_prepare(VAPICROMState *s)
{
if (vapic_map_rom_writable(s) < 0) {
return -1;
}
if (patch_hypercalls(s) < 0) {
return -1;
}
vapic_enable_tpr_reporting(true);
return 0;
}
static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
unsigned int size)
{
VAPICROMState *s = opaque;
X86CPU *cpu;
CPUX86State *env;
hwaddr rom_paddr;
if (!current_cpu) {
return;
}
cpu_synchronize_state(current_cpu);
cpu = X86_CPU(current_cpu);
env = &cpu->env;
/*
* The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
* o 16-bit write access:
* Reports the option ROM initialization to the hypervisor. Written
* value is the offset of the state structure in the ROM.
* o 8-bit write access:
* Reactivates the VAPIC after a guest hibernation, i.e. after the
* option ROM content has been re-initialized by a guest power cycle.
* o 32-bit write access:
* Poll for pending IRQs, considering the current VAPIC state.
*/
switch (size) {
case 2:
if (s->state == VAPIC_INACTIVE) {
rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
s->rom_state_paddr = rom_paddr + data;
s->state = VAPIC_STANDBY;
}
if (vapic_prepare(s) < 0) {
s->state = VAPIC_INACTIVE;
s->rom_state_paddr = 0;
break;
}
break;
case 1:
if (kvm_enabled()) {
/*
* Disable triggering instruction in ROM by writing a NOP.
*
* We cannot do this in TCG mode as the reported IP is not
* accurate.
*/
pause_all_vcpus();
patch_byte(cpu, env->eip - 2, 0x66);
patch_byte(cpu, env->eip - 1, 0x90);
resume_all_vcpus();
}
if (s->state == VAPIC_ACTIVE) {
break;
}
if (update_rom_mapping(s, env, env->eip) < 0) {
break;
}
if (find_real_tpr_addr(s, env) < 0) {
break;
}
vapic_enable(s, cpu);
break;
default:
case 4:
if (!kvm_irqchip_in_kernel()) {
apic_poll_irq(cpu->apic_state);
}
break;
}
}
static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
{
return 0xffffffff;
}
static const MemoryRegionOps vapic_ops = {
.write = vapic_write,
.read = vapic_read,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void vapic_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
VAPICROMState *s = VAPIC(dev);
memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
option_rom[nb_option_roms].name = "kvmvapic.bin";
option_rom[nb_option_roms].bootindex = -1;
nb_option_roms++;
}
static void do_vapic_enable(CPUState *cs, run_on_cpu_data data)
{
VAPICROMState *s = data.host_ptr;
X86CPU *cpu = X86_CPU(cs);
static const uint8_t enabled = 1;
cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
&enabled, sizeof(enabled));
apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
s->state = VAPIC_ACTIVE;
}
static void kvmvapic_vm_state_change(void *opaque, int running,
RunState state)
{
MachineState *ms = MACHINE(qdev_get_machine());
VAPICROMState *s = opaque;
uint8_t *zero;
if (!running) {
return;
}
if (s->state == VAPIC_ACTIVE) {
if (ms->smp.cpus == 1) {
run_on_cpu(first_cpu, do_vapic_enable, RUN_ON_CPU_HOST_PTR(s));
} else {
zero = g_malloc0(s->rom_state.vapic_size);
cpu_physical_memory_write(s->vapic_paddr, zero,
s->rom_state.vapic_size);
g_free(zero);
}
}
qemu_del_vm_change_state_handler(s->vmsentry);
s->vmsentry = NULL;
}
static int vapic_post_load(void *opaque, int version_id)
{
VAPICROMState *s = opaque;
/*
* The old implementation of qemu-kvm did not provide the state
* VAPIC_STANDBY. Reconstruct it.
*/
if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
s->state = VAPIC_STANDBY;
}
if (s->state != VAPIC_INACTIVE) {
if (vapic_prepare(s) < 0) {
return -1;
}
}
if (!s->vmsentry) {
s->vmsentry =
qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
}
return 0;
}
static const VMStateDescription vmstate_handlers = {
.name = "kvmvapic-handlers",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(set_tpr, VAPICHandlers),
VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_guest_rom = {
.name = "kvmvapic-guest-rom",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UNUSED(8), /* signature */
VMSTATE_UINT32(vaddr, GuestROMState),
VMSTATE_UINT32(fixup_start, GuestROMState),
VMSTATE_UINT32(fixup_end, GuestROMState),
VMSTATE_UINT32(vapic_vaddr, GuestROMState),
VMSTATE_UINT32(vapic_size, GuestROMState),
VMSTATE_UINT32(vcpu_shift, GuestROMState),
VMSTATE_UINT32(real_tpr_addr, GuestROMState),
VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_vapic = {
.name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
.version_id = 1,
.minimum_version_id = 1,
.post_load = vapic_post_load,
.fields = (VMStateField[]) {
VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
GuestROMState),
VMSTATE_UINT32(state, VAPICROMState),
VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
VMSTATE_UINT32(vapic_paddr, VAPICROMState),
VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
VMSTATE_END_OF_LIST()
}
};
static void vapic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = vapic_reset;
dc->vmsd = &vmstate_vapic;
dc->realize = vapic_realize;
}
static const TypeInfo vapic_type = {
.name = TYPE_VAPIC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(VAPICROMState),
.class_init = vapic_class_init,
};
static void vapic_register(void)
{
type_register_static(&vapic_type);
}
type_init(vapic_register);