qemu-e2k/target/ppc/helper_regs.c

302 lines
8.8 KiB
C

/*
* PowerPC emulation special registers manipulation helpers for qemu.
*
* Copyright (c) 2003-2007 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "qemu/main-loop.h"
#include "exec/exec-all.h"
#include "sysemu/kvm.h"
#include "helper_regs.h"
/* Swap temporary saved registers with GPRs */
void hreg_swap_gpr_tgpr(CPUPPCState *env)
{
target_ulong tmp;
tmp = env->gpr[0];
env->gpr[0] = env->tgpr[0];
env->tgpr[0] = tmp;
tmp = env->gpr[1];
env->gpr[1] = env->tgpr[1];
env->tgpr[1] = tmp;
tmp = env->gpr[2];
env->gpr[2] = env->tgpr[2];
env->tgpr[2] = tmp;
tmp = env->gpr[3];
env->gpr[3] = env->tgpr[3];
env->tgpr[3] = tmp;
}
static uint32_t hreg_compute_hflags_value(CPUPPCState *env)
{
target_ulong msr = env->msr;
uint32_t ppc_flags = env->flags;
uint32_t hflags = 0;
uint32_t msr_mask;
/* Some bits come straight across from MSR. */
QEMU_BUILD_BUG_ON(MSR_LE != HFLAGS_LE);
QEMU_BUILD_BUG_ON(MSR_PR != HFLAGS_PR);
QEMU_BUILD_BUG_ON(MSR_DR != HFLAGS_DR);
QEMU_BUILD_BUG_ON(MSR_FP != HFLAGS_FP);
msr_mask = ((1 << MSR_LE) | (1 << MSR_PR) |
(1 << MSR_DR) | (1 << MSR_FP));
if (ppc_flags & POWERPC_FLAG_HID0_LE) {
/*
* Note that MSR_LE is not set in env->msr_mask for this cpu,
* and so will never be set in msr.
*/
uint32_t le = extract32(env->spr[SPR_HID0], 3, 1);
hflags |= le << MSR_LE;
}
if (ppc_flags & POWERPC_FLAG_DE) {
target_ulong dbcr0 = env->spr[SPR_BOOKE_DBCR0];
if (dbcr0 & DBCR0_ICMP) {
hflags |= 1 << HFLAGS_SE;
}
if (dbcr0 & DBCR0_BRT) {
hflags |= 1 << HFLAGS_BE;
}
} else {
if (ppc_flags & POWERPC_FLAG_BE) {
QEMU_BUILD_BUG_ON(MSR_BE != HFLAGS_BE);
msr_mask |= 1 << MSR_BE;
}
if (ppc_flags & POWERPC_FLAG_SE) {
QEMU_BUILD_BUG_ON(MSR_SE != HFLAGS_SE);
msr_mask |= 1 << MSR_SE;
}
}
if (msr_is_64bit(env, msr)) {
hflags |= 1 << HFLAGS_64;
}
if ((ppc_flags & POWERPC_FLAG_SPE) && (msr & (1 << MSR_SPE))) {
hflags |= 1 << HFLAGS_SPE;
}
if (ppc_flags & POWERPC_FLAG_VRE) {
QEMU_BUILD_BUG_ON(MSR_VR != HFLAGS_VR);
msr_mask |= 1 << MSR_VR;
}
if (ppc_flags & POWERPC_FLAG_VSX) {
QEMU_BUILD_BUG_ON(MSR_VSX != HFLAGS_VSX);
msr_mask |= 1 << MSR_VSX;
}
if ((ppc_flags & POWERPC_FLAG_TM) && (msr & (1ull << MSR_TM))) {
hflags |= 1 << HFLAGS_TM;
}
if (env->spr[SPR_LPCR] & LPCR_GTSE) {
hflags |= 1 << HFLAGS_GTSE;
}
if (env->spr[SPR_LPCR] & LPCR_HR) {
hflags |= 1 << HFLAGS_HR;
}
if (env->spr[SPR_POWER_MMCR0] & MMCR0_PMCC0) {
hflags |= 1 << HFLAGS_PMCC0;
}
if (env->spr[SPR_POWER_MMCR0] & MMCR0_PMCC1) {
hflags |= 1 << HFLAGS_PMCC1;
}
#ifndef CONFIG_USER_ONLY
if (!env->has_hv_mode || (msr & (1ull << MSR_HV))) {
hflags |= 1 << HFLAGS_HV;
}
/*
* This is our encoding for server processors. The architecture
* specifies that there is no such thing as userspace with
* translation off, however it appears that MacOS does it and some
* 32-bit CPUs support it. Weird...
