qemu-e2k/hw/ppc4xx_pci.c
blueswir1 173a543b36 Add and use #defines for PCI device classes
This patch adds and uses #defines for PCI device classes and subclases,
using a new pci_config_set_class() function, similar to the recently
added pci_config_set_vendor_id() and pci_config_set_device_id().

Change since v1: fixed compilation of hw/sun4u.c

Signed-off-by: Stuart Brady <stuart.brady@gmail.com>


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6491 c046a42c-6fe2-441c-8c8c-71466251a162
2009-02-01 19:26:20 +00:00

421 lines
11 KiB
C

/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright IBM Corp. 2008
*
* Authors: Hollis Blanchard <hollisb@us.ibm.com>
*/
/* This file implements emulation of the 32-bit PCI controller found in some
* 4xx SoCs, such as the 440EP. */
#include "hw.h"
#include "ppc.h"
#include "ppc4xx.h"
typedef target_phys_addr_t pci_addr_t;
#include "pci.h"
#include "pci_host.h"
#include "bswap.h"
#undef DEBUG
#ifdef DEBUG
#define DPRINTF(fmt, ...) do { printf(fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif /* DEBUG */
struct PCIMasterMap {
uint32_t la;
uint32_t ma;
uint32_t pcila;
uint32_t pciha;
};
struct PCITargetMap {
uint32_t ms;
uint32_t la;
};
#define PPC4xx_PCI_NR_PMMS 3
#define PPC4xx_PCI_NR_PTMS 2
struct PPC4xxPCIState {
struct PCIMasterMap pmm[PPC4xx_PCI_NR_PMMS];
struct PCITargetMap ptm[PPC4xx_PCI_NR_PTMS];
PCIHostState pci_state;
PCIDevice *pci_dev;
};
typedef struct PPC4xxPCIState PPC4xxPCIState;
#define PCIC0_CFGADDR 0x0
#define PCIC0_CFGDATA 0x4
/* PLB Memory Map (PMM) registers specify which PLB addresses are translated to
* PCI accesses. */
#define PCIL0_PMM0LA 0x0
#define PCIL0_PMM0MA 0x4
#define PCIL0_PMM0PCILA 0x8
#define PCIL0_PMM0PCIHA 0xc
#define PCIL0_PMM1LA 0x10
#define PCIL0_PMM1MA 0x14
#define PCIL0_PMM1PCILA 0x18
#define PCIL0_PMM1PCIHA 0x1c
#define PCIL0_PMM2LA 0x20
#define PCIL0_PMM2MA 0x24
#define PCIL0_PMM2PCILA 0x28
#define PCIL0_PMM2PCIHA 0x2c
/* PCI Target Map (PTM) registers specify which PCI addresses are translated to
* PLB accesses. */
#define PCIL0_PTM1MS 0x30
#define PCIL0_PTM1LA 0x34
#define PCIL0_PTM2MS 0x38
#define PCIL0_PTM2LA 0x3c
#define PCI_REG_SIZE 0x40
static uint32_t pci4xx_cfgaddr_readl(void *opaque, target_phys_addr_t addr)
{
PPC4xxPCIState *ppc4xx_pci = opaque;
return ppc4xx_pci->pci_state.config_reg;
}
static CPUReadMemoryFunc *pci4xx_cfgaddr_read[] = {
&pci4xx_cfgaddr_readl,
&pci4xx_cfgaddr_readl,
&pci4xx_cfgaddr_readl,
};
static void pci4xx_cfgaddr_writel(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
PPC4xxPCIState *ppc4xx_pci = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap32(value);
#endif
ppc4xx_pci->pci_state.config_reg = value & ~0x3;
}
static CPUWriteMemoryFunc *pci4xx_cfgaddr_write[] = {
&pci4xx_cfgaddr_writel,
&pci4xx_cfgaddr_writel,
&pci4xx_cfgaddr_writel,
};
static CPUReadMemoryFunc *pci4xx_cfgdata_read[] = {
&pci_host_data_readb,
&pci_host_data_readw,
&pci_host_data_readl,
};
static CPUWriteMemoryFunc *pci4xx_cfgdata_write[] = {
&pci_host_data_writeb,
&pci_host_data_writew,
&pci_host_data_writel,
};
