qemu-e2k/target-xtensa/helper.c
Max Filippov 47d05a8629 target-xtensa: add dc232b core and board
This is Diamond 232L Standard Core Rev.B (LE).

Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2011-09-10 16:57:40 +00:00

764 lines
22 KiB
C

/*
* Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the Open Source and Linux Lab nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cpu.h"
#include "exec-all.h"
#include "gdbstub.h"
#include "qemu-common.h"
#include "host-utils.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/loader.h"
#endif
#define XTREG(idx, ofs, bi, sz, al, no, flags, cp, typ, grp, name, \
a1, a2, a3, a4, a5, a6) \
{ .targno = (no), .type = (typ), .group = (grp) },
static void reset_mmu(CPUState *env);
void cpu_reset(CPUXtensaState *env)
{
env->exception_taken = 0;
env->pc = env->config->exception_vector[EXC_RESET];
env->sregs[LITBASE] &= ~1;
env->sregs[PS] = xtensa_option_enabled(env->config,
XTENSA_OPTION_INTERRUPT) ? 0x1f : 0x10;
env->sregs[VECBASE] = env->config->vecbase;
env->pending_irq_level = 0;
reset_mmu(env);
}
static const XtensaConfig core_config[] = {
{
.name = "sample-xtensa-core",
.options = -1 ^
(XTENSA_OPTION_BIT(XTENSA_OPTION_HW_ALIGNMENT) |
XTENSA_OPTION_BIT(XTENSA_OPTION_MMU)),
.gdb_regmap = {
.num_regs = 176,
.num_core_regs = 117,
.reg = {
#include "gdb-config-sample-xtensa-core.c"
}
},
.nareg = 64,
.ndepc = 1,
.excm_level = 16,
.vecbase = 0x5fff8400,
.exception_vector = {
[EXC_RESET] = 0x5fff8000,
[EXC_WINDOW_OVERFLOW4] = 0x5fff8400,
[EXC_WINDOW_UNDERFLOW4] = 0x5fff8440,
[EXC_WINDOW_OVERFLOW8] = 0x5fff8480,
[EXC_WINDOW_UNDERFLOW8] = 0x5fff84c0,
[EXC_WINDOW_OVERFLOW12] = 0x5fff8500,
[EXC_WINDOW_UNDERFLOW12] = 0x5fff8540,
[EXC_KERNEL] = 0x5fff861c,
[EXC_USER] = 0x5fff863c,
[EXC_DOUBLE] = 0x5fff865c,
},
.ninterrupt = 13,
.nlevel = 6,
.interrupt_vector = {
0,
0,
0x5fff857c,
0x5fff859c,
0x5fff85bc,
0x5fff85dc,
0x5fff85fc,
},
.level_mask = {
[4] = 1,
},
.interrupt = {
[0] = {
.level = 4,
.inttype = INTTYPE_TIMER,
},
},
.nccompare = 1,
.timerint = {
[0] = 0,
},
.clock_freq_khz = 912000,
}, {
.name = "dc232b",
.options = -1 ^
(XTENSA_OPTION_BIT(XTENSA_OPTION_HW_ALIGNMENT) |
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION)),
.gdb_regmap = {
.num_regs = 120,
.num_core_regs = 52,
.reg = {
#include "gdb-config-dc232b.c"
}
},
.nareg = 32,
.ndepc = 1,
.excm_level = 3,
.vecbase = 0xd0000000,
.exception_vector = {
[EXC_RESET] = 0xfe000000,
[EXC_WINDOW_OVERFLOW4] = 0xd0000000,
[EXC_WINDOW_UNDERFLOW4] = 0xd0000040,
[EXC_WINDOW_OVERFLOW8] = 0xd0000080,
[EXC_WINDOW_UNDERFLOW8] = 0xd00000c0,
[EXC_WINDOW_OVERFLOW12] = 0xd0000100,
[EXC_WINDOW_UNDERFLOW12] = 0xd0000140,
[EXC_KERNEL] = 0xd0000300,
[EXC_USER] = 0xd0000340,
[EXC_DOUBLE] = 0xd00003c0,
},
.ninterrupt = 22,
.nlevel = 6,
.interrupt_vector = {
0,
0,
0xd0000180,
0xd00001c0,
0xd0000200,
0xd0000240,
0xd0000280,
0xd00002c0,
},
.level_mask = {
[1] = 0x1f80ff,
