Paul Brook d4c430a80f Large page TLB flush
QEMU uses a fixed page size for the CPU TLB.  If the guest uses large
pages then we effectively split these into multiple smaller pages, and
populate the corresponding TLB entries on demand.

When the guest invalidates the TLB by virtual address we must invalidate
all entries covered by the large page.  However the address used to
invalidate the entry may not be present in the QEMU TLB, so we do not
know which regions to clear.

Implementing a full vaiable size TLB is hard and slow, so just keep a
simple address/mask pair to record which addresses may have been mapped by
large pages.  If the guest invalidates this region then flush the
whole TLB.

Signed-off-by: Paul Brook <paul@codesourcery.com>
2010-03-17 02:44:41 +00:00

283 lines
9.5 KiB
C

/*
* MicroBlaze helper routines.
*
* Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "config.h"
#include "cpu.h"
#include "exec-all.h"
#include "host-utils.h"
#define D(x)
#define DMMU(x)
#if defined(CONFIG_USER_ONLY)
void do_interrupt (CPUState *env)
{
env->exception_index = -1;
env->regs[14] = env->sregs[SR_PC];
}
int cpu_mb_handle_mmu_fault(CPUState * env, target_ulong address, int rw,
int mmu_idx, int is_softmmu)
{
env->exception_index = 0xaa;
cpu_dump_state(env, stderr, fprintf, 0);
return 1;
}
#else /* !CONFIG_USER_ONLY */
int cpu_mb_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
int mmu_idx, int is_softmmu)
{
unsigned int hit;
unsigned int mmu_available;
int r = 1;
int prot;
mmu_available = 0;
if (env->pvr.regs[0] & PVR0_USE_MMU) {
mmu_available = 1;
if ((env->pvr.regs[0] & PVR0_PVR_FULL_MASK)
&& (env->pvr.regs[11] & PVR11_USE_MMU) != PVR11_USE_MMU) {
mmu_available = 0;
}
}
/* Translate if the MMU is available and enabled. */
if (mmu_available && (env->sregs[SR_MSR] & MSR_VM)) {
target_ulong vaddr, paddr;
struct microblaze_mmu_lookup lu;
hit = mmu_translate(&env->mmu, &lu, address, rw, mmu_idx);
if (hit) {
vaddr = address & TARGET_PAGE_MASK;
paddr = lu.paddr + vaddr - lu.vaddr;
DMMU(qemu_log("MMU map mmu=%d v=%x p=%x prot=%x\n",
mmu_idx, vaddr, paddr, lu.prot));
tlb_set_page(env, vaddr, paddr, lu.prot, mmu_idx, TARGET_PAGE_SIZE);
r = 0;
} else {
env->sregs[SR_EAR] = address;
DMMU(qemu_log("mmu=%d miss v=%x\n", mmu_idx, address));
switch (lu.err) {
case ERR_PROT:
env->sregs[SR_ESR] = rw == 2 ? 17 : 16;
env->sregs[SR_ESR] |= (rw == 1) << 10;
break;
case ERR_MISS:
env->sregs[SR_ESR] = rw == 2 ? 19 : 18;
env->sregs[SR_ESR] |= (rw == 1) << 10;
break;
default:
abort();
break;
}
if (env->exception_index == EXCP_MMU) {
cpu_abort(env, "recursive faults\n");
}
/* TLB miss. */
env->exception_index = EXCP_MMU;
}
} else {
/* MMU disabled or not available. */
address &= TARGET_PAGE_MASK;
prot = PAGE_BITS;
tlb_set_page(env, address, address, prot, mmu_idx, TARGET_PAGE_SIZE);
r = 0;
}
return r;
}
void do_interrupt(CPUState *env)
{
uint32_t t;
/* IMM flag cannot propagate accross a branch and into the dslot. */
assert(!((env->iflags & D_FLAG) && (env->iflags & IMM_FLAG)));
assert(!(env->iflags & (DRTI_FLAG | DRTE_FLAG | DRTB_FLAG)));
/* assert(env->sregs[SR_MSR] & (MSR_EE)); Only for HW exceptions. */
switch (env->exception_index) {
case EXCP_HW_EXCP:
if (!(env->pvr.regs[0] & PVR0_USE_EXC_MASK)) {
qemu_log("Exception raised on system without exceptions!\n");
return;
}
env->regs[17] = env->sregs[SR_PC] + 4;
env->sregs[SR_ESR] &= ~(1 << 12);
/* Exception breaks branch + dslot sequence? */
if (env->iflags & D_FLAG) {
env->sregs[SR_ESR] |= 1 << 12 ;
env->sregs[SR_BTR] = env->btarget;
}
/* Disable the MMU. */
t = (env->sregs[SR_MSR] & (MSR_VM | MSR_UM)) << 1;