static void ppc4xx_pci_reg_write4(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
struct PPC4xxPCIState *pci = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap32(value);
#endif
/* We ignore all target attempts at PCI configuration, effectively
* assuming a bidirectional 1:1 mapping of PLB and PCI space. */
switch (offset) {
case PCIL0_PMM0LA:
pci->pmm[0].la = value;
break;
case PCIL0_PMM0MA:
pci->pmm[0].ma = value;
break;
case PCIL0_PMM0PCIHA:
pci->pmm[0].pciha = value;
break;
case PCIL0_PMM0PCILA:
pci->pmm[0].pcila = value;
break;
case PCIL0_PMM1LA:
pci->pmm[1].la = value;
break;
case PCIL0_PMM1MA:
pci->pmm[1].ma = value;
break;
case PCIL0_PMM1PCIHA:
pci->pmm[1].pciha = value;
break;
case PCIL0_PMM1PCILA:
pci->pmm[1].pcila = value;
break;
case PCIL0_PMM2LA:
pci->pmm[2].la = value;
break;
case PCIL0_PMM2MA:
pci->pmm[2].ma = value;
break;
case PCIL0_PMM2PCIHA:
pci->pmm[2].pciha = value;
break;
case PCIL0_PMM2PCILA:
pci->pmm[2].pcila = value;
break;
case PCIL0_PTM1MS:
pci->ptm[0].ms = value;
break;
case PCIL0_PTM1LA:
pci->ptm[0].la = value;
break;
case PCIL0_PTM2MS:
pci->ptm[1].ms = value;
break;
case PCIL0_PTM2LA:
pci->ptm[1].la = value;
break;
default:
printf("%s: unhandled PCI internal register 0x%lx\n", __func__,
(unsigned long)offset);
break;
}
}
static uint32_t ppc4xx_pci_reg_read4(void *opaque, target_phys_addr_t offset)
{
struct PPC4xxPCIState *pci = opaque;
uint32_t value;
switch (offset) {
case PCIL0_PMM0LA:
value = pci->pmm[0].la;
break;
case PCIL0_PMM0MA:
value = pci->pmm[0].ma;
break;
case PCIL0_PMM0PCIHA:
value = pci->pmm[0].pciha;
break;
case PCIL0_PMM0PCILA:
value = pci->pmm[0].pcila;
break;
case PCIL0_PMM1LA:
value = pci->pmm[1].la;
break;
case PCIL0_PMM1MA:
value = pci->pmm[1].ma;
break;
case PCIL0_PMM1PCIHA:
value = pci->pmm[1].pciha;
break;
case PCIL0_PMM1PCILA:
value = pci->pmm[1].pcila;
break;
case PCIL0_PMM2LA:
value = pci->pmm[2].la;
break;
case PCIL0_PMM2MA:
value = pci->pmm[2].ma;
break;
case PCIL0_PMM2PCIHA:
value = pci->pmm[2].pciha;
break;
case PCIL0_PMM2PCILA:
value = pci->pmm[2].pcila;
break;
case PCIL0_PTM1MS:
value = pci->ptm[0].ms;
break;
case PCIL0_PTM1LA:
value = pci->ptm[0].la;
break;
case PCIL0_PTM2MS:
value = pci->ptm[1].ms;
break;
case PCIL0_PTM2LA:
value = pci->ptm[1].la;
break;
default:
printf("%s: invalid PCI internal register 0x%lx\n", __func__,
(unsigned long)offset);
value = 0;
}
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap32(value);
#endif
return value;
}
static CPUReadMemoryFunc *pci_reg_read[] = {
&ppc4xx_pci_reg_read4,
&ppc4xx_pci_reg_read4,
&ppc4xx_pci_reg_read4,
};
static CPUWriteMemoryFunc *pci_reg_write[] = {
&ppc4xx_pci_reg_write4,
&ppc4xx_pci_reg_write4,
&ppc4xx_pci_reg_write4,
};
static void ppc4xx_pci_reset(void *opaque)
{
struct PPC4xxPCIState *pci = opaque;
memset(pci->pmm, 0, sizeof(pci->pmm));
memset(pci->ptm, 0, sizeof(pci->ptm));
}
/* On Bamboo, all pins from each slot are tied to a single board IRQ. This
* may need further refactoring for other boards. */
static int ppc4xx_pci_map_irq(PCIDevice *pci_dev, int irq_num)
{
int slot = pci_dev->devfn >> 3;