[2] = 0x000100,
[3] = 0x200e00,
[4] = 0x001000,
[5] = 0x002000,
[6] = 0x000000,
[7] = 0x004000,
},
.inttype_mask = {
[INTTYPE_EDGE] = 0x3f8000,
[INTTYPE_NMI] = 0x4000,
[INTTYPE_SOFTWARE] = 0x880,
},
.interrupt = {
[0] = {
.level = 1,
.inttype = INTTYPE_LEVEL,
},
[1] = {
.level = 1,
.inttype = INTTYPE_LEVEL,
},
[2] = {
.level = 1,
.inttype = INTTYPE_LEVEL,
},
[3] = {
.level = 1,
.inttype = INTTYPE_LEVEL,
},
[4] = {
.level = 1,
.inttype = INTTYPE_LEVEL,
},
[5] = {
.level = 1,
.inttype = INTTYPE_LEVEL,
},
[6] = {
.level = 1,
.inttype = INTTYPE_TIMER,
},
[7] = {
.level = 1,
.inttype = INTTYPE_SOFTWARE,
},
[8] = {
.level = 2,
.inttype = INTTYPE_LEVEL,
},
[9] = {
.level = 3,
.inttype = INTTYPE_LEVEL,
},
[10] = {
.level = 3,
.inttype = INTTYPE_TIMER,
},
[11] = {
.level = 3,
.inttype = INTTYPE_SOFTWARE,
},
[12] = {
.level = 4,
.inttype = INTTYPE_LEVEL,
},
[13] = {
.level = 5,
.inttype = INTTYPE_TIMER,
},
[14] = {
.level = 7,
.inttype = INTTYPE_NMI,
},
[15] = {
.level = 1,
.inttype = INTTYPE_EDGE,
},
[16] = {
.level = 1,
.inttype = INTTYPE_EDGE,
},
[17] = {
.level = 1,
.inttype = INTTYPE_EDGE,
},
[18] = {
.level = 1,
.inttype = INTTYPE_EDGE,
},
[19] = {
.level = 1,
.inttype = INTTYPE_EDGE,
},
[20] = {
.level = 1,
.inttype = INTTYPE_EDGE,
},
[21] = {
.level = 3,
.inttype = INTTYPE_EDGE,
},
},
.nccompare = 3,
.timerint = {
[0] = 6,
[1] = 10,
[2] = 13,
},
.clock_freq_khz = 912000,
.itlb = {
.nways = 7,
.way_size = {
4, 4, 4, 4, 4, 2, 2,
},
.varway56 = false,
.nrefillentries = 16,
},
.dtlb = {
.nways = 10,
.way_size = {
4, 4, 4, 4, 4, 2, 2, 1, 1, 1,
},
.varway56 = false,
.nrefillentries = 16,
},
},
};
CPUXtensaState *cpu_xtensa_init(const char *cpu_model)
{
static int tcg_inited;
CPUXtensaState *env;
const XtensaConfig *config = NULL;
int i;
for (i = 0; i < ARRAY_SIZE(core_config); ++i)
if (strcmp(core_config[i].name, cpu_model) == 0) {
config = core_config + i;
break;
}
if (config == NULL) {
return NULL;
}
env = g_malloc0(sizeof(*env));
env->config = config;
cpu_exec_init(env);
if (!tcg_inited) {
tcg_inited = 1;
xtensa_translate_init();
}
xtensa_irq_init(env);
qemu_init_vcpu(env);
return env;
}
void xtensa_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
int i;
cpu_fprintf(f, "Available CPUs:\n");
for (i = 0; i < ARRAY_SIZE(core_config); ++i) {
cpu_fprintf(f, " %s\n", core_config[i].name);
}
}
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
{
uint32_t paddr;
uint32_t page_size;
unsigned access;
if (xtensa_get_physical_addr(env, addr, 0, 0,
&paddr, &page_size, &access) == 0) {
return paddr;
}
if (xtensa_get_physical_addr(env, addr, 2, 0,
&paddr, &page_size, &access) == 0) {
return paddr;
}
return ~0;
}
static uint32_t relocated_vector(CPUState *env, uint32_t vector)
{
if (xtensa_option_enabled(env->config,
XTENSA_OPTION_RELOCATABLE_VECTOR)) {
return vector - env->config->vecbase + env->sregs[VECBASE];
} else {
return vector;
}
}
/*!