env->sregs[SR_MSR] &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM);
env->sregs[SR_MSR] |= t;
/* Exception in progress. */
env->sregs[SR_MSR] |= MSR_EIP;
qemu_log_mask(CPU_LOG_INT,
"hw exception at pc=%x ear=%x esr=%x iflags=%x\n",
env->sregs[SR_PC], env->sregs[SR_EAR],
env->sregs[SR_ESR], env->iflags);
log_cpu_state_mask(CPU_LOG_INT, env, 0);
env->iflags &= ~(IMM_FLAG | D_FLAG);
env->sregs[SR_PC] = 0x20;
break;
case EXCP_MMU:
env->regs[17] = env->sregs[SR_PC];
env->sregs[SR_ESR] &= ~(1 << 12);
/* Exception breaks branch + dslot sequence? */
if (env->iflags & D_FLAG) {
D(qemu_log("D_FLAG set at exception bimm=%d\n", env->bimm));
env->sregs[SR_ESR] |= 1 << 12 ;
env->sregs[SR_BTR] = env->btarget;
/* Reexecute the branch. */
env->regs[17] -= 4;
/* was the branch immprefixed?. */
if (env->bimm) {
qemu_log_mask(CPU_LOG_INT,
"bimm exception at pc=%x iflags=%x\n",
env->sregs[SR_PC], env->iflags);
env->regs[17] -= 4;
log_cpu_state_mask(CPU_LOG_INT, env, 0);
}
} else if (env->iflags & IMM_FLAG) {
D(qemu_log("IMM_FLAG set at exception\n"));
env->regs[17] -= 4;
}
/* Disable the MMU. */
t = (env->sregs[SR_MSR] & (MSR_VM | MSR_UM)) << 1;
env->sregs[SR_MSR] &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM);
env->sregs[SR_MSR] |= t;
/* Exception in progress. */
env->sregs[SR_MSR] |= MSR_EIP;
qemu_log_mask(CPU_LOG_INT,
"exception at pc=%x ear=%x iflags=%x\n",
env->sregs[SR_PC], env->sregs[SR_EAR], env->iflags);
log_cpu_state_mask(CPU_LOG_INT, env, 0);
env->iflags &= ~(IMM_FLAG | D_FLAG);
env->sregs[SR_PC] = 0x20;
break;
case EXCP_IRQ:
assert(!(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP)));
assert(env->sregs[SR_MSR] & MSR_IE);
assert(!(env->iflags & D_FLAG));
t = (env->sregs[SR_MSR] & (MSR_VM | MSR_UM)) << 1;
#if 0
#include "disas.h"
/* Useful instrumentation when debugging interrupt issues in either
the models or in sw. */
{
const char *sym;
sym = lookup_symbol(env->sregs[SR_PC]);
if (sym
&& (!strcmp("netif_rx", sym)
|| !strcmp("process_backlog", sym))) {
qemu_log(
"interrupt at pc=%x msr=%x %x iflags=%x sym=%s\n",
env->sregs[SR_PC], env->sregs[SR_MSR], t, env->iflags,
sym);
log_cpu_state(env, 0);
}
}
#endif
qemu_log_mask(CPU_LOG_INT,
"interrupt at pc=%x msr=%x %x iflags=%x\n",
env->sregs[SR_PC], env->sregs[SR_MSR], t, env->iflags);
env->sregs[SR_MSR] &= ~(MSR_VMS | MSR_UMS | MSR_VM \
| MSR_UM | MSR_IE);
env->sregs[SR_MSR] |= t;
env->regs[14] = env->sregs[SR_PC];
env->sregs[SR_PC] = 0x10;
//log_cpu_state_mask(CPU_LOG_INT, env, 0);
break;
case EXCP_BREAK:
case EXCP_HW_BREAK:
assert(!(env->iflags & IMM_FLAG));
assert(!(env->iflags & D_FLAG));
t = (env->sregs[SR_MSR] & (MSR_VM | MSR_UM)) << 1;
qemu_log_mask(CPU_LOG_INT,
"break at pc=%x msr=%x %x iflags=%x\n",
env->sregs[SR_PC], env->sregs[SR_MSR], t, env->iflags);
log_cpu_state_mask(CPU_LOG_INT, env, 0);
env->sregs[SR_MSR] &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM);
env->sregs[SR_MSR] |= t;
env->sregs[SR_MSR] |= MSR_BIP;
if (env->exception_index == EXCP_HW_BREAK) {
env->regs[16] = env->sregs[SR_PC];
env->sregs[SR_MSR] |= MSR_BIP;
env->sregs[SR_PC] = 0x18;
} else
env->sregs[SR_PC] = env->btarget;
break;
default:
cpu_abort(env, "unhandled exception type=%d\n",
env->exception_index);
break;
}
}
target_phys_addr_t cpu_get_phys_page_debug(CPUState * env, target_ulong addr)
{
target_ulong vaddr, paddr = 0;
struct microblaze_mmu_lookup lu;
unsigned int hit;
if (env->sregs[SR_MSR] & MSR_VM) {
hit = mmu_translate(&env->mmu, &lu, addr, 0, 0);
if (hit) {
vaddr = addr & TARGET_PAGE_MASK;
paddr = lu.paddr + vaddr - lu.vaddr;
} else
paddr = 0; /* ???. */
} else
paddr = addr & TARGET_PAGE_MASK;
return paddr;
}
#endif