*
* 0 = Guest User space virtual mode
* 1 = Guest Kernel space virtual mode
* 2 = Guest User space real mode
* 3 = Guest Kernel space real mode
* 4 = HV User space virtual mode
* 5 = HV Kernel space virtual mode
* 6 = HV User space real mode
* 7 = HV Kernel space real mode
*
* For BookE, we need 8 MMU modes as follow:
*
* 0 = AS 0 HV User space
* 1 = AS 0 HV Kernel space
* 2 = AS 1 HV User space
* 3 = AS 1 HV Kernel space
* 4 = AS 0 Guest User space
* 5 = AS 0 Guest Kernel space
* 6 = AS 1 Guest User space
* 7 = AS 1 Guest Kernel space
*/
unsigned immu_idx, dmmu_idx;
dmmu_idx = msr & (1 << MSR_PR) ? 0 : 1;
if (env->mmu_model & POWERPC_MMU_BOOKE) {
dmmu_idx |= msr & (1 << MSR_GS) ? 4 : 0;
immu_idx = dmmu_idx;
immu_idx |= msr & (1 << MSR_IS) ? 2 : 0;
dmmu_idx |= msr & (1 << MSR_DS) ? 2 : 0;
} else {
dmmu_idx |= msr & (1ull << MSR_HV) ? 4 : 0;
immu_idx = dmmu_idx;
immu_idx |= msr & (1 << MSR_IR) ? 0 : 2;
dmmu_idx |= msr & (1 << MSR_DR) ? 0 : 2;
}
hflags |= immu_idx << HFLAGS_IMMU_IDX;
hflags |= dmmu_idx << HFLAGS_DMMU_IDX;
#endif
return hflags | (msr & msr_mask);
}
void hreg_compute_hflags(CPUPPCState *env)
{
env->hflags = hreg_compute_hflags_value(env);
}
#ifdef CONFIG_DEBUG_TCG
void cpu_get_tb_cpu_state(CPUPPCState *env, target_ulong *pc,
target_ulong *cs_base, uint32_t *flags)
{
uint32_t hflags_current = env->hflags;
uint32_t hflags_rebuilt;
*pc = env->nip;
*cs_base = 0;
*flags = hflags_current;
hflags_rebuilt = hreg_compute_hflags_value(env);
if (unlikely(hflags_current != hflags_rebuilt)) {
cpu_abort(env_cpu(env),
"TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
hflags_current, hflags_rebuilt);
}
}
#endif
void cpu_interrupt_exittb(CPUState *cs)
{
if (!kvm_enabled()) {
return;
}
if (!qemu_mutex_iothread_locked()) {
qemu_mutex_lock_iothread();
cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
qemu_mutex_unlock_iothread();
} else {
cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
}
}
int hreg_store_msr(CPUPPCState *env, target_ulong value, int alter_hv)
{
int excp;
#if !defined(CONFIG_USER_ONLY)
CPUState *cs = env_cpu(env);
#endif
excp = 0;
value &= env->msr_mask;
#if !defined(CONFIG_USER_ONLY)
/* Neither mtmsr nor guest state can alter HV */
if (!alter_hv || !(env->msr & MSR_HVB)) {
value &= ~MSR_HVB;
value |= env->msr & MSR_HVB;
}
if (((value >> MSR_IR) & 1) != msr_ir ||
((value >> MSR_DR) & 1) != msr_dr) {
cpu_interrupt_exittb(cs);
}
if ((env->mmu_model & POWERPC_MMU_BOOKE) &&
((value >> MSR_GS) & 1) != msr_gs) {
cpu_interrupt_exittb(cs);
}
if (unlikely((env->flags & POWERPC_FLAG_TGPR) &&
((value ^ env->msr) & (1 << MSR_TGPR)))) {
/* Swap temporary saved registers with GPRs */
hreg_swap_gpr_tgpr(env);
}
if (unlikely((value >> MSR_EP) & 1) != msr_ep) {
/* Change the exception prefix on PowerPC 601 */
env->excp_prefix = ((value >> MSR_EP) & 1) * 0xFFF00000;
}
/*
* If PR=1 then EE, IR and DR must be 1
*
* Note: We only enforce this on 64-bit server processors.
* It appears that:
* - 32-bit implementations supports PR=1 and EE/DR/IR=0 and MacOS
* exploits it.
* - 64-bit embedded implementations do not need any operation to be
* performed when PR is set.
*/
if (is_book3s_arch2x(env) && ((value >> MSR_PR) & 1)) {
value |= (1 << MSR_EE) | (1 << MSR_DR) | (1 << MSR_IR);
}
#endif
env->msr = value;
hreg_compute_hflags(env);
#if !defined(CONFIG_USER_ONLY)
if (unlikely(msr_pow == 1)) {
if (!env->pending_interrupts && (*env->check_pow)(env)) {
cs->halted = 1;
excp = EXCP_HALTED;
}
}
#endif
return excp;
}
#ifdef CONFIG_SOFTMMU
void store_40x_sler(CPUPPCState *env, uint32_t val)
{
/* XXX: TO BE FIXED */
if (val != 0x00000000) {
cpu_abort(env_cpu(env),
"Little-endian regions are not supported by now\n");
}
env->spr[SPR_405_SLER] = val;
}
#endif /* CONFIG_SOFTMMU */
#ifndef CONFIG_USER_ONLY
void check_tlb_flush(CPUPPCState *env, bool global)
{
CPUState *cs = env_cpu(env);
/* Handle global flushes first */
if (global && (env->tlb_need_flush & TLB_NEED_GLOBAL_FLUSH)) {
env->tlb_need_flush &= ~TLB_NEED_GLOBAL_FLUSH;
env->tlb_need_flush &= ~TLB_NEED_LOCAL_FLUSH;
tlb_flush_all_cpus_synced(cs);
return;
}
/* Then handle local ones */
if (env->tlb_need_flush & TLB_NEED_LOCAL_FLUSH) {
env->tlb_need_flush &= ~TLB_NEED_LOCAL_FLUSH;
tlb_flush(cs);
}
}
#endif