* Handle penging IRQ.
* For the high priority interrupt jump to the corresponding interrupt vector.
* For the level-1 interrupt convert it to either user, kernel or double
* exception with the 'level-1 interrupt' exception cause.
*/
static void handle_interrupt(CPUState *env)
{
int level = env->pending_irq_level;
if (level > xtensa_get_cintlevel(env) &&
level <= env->config->nlevel &&
(env->config->level_mask[level] &
env->sregs[INTSET] &
env->sregs[INTENABLE])) {
if (level > 1) {
env->sregs[EPC1 + level - 1] = env->pc;
env->sregs[EPS2 + level - 2] = env->sregs[PS];
env->sregs[PS] =
(env->sregs[PS] & ~PS_INTLEVEL) | level | PS_EXCM;
env->pc = relocated_vector(env,
env->config->interrupt_vector[level]);
} else {
env->sregs[EXCCAUSE] = LEVEL1_INTERRUPT_CAUSE;
if (env->sregs[PS] & PS_EXCM) {
if (env->config->ndepc) {
env->sregs[DEPC] = env->pc;
} else {
env->sregs[EPC1] = env->pc;
}
env->exception_index = EXC_DOUBLE;
} else {
env->sregs[EPC1] = env->pc;
env->exception_index =
(env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
}
env->sregs[PS] |= PS_EXCM;
}
env->exception_taken = 1;
}
}
void do_interrupt(CPUState *env)
{
if (env->exception_index == EXC_IRQ) {
qemu_log_mask(CPU_LOG_INT,
"%s(EXC_IRQ) level = %d, cintlevel = %d, "
"pc = %08x, a0 = %08x, ps = %08x, "
"intset = %08x, intenable = %08x, "
"ccount = %08x\n",
__func__, env->pending_irq_level, xtensa_get_cintlevel(env),
env->pc, env->regs[0], env->sregs[PS],
env->sregs[INTSET], env->sregs[INTENABLE],
env->sregs[CCOUNT]);
handle_interrupt(env);
}
switch (env->exception_index) {
case EXC_WINDOW_OVERFLOW4:
case EXC_WINDOW_UNDERFLOW4:
case EXC_WINDOW_OVERFLOW8:
case EXC_WINDOW_UNDERFLOW8:
case EXC_WINDOW_OVERFLOW12:
case EXC_WINDOW_UNDERFLOW12:
case EXC_KERNEL:
case EXC_USER:
case EXC_DOUBLE:
qemu_log_mask(CPU_LOG_INT, "%s(%d) "
"pc = %08x, a0 = %08x, ps = %08x, ccount = %08x\n",
__func__, env->exception_index,
env->pc, env->regs[0], env->sregs[PS], env->sregs[CCOUNT]);
if (env->config->exception_vector[env->exception_index]) {
env->pc = relocated_vector(env,
env->config->exception_vector[env->exception_index]);
env->exception_taken = 1;
} else {
qemu_log("%s(pc = %08x) bad exception_index: %d\n",
__func__, env->pc, env->exception_index);
}
break;
case EXC_IRQ:
break;
default:
qemu_log("%s(pc = %08x) unknown exception_index: %d\n",
__func__, env->pc, env->exception_index);
break;
}
check_interrupts(env);
}
static void reset_tlb_mmu_all_ways(CPUState *env,
const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
unsigned wi, ei;
for (wi = 0; wi < tlb->nways; ++wi) {
for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
entry[wi][ei].asid = 0;
entry[wi][ei].variable = true;
}
}
}
static void reset_tlb_mmu_ways56(CPUState *env,
const xtensa_tlb *tlb, xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