DPRINTF("%s: devfn %x irq %d -> %d\n", __func__,
pci_dev->devfn, irq_num, slot);
return slot - 1;
}
static void ppc4xx_pci_set_irq(qemu_irq *pci_irqs, int irq_num, int level)
{
DPRINTF("%s: PCI irq %d\n", __func__, irq_num);
qemu_set_irq(pci_irqs[irq_num], level);
}
static void ppc4xx_pci_save(QEMUFile *f, void *opaque)
{
PPC4xxPCIState *controller = opaque;
int i;
pci_device_save(controller->pci_dev, f);
for (i = 0; i < PPC4xx_PCI_NR_PMMS; i++) {
qemu_put_be32s(f, &controller->pmm[i].la);
qemu_put_be32s(f, &controller->pmm[i].ma);
qemu_put_be32s(f, &controller->pmm[i].pcila);
qemu_put_be32s(f, &controller->pmm[i].pciha);
}
for (i = 0; i < PPC4xx_PCI_NR_PTMS; i++) {
qemu_put_be32s(f, &controller->ptm[i].ms);
qemu_put_be32s(f, &controller->ptm[i].la);
}
}
static int ppc4xx_pci_load(QEMUFile *f, void *opaque, int version_id)
{
PPC4xxPCIState *controller = opaque;
int i;
if (version_id != 1)
return -EINVAL;
pci_device_load(controller->pci_dev, f);
for (i = 0; i < PPC4xx_PCI_NR_PMMS; i++) {
qemu_get_be32s(f, &controller->pmm[i].la);
qemu_get_be32s(f, &controller->pmm[i].ma);
qemu_get_be32s(f, &controller->pmm[i].pcila);
qemu_get_be32s(f, &controller->pmm[i].pciha);
}
for (i = 0; i < PPC4xx_PCI_NR_PTMS; i++) {
qemu_get_be32s(f, &controller->ptm[i].ms);
qemu_get_be32s(f, &controller->ptm[i].la);
}
return 0;
}
/* XXX Interrupt acknowledge cycles not supported. */
PCIBus *ppc4xx_pci_init(CPUState *env, qemu_irq pci_irqs[4],
target_phys_addr_t config_space,
target_phys_addr_t int_ack,
target_phys_addr_t special_cycle,
target_phys_addr_t registers)
{
PPC4xxPCIState *controller;
int index;
static int ppc4xx_pci_id;
uint8_t *pci_conf;
controller = qemu_mallocz(sizeof(PPC4xxPCIState));
if (!controller)
return NULL;
controller->pci_state.bus = pci_register_bus(ppc4xx_pci_set_irq,
ppc4xx_pci_map_irq,
pci_irqs, 0, 4);
controller->pci_dev = pci_register_device(controller->pci_state.bus,
"host bridge", sizeof(PCIDevice),
0, NULL, NULL);
pci_conf = controller->pci_dev->config;
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_IBM);
pci_config_set_device_id(pci_conf, 0x027f); // device_id
pci_config_set_class(pci_conf, PCI_CLASS_BRIDGE_OTHER);
/* CFGADDR */
index = cpu_register_io_memory(0, pci4xx_cfgaddr_read,
pci4xx_cfgaddr_write, controller);
if (index < 0)
goto free;
cpu_register_physical_memory(config_space + PCIC0_CFGADDR, 4, index);
/* CFGDATA */
index = cpu_register_io_memory(0, pci4xx_cfgdata_read,
pci4xx_cfgdata_write,
&controller->pci_state);
if (index < 0)
goto free;
cpu_register_physical_memory(config_space + PCIC0_CFGDATA, 4, index);
/* Internal registers */
index = cpu_register_io_memory(0, pci_reg_read, pci_reg_write, controller);
if (index < 0)
goto free;
cpu_register_physical_memory(registers, PCI_REG_SIZE, index);
qemu_register_reset(ppc4xx_pci_reset, controller);
/* XXX load/save code not tested. */
register_savevm("ppc4xx_pci", ppc4xx_pci_id++, 1,
ppc4xx_pci_save, ppc4xx_pci_load, controller);
return controller->pci_state.bus;
free:
printf("%s error\n", __func__);
qemu_free(controller);
return NULL;
}