qemu-e2k/include/exec/cpu-common.h

164 lines
5.2 KiB
C

#ifndef CPU_COMMON_H
#define CPU_COMMON_H
/* CPU interfaces that are target independent. */
#ifndef CONFIG_USER_ONLY
#include "exec/hwaddr.h"
#endif
/**
* vaddr:
* Type wide enough to contain any #target_ulong virtual address.
*/
typedef uint64_t vaddr;
#define VADDR_PRId PRId64
#define VADDR_PRIu PRIu64
#define VADDR_PRIo PRIo64
#define VADDR_PRIx PRIx64
#define VADDR_PRIX PRIX64
#define VADDR_MAX UINT64_MAX
/* Using intptr_t ensures that qemu_*_page_mask is sign-extended even
* when intptr_t is 32-bit and we are aligning a long long.
*/
extern uintptr_t qemu_host_page_size;
extern intptr_t qemu_host_page_mask;
#define HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_host_page_size)
#define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size)
/* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */
void qemu_init_cpu_list(void);
void cpu_list_lock(void);
void cpu_list_unlock(void);
void tcg_flush_softmmu_tlb(CPUState *cs);
void tcg_iommu_init_notifier_list(CPUState *cpu);
void tcg_iommu_free_notifier_list(CPUState *cpu);
#if !defined(CONFIG_USER_ONLY)
enum device_endian {
DEVICE_NATIVE_ENDIAN,
DEVICE_BIG_ENDIAN,
DEVICE_LITTLE_ENDIAN,
};
#if HOST_BIG_ENDIAN
#define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN
#else
#define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN
#endif
/* address in the RAM (different from a physical address) */
#if defined(CONFIG_XEN_BACKEND)
typedef uint64_t ram_addr_t;
# define RAM_ADDR_MAX UINT64_MAX
# define RAM_ADDR_FMT "%" PRIx64
#else
typedef uintptr_t ram_addr_t;
# define RAM_ADDR_MAX UINTPTR_MAX
# define RAM_ADDR_FMT "%" PRIxPTR
#endif
/* memory API */
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length);
/* This should not be used by devices. */
ram_addr_t qemu_ram_addr_from_host(void *ptr);
RAMBlock *qemu_ram_block_by_name(const char *name);
RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
ram_addr_t *offset);
ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host);
void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev);
void qemu_ram_unset_idstr(RAMBlock *block);
const char *qemu_ram_get_idstr(RAMBlock *rb);
void *qemu_ram_get_host_addr(RAMBlock *rb);
ram_addr_t qemu_ram_get_offset(RAMBlock *rb);
ram_addr_t qemu_ram_get_used_length(RAMBlock *rb);
ram_addr_t qemu_ram_get_max_length(RAMBlock *rb);
bool qemu_ram_is_shared(RAMBlock *rb);
bool qemu_ram_is_noreserve(RAMBlock *rb);
bool qemu_ram_is_uf_zeroable(RAMBlock *rb);
void qemu_ram_set_uf_zeroable(RAMBlock *rb);
bool qemu_ram_is_migratable(RAMBlock *rb);
void qemu_ram_set_migratable(RAMBlock *rb);
void qemu_ram_unset_migratable(RAMBlock *rb);
size_t qemu_ram_pagesize(RAMBlock *block);
size_t qemu_ram_pagesize_largest(void);
/**
* cpu_address_space_init:
* @cpu: CPU to add this address space to
* @asidx: integer index of this address space
* @prefix: prefix to be used as name of address space
* @mr: the root memory region of address space
*
* Add the specified address space to the CPU's cpu_ases list.
* The address space added with @asidx 0 is the one used for the
* convenience pointer cpu->as.
* The target-specific code which registers ASes is responsible
* for defining what semantics address space 0, 1, 2, etc have.
*
* Before the first call to this function, the caller must set
* cpu->num_ases to the total number of address spaces it needs
* to support.
*
* Note that with KVM only one address space is supported.
*/
void cpu_address_space_init(CPUState *cpu, int asidx,
const char *prefix, MemoryRegion *mr);
void cpu_physical_memory_rw(hwaddr addr, void *buf,
hwaddr len, bool is_write);
static inline void cpu_physical_memory_read(hwaddr addr,
void *buf, hwaddr len)
{
cpu_physical_memory_rw(addr, buf, len, false);
}
static inline void cpu_physical_memory_write(hwaddr addr,
const void *buf, hwaddr len)
{
cpu_physical_memory_rw(addr, (void *)buf, len, true);
}
void cpu_reloading_memory_map(void);
void *cpu_physical_memory_map(hwaddr addr,
hwaddr *plen,
bool is_write);
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
bool is_write, hwaddr access_len);
void cpu_register_map_client(QEMUBH *bh);
void cpu_unregister_map_client(QEMUBH *bh);
bool cpu_physical_memory_is_io(hwaddr phys_addr);
/* Coalesced MMIO regions are areas where write operations can be reordered.
* This usually implies that write operations are side-effect free. This allows
* batching which can make a major impact on performance when using
* virtualization.
*/
void qemu_flush_coalesced_mmio_buffer(void);
void cpu_flush_icache_range(hwaddr start, hwaddr len);
typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque);
int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque);
int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length);
#endif
/* Returns: 0 on success, -1 on error */
int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
void *ptr, size_t len, bool is_write);
/* vl.c */
extern int singlestep;
void list_cpus(const char *optarg);
#endif /* CPU_COMMON_H */