if (!tlb->varway56) {
static const xtensa_tlb_entry way5[] = {
{
.vaddr = 0xd0000000,
.paddr = 0,
.asid = 1,
.attr = 7,
.variable = false,
}, {
.vaddr = 0xd8000000,
.paddr = 0,
.asid = 1,
.attr = 3,
.variable = false,
}
};
static const xtensa_tlb_entry way6[] = {
{
.vaddr = 0xe0000000,
.paddr = 0xf0000000,
.asid = 1,
.attr = 7,
.variable = false,
}, {
.vaddr = 0xf0000000,
.paddr = 0xf0000000,
.asid = 1,
.attr = 3,
.variable = false,
}
};
memcpy(entry[5], way5, sizeof(way5));
memcpy(entry[6], way6, sizeof(way6));
} else {
uint32_t ei;
for (ei = 0; ei < 8; ++ei) {
entry[6][ei].vaddr = ei << 29;
entry[6][ei].paddr = ei << 29;
entry[6][ei].asid = 1;
entry[6][ei].attr = 2;
}
}
}
static void reset_tlb_region_way0(CPUState *env,
xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
{
unsigned ei;
for (ei = 0; ei < 8; ++ei) {
entry[0][ei].vaddr = ei << 29;
entry[0][ei].paddr = ei << 29;
entry[0][ei].asid = 1;
entry[0][ei].attr = 2;
entry[0][ei].variable = true;
}
}
static void reset_mmu(CPUState *env)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
env->sregs[RASID] = 0x04030201;
env->sregs[ITLBCFG] = 0;
env->sregs[DTLBCFG] = 0;
env->autorefill_idx = 0;
reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
} else {
reset_tlb_region_way0(env, env->itlb);
reset_tlb_region_way0(env, env->dtlb);
}
}
static unsigned get_ring(const CPUState *env, uint8_t asid)
{
unsigned i;
for (i = 0; i < 4; ++i) {
if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
return i;
}
}
return 0xff;
}
/*!
* Lookup xtensa TLB for the given virtual address.
* See ISA, 4.6.2.2
*
* \param pwi: [out] way index
* \param pei: [out] entry index
* \param pring: [out] access ring
* \return 0 if ok, exception cause code otherwise
*/
int xtensa_tlb_lookup(const CPUState *env, uint32_t addr, bool dtlb,
uint32_t *pwi, uint32_t *pei, uint8_t *pring)
{
const xtensa_tlb *tlb = dtlb ?
&env->config->dtlb : &env->config->itlb;
const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
env->dtlb : env->itlb;
int nhits = 0;
unsigned wi;
for (wi = 0; wi < tlb->nways; ++wi) {
uint32_t vpn;
uint32_t ei;
split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
unsigned ring = get_ring(env, entry[wi][ei].asid);
if (ring < 4) {
if (++nhits > 1) {
return dtlb ?
LOAD_STORE_TLB_MULTI_HIT_CAUSE :
INST_TLB_MULTI_HIT_CAUSE;
}
*pwi = wi;
*pei = ei;
*pring = ring;
}
}
}
return nhits ? 0 :
(dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
}
/*!
* Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
* See ISA, 4.6.5.10
*/
static unsigned mmu_attr_to_access(uint32_t attr)
{
unsigned access = 0;
if (attr < 12) {
access |= PAGE_READ;
if (attr & 0x1) {
access |= PAGE_EXEC;
}
if (attr & 0x2) {
access |= PAGE_WRITE;
}
} else if (attr == 13) {
access |= PAGE_READ | PAGE_WRITE;
}
return access;
}
/*!
* Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
* See ISA, 4.6.3.3
*/
static unsigned region_attr_to_access(uint32_t attr)
{
unsigned access = 0;
if ((attr < 6 && attr != 3) || attr == 14) {
access |= PAGE_READ | PAGE_WRITE;
}
if (attr > 0 && attr < 6) {
access |= PAGE_EXEC;
}
return access;
}
static bool is_access_granted(unsigned access, int is_write)
{
switch (is_write) {
case 0:
return access & PAGE_READ;
case 1:
return access & PAGE_WRITE;
case 2:
return access & PAGE_EXEC;
default:
return 0;
}
}
static int autorefill_mmu(CPUState *env, uint32_t vaddr, bool dtlb,
uint32_t *wi, uint32_t *ei, uint8_t *ring);
static int get_physical_addr_mmu(CPUState *env,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size, unsigned *access)
{
bool dtlb = is_write != 2;
uint32_t wi;
uint32_t ei;
uint8_t ring;
int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
(mmu_idx != 0 || ((vaddr ^ env->sregs[PTEVADDR]) & 0xffc00000)) &&
autorefill_mmu(env, vaddr, dtlb, &wi, &ei, &ring) == 0) {
ret = 0;
}
if (ret != 0) {
return ret;
}
const xtensa_tlb_entry *entry =
xtensa_tlb_get_entry(env, dtlb, wi, ei);
if (ring < mmu_idx) {
return dtlb ?
LOAD_STORE_PRIVILEGE_CAUSE :
INST_FETCH_PRIVILEGE_CAUSE;
}
*access = mmu_attr_to_access(entry->attr);
if (!is_access_granted(*access, is_write)) {
return dtlb ?
(is_write ?
STORE_PROHIBITED_CAUSE :
LOAD_PROHIBITED_CAUSE) :
INST_FETCH_PROHIBITED_CAUSE;
}
*paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
*page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
return 0;
}
static int autorefill_mmu(CPUState *env, uint32_t vaddr, bool dtlb,
uint32_t *wi, uint32_t *ei, uint8_t *ring)
{
uint32_t paddr;
uint32_t page_size;
unsigned access;
uint32_t pt_vaddr =
(env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
int ret = get_physical_addr_mmu(env, pt_vaddr, 0, 0,
&paddr, &page_size, &access);
qemu_log("%s: trying autorefill(%08x) -> %08x\n", __func__,
vaddr, ret ? ~0 : paddr);
if (ret == 0) {
uint32_t vpn;
uint32_t pte = ldl_phys(paddr);
*ring = (pte >> 4) & 0x3;
*wi = (++env->autorefill_idx) & 0x3;
split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, *wi, ei);
xtensa_tlb_set_entry(env, dtlb, *wi, *ei, vpn, pte);
qemu_log("%s: autorefill(%08x): %08x -> %08x\n",
__func__, vaddr, vpn, pte);
}
return ret;
}
static int get_physical_addr_region(CPUState *env,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size, unsigned *access)
{
bool dtlb = is_write != 2;
uint32_t wi = 0;
uint32_t ei = (vaddr >> 29) & 0x7;
const xtensa_tlb_entry *entry =
xtensa_tlb_get_entry(env, dtlb, wi, ei);
*access = region_attr_to_access(entry->attr);
if (!is_access_granted(*access, is_write)) {
return dtlb ?
(is_write ?
STORE_PROHIBITED_CAUSE :
LOAD_PROHIBITED_CAUSE) :
INST_FETCH_PROHIBITED_CAUSE;
}
*paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
*page_size = ~REGION_PAGE_MASK + 1;
return 0;
}
/*!
* Convert virtual address to physical addr.
* MMU may issue pagewalk and change xtensa autorefill TLB way entry.
*
* \return 0 if ok, exception cause code otherwise
*/
int xtensa_get_physical_addr(CPUState *env,
uint32_t vaddr, int is_write, int mmu_idx,
uint32_t *paddr, uint32_t *page_size, unsigned *access)
{
if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
return get_physical_addr_mmu(env, vaddr, is_write, mmu_idx,
paddr, page_size, access);
} else if (xtensa_option_bits_enabled(env->config,
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
paddr, page_size, access);
} else {
*paddr = vaddr;
*page_size = TARGET_PAGE_SIZE;
*access = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return 0;
